Skip to content
2000
Volume 32, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Neurological disorders are brain conditions characterized by the loss of nerve cells, leading to a decline in function. Standard examples include dementia, tremors, involuntary movements, muscle weakness, and autoimmune attacks. The most common form of dementia is Alzheimer's, affecting over 5 million elderly individuals, while tremors, stiffness, and slow movement are caused by Parkinson's. Involuntary movements and emotional problems are caused by Huntington's, while muscle weakness and eventual demise are caused by Amyotrophic lateral sclerosis. Vision problems, fatigue, and difficulty walking are caused by Multiple sclerosis (MS), an autoimmune disease that attacks the myelin sheath. models provide cost and complexity reduction, environmental control, and high-throughput. Researchers employ both cell-based () and animal-based () models to investigate neurodegenerative illnesses and endeavor to formulate novel treatments for diverse conditions. models provide cost and complexity reduction, environment control, and high-throughput screening of potential therapeutic agents compared to models. Nevertheless, they possess constraints, including the absence of intricate interactions that transpire in the entire organism and the inability to reproduce the disease progression completely.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128374254250605070049
2025-06-24
2026-02-02
Loading full text...

Full text loading...

References

  1. AbdeltawabM.S.A. Abdel-ShafiI.R. AboulhodaB.E. MahfozA.M. HamedA.M.R. The neuroprotective potential of curcumin on T. Spiralis infected mice.BMC Complementary Med Ther20242419910.1186/s12906‑024‑04399‑038388410
    [Google Scholar]
  2. TanakaM. ToldiJ. VécseiL. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines.Int. J. Mol. Sci.2020217243110.3390/ijms2107243132244523
    [Google Scholar]
  3. HanssonO. Biomarkers for neurodegenerative diseases.Nat. Med.202127695496310.1038/s41591‑021‑01382‑x34083813
    [Google Scholar]
  4. Alzheimer's Association 2018 Alzheimer’s disease facts and figures.Alzheimers Dement.201814336742910.1016/j.jalz.2018.02.001
    [Google Scholar]
  5. ItohY. VoskuhlR.R. Cell specificity dictates similarities in gene expression in multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease.PLoS One2017127e018134910.1371/journal.pone.018134928715462
    [Google Scholar]
  6. BashirH. Emerging therapies in Huntington’s disease.Expert Rev. Neurother.2019191098399510.1080/14737175.2019.163116131181964
    [Google Scholar]
  7. AchenbachJ. ThielsC. LückeT. SaftC. Clinical manifestation of juvenile and pediatric HD patients: A retrospective case series.Brain Sci.202010634010.3390/brainsci1006034032503138
    [Google Scholar]
  8. BakelsH.S. RoosR.A.C. van Roon-MomW.M.C. de BotS.T. Juvenile-onset Huntington disease pathophysiology and neurodevelopment: A review.Mov. Disord.2022371162410.1002/mds.2882334636452
    [Google Scholar]
  9. TsvetkovaD. IvanovaS. ObreshkovaD. Neurodegenerative multioethiology Lou Gehrig’s disease–genetic mutations, pharmacological mechanisms and applications of rilusole.Int. J. Pharm. Res. Allied Sci.2023123617010.51847/w9fRJSNXjp
    [Google Scholar]
  10. VeroneseS. GalloG. ValleA. CugnoC. ChiòA. CalvoA. CavallaP. ZibettiM. RivoiroC. OliverD.J. Specialist palliative care improves the quality of life in advanced neurodegenerative disorders: NE-PAL, a pilot randomised controlled study.BMJ Support. Palliat. Care20177216417210.1136/bmjspcare‑2014‑00078826182947
    [Google Scholar]
  11. ColleD. FarinaM. CeccatelliS. RacitiM. Paraquat and maneb exposure alters rat neural stem cell proliferation by inducing oxidative stress: New insights on pesticide-induced neurodevelopmental toxicity.Neurotox. Res.201834482083310.1007/s12640‑018‑9916‑029859004
    [Google Scholar]
  12. DomenighettiC. SugierP.E. SreelathaA.A.K. SchulteC. GroverS. MohamedO. PortugalB. MayP. BobbiliD.R. Radivojkov-BlagojevicM. LichtnerP. SingletonA.B. HernandezD.G. EdsallC. MellickG.D. ZimprichA. PirkerW. RogaevaE. LangA.E. KoksS. TabaP. LesageS. BriceA. CorvolJ.C. Chartier-HarlinM.C. MutezE. BrockmannK. DeutschländerA.B. HadjigeorgiouG.M. DardiotisE. StefanisL. SimitsiA.M. ValenteE.M. PetrucciS. DugaS. StranieroL. ZecchinelliA. PezzoliG. BrighinaL. FerrareseC. AnnesiG. QuattroneA. GagliardiM. MatsuoH. KawamuraY. HattoriN. NishiokaK. ChungS.J. KimY.J. KolberP. van de WarrenburgB.P.C. BloemB.R. AaslyJ. ToftM. PihlstrømL. GuedesL.C. FerreiraJ.J. BardienS. CarrJ. TolosaE. EzquerraM. PastorP. Diez-FairenM. WirdefeldtK. PedersenN.L. RanC. BelinA.C. PuschmannA. HellbergC. ClarkeC.E. MorrisonK.E. TanM. KraincD. BurbullaL.F. FarrerM.J. KrügerR. GasserT. SharmaM. ElbazA. Mendelian randomisation study of smoking, alcohol, and coffee drinking in relation to Parkinson’s disease.J. Parkinsons Dis.202212126728210.3233/JPD‑21285134633332
    [Google Scholar]
  13. BallN. TeoW.P. ChandraS. ChapmanJ. Parkinson’s disease and the environment.Front. Neurol.20191021810.3389/fneur.2019.0021830941085
    [Google Scholar]
  14. TarnackaB. JopowiczA. MaślińskaM. Copper, iron, and manganese toxicity in neuropsychiatric conditions.Int. J. Mol. Sci.20212215782010.3390/ijms2215782034360586
    [Google Scholar]
  15. SpencerP.S. BerntssonS.G. BuguetA. ButterfieldP. CalneD.B. CalneS.M. Giménez-RoldánS. HugonJ. KahlonS. KisbyG.E. LagrangeE. LandtblomA.M.E. LudolphA.C. NunnP.B. PalmerV.S. ReisJ. RománG.C. SipiläJ.O.T. SpencerS.S. AnguesR.V. VernouxJ.P. YabushitaM. Brain health: Pathway to primary prevention of neurodegenerative disorders of environmental origin.J. Neurol. Sci.202546812334010.1016/j.jns.2024.12334039667295
    [Google Scholar]
  16. FeiginV.L. VosT. NicholsE. OwolabiM.O. CarrollW.M. DichgansM. DeuschlG. ParmarP. BraininM. MurrayC. The global burden of neurological disorders: Translating evidence into policy.Lancet Neurol.202019325526510.1016/S1474‑4422(19)30411‑931813850
    [Google Scholar]
  17. LogroscinoG. UrsoD. SavicaR. Descriptive epidemiology of neurodegenerative diseases: What are the critical questions?Neuroepidemiology202256530931810.1159/00052563935728570
    [Google Scholar]
  18. PohlF. LinPKT The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials.Molecules20182312328310.3390/molecules2312328330544977
    [Google Scholar]
  19. D’AntoniC. MautoneL. SanchiniC. TondoL. GrassmannG. CidonioG. BezziP. CordellaF. Di AngelantonioS. Unlocking neural function with 3D in vitro models: A technical review of self-assembled, guided, and bioprinted brain organoids and their applications in the study of neurodevelopmental and neurodegenerative disorders.Int. J. Mol. Sci.202324131076210.3390/ijms24131076237445940
    [Google Scholar]
  20. SegeritzC-P. VallierL. Cell culture: Growing cells as model systems in vitro.Basic science methods for clinical researchers.Elsevier201715117210.1016/B978‑0‑12‑803077‑6.00009‑6
    [Google Scholar]
  21. LiA. PereiraC. HillE.E. VukcevichO. WangA. In vitro, in vivo and ex vivo models for peripheral nerve injury and regeneration.Curr. Neuropharmacol.202220234436110.2174/1570159X1966621040715554333827409
    [Google Scholar]
  22. MarvianA.T. KossD.J. AliakbariF. MorshediD. OuteiroT.F. In vitro models of synucleinopathies: Informing on molecular mechanisms and protective strategies.J. Neurochem.2019150553556510.1111/jnc.1470731004503
    [Google Scholar]
  23. DunkelP. ChaiC.L.L. SperlághB. HuleattP.B. MátyusP. Clinical utility of neuroprotective agents in neurodegenerative diseases: Current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis.Expert Opin. Investig. Drugs20122191267130810.1517/13543784.2012.70317822741814
    [Google Scholar]
  24. SlanziA. IannotoG. RossiB. ZenaroE. ConstantinG. In vitro models of neurodegenerative diseases.Front. Cell Dev. Biol.2020832810.3389/fcell.2020.0032832528949
    [Google Scholar]
  25. LouitA. GalbraithT. BerthodF. In vitro 3D modeling of neurodegenerative diseases.Bioengineering20231019310.3390/bioengineering1001009336671665
    [Google Scholar]
  26. MinyL. MaisonneuveB.G.C. QuadrioI. HoneggerT. Modeling neurodegenerative diseases using in vitro compartmentalized microfluidic devices.Front. Bioeng. Biotechnol.20221091964610.3389/fbioe.2022.91964635813998
    [Google Scholar]
  27. OsakiT. ShinY. SivathanuV. CampisiM. KammR.D. In vitro microfluidic models for neurodegenerative disorders.Adv. Healthc. Mater.201872170048910.1002/adhm.20170048928881425
    [Google Scholar]
  28. HaenselerW. RajendranL. Concise review: Modeling neurodegenerative diseases with human pluripotent stem cell-derived microglia.Stem Cells201937672473010.1002/stem.299530801863
    [Google Scholar]
  29. HollowayP.M. Willaime-MorawekS. SiowR. BarberM. OwensR.M. SharmaA.D. RowanW. HillE. ZagnoniM. Advances in microfluidic in vitro systems for neurological disease modeling.J. Neurosci. Res.20219951276130710.1002/jnr.2479433583054
    [Google Scholar]
  30. FanizzaF. CampanileM. ForloniG. GiordanoC. AlbaniD. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders.J. Tissue Eng.2022132041731422109533910.1177/2041731422109533935570845
    [Google Scholar]
  31. CummingsJ. MontesA. KambojS. CachoJ.F. The role of basket trials in drug development for neurodegenerative disorders.Alzheimers Res. Ther.20221417310.1186/s13195‑022‑01015‑635614479
    [Google Scholar]
  32. MatthewsD.C. MaoX. DowdK. TsakanikasD. JiangC.S. MeuserC. AndrewsR.D. LukicA.S. LeeJ. HampilosN. ShafiianN. SanoM. David MozleyP. FillitH. McEwenB.S. ShunguD.C. PereiraA.C. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease.Brain2021144123742375510.1093/brain/awab22234145880
    [Google Scholar]
  33. ShinC.Y. KimH.S. ChaK.H. WonD.H. LeeJ.Y. JangS.W. SohnU.D. The effects of donepezil, an acetylcholinesterase inhibitor, on impaired learning and memory in rodents.Biomol. Ther.201826327428110.4062/biomolther.2017.18929463072
    [Google Scholar]
  34. CalabresiP. GhiglieriV. MazzocchettiP. CorbelliI. PicconiB. Levodopa-induced plasticity: A double-edged sword in Parkinson’s disease?Philos. Trans. R. Soc. Lond. B Biol. Sci.201537016722014018410.1098/rstb.2014.018426009763
    [Google Scholar]
  35. BhaleraoA. SivandzadeF. ArchieS.R. ChowdhuryE.A. NooraniB. CuculloL. In vitro modeling of the neurovascular unit: Advances in the field.Fluids Barriers CNS20201712210.1186/s12987‑020‑00183‑732178700
    [Google Scholar]
  36. PerrettaG. Non-human primate models in neuroscience research.Scand. J. Lab. Anim. Sci.20093617785
    [Google Scholar]
  37. TelloJ.A. WilliamsH.E. EpplerR.M. SteinhilbM.L. KhannaM. Animal models of neurodegenerative disease: Recent advances in fly highlight innovative approaches to drug discovery.Front. Mol. Neurosci.20221588335810.3389/fnmol.2022.88335835514431
    [Google Scholar]
  38. VissersM.F.J.M. HeubergerJ.A.A.C. GroeneveldG.J. Targeting for success: Demonstrating proof-of-concept with mechanistic early phase clinical pharmacology studies for disease-modification in neurodegenerative disorders.Int. J. Mol. Sci.2021224161510.3390/ijms2204161533562713
    [Google Scholar]
  39. RizzoSJS CrawleyJ.N. Behavioral phenotyping assays for genetic mouse models of neurodevelopmental, neurodegenerative, and psychiatric disorders.Annu. Rev. Anim. Biosci.20175137138910.1146/annurev‑animal‑022516‑02275428199172
    [Google Scholar]
  40. RuanJ. YaoY. Behavioral tests in rodent models of stroke.Brain Hemorrhages20201417118410.1016/j.hest.2020.09.00134322665
    [Google Scholar]
  41. KorteSM De BoerS.F. A robust animal model of state anxiety: Fear-potentiated behaviour in the elevated plus-maze.Eur. J. Pharmacol.20034631-316317510.1016/S0014‑2999(03)01279‑212600708
    [Google Scholar]
  42. HuangP. ZhangM. Magnetic resonance imaging studies of neurodegenerative disease: From methods to translational research.Neurosci. Bull.20233919911210.1007/s12264‑022‑00905‑x35771383
    [Google Scholar]
  43. ChenJ.J. Functional MRI of brain physiology in aging and neurodegenerative diseases.Neuroimage201918720922510.1016/j.neuroimage.2018.05.05029793062
    [Google Scholar]
  44. LeuzyA. ChiotisK. LemoineL. GillbergP.G. AlmkvistO. Rodriguez-VieitezE. NordbergA. Tau PET imaging in neurodegenerative tauopathies—still a challenge.Mol. Psychiatry20192481112113410.1038/s41380‑018‑0342‑830635637
    [Google Scholar]
  45. EhrenbergA.J. Relevance of biomarkers across different neurodegenerative diseases.Alzheimers Res. Ther.202012111
    [Google Scholar]
  46. AmartumurS. NguyenH. HuynhT. KimT.S. WooR.S. OhE. KimK.K. LeeL.P. HeoC. Neuropathogenesis-on-chips for neurodegenerative diseases.Nat. Commun.2024151221910.1038/s41467‑024‑46554‑838472255
    [Google Scholar]
  47. ReyF. BarzaghiniB. NardiniA. BordoniM. ZuccottiG.V. CeredaC. RaimondiM.T. CarelliS. Advances in tissue engineering and innovative fabrication techniques for 3-D-structures: Translational applications in neurodegenerative diseases.Cells202097163610.3390/cells907163632646008
    [Google Scholar]
  48. PandeyS. JiráskoM. LochmanJ. ChvátalA. DvorakovaMC KučeraR. iPSCs in neurodegenerative disorders: A unique platform for clinical research and personalized medicine.J. Pers. Med.2022129148510.3390/jpm1209148536143270
    [Google Scholar]
  49. NwabufoC.K. AigbogunO.P. Diagnostic and therapeutic agents that target alpha-synuclein in Parkinson’s disease.J. Neurol.2022269115762578610.1007/s00415‑022‑11267‑935831620
    [Google Scholar]
  50. ObradorE. Salvador-PalmerR. López-BlanchR. DellingerR.W. EstrelaJ.M. NAD+ precursors and antioxidants for the treatment of amyotrophic lateral sclerosis.Biomedicines202198100010.3390/biomedicines908100034440204
    [Google Scholar]
  51. HubrechtR.C. CarterE. The 3Rs and humane experimental technique: Implementing change.Animals201991075410.3390/ani910075431575048
    [Google Scholar]
  52. Domínguez-OlivaA. Hernández-ÁvalosI. Martínez-BurnesJ. Olmos-HernándezA. Verduzco-MendozaA. Mota-RojasD. The importance of animal models in biomedical research: Current insights and applications.Animals2023137122310.3390/ani1307122337048478
    [Google Scholar]
  53. HolmA. HansenS.N. KlitgaardH. KauppinenS. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases.RNA Biol.202219159460810.1080/15476286.2022.206633435482908
    [Google Scholar]
  54. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  55. Solana-ManriqueC. Sánchez-PérezA.M. ParicioN. Muñoz-DescalzoS. Two- and three-dimensional in vitro models of Parkinson’s and Alzheimer’s diseases: State-of-the-art and applications.Int. J. Mol. Sci.202526262010.3390/ijms2602062039859333
    [Google Scholar]
  56. MasserdottiG. Late onset Alzheimer’s disease: Modeling disease hallmarks via in vitro 3D iNeuron cultures.Signal Transduct. Target. Ther.20249128410.1038/s41392‑024‑01999‑739389939
    [Google Scholar]
  57. BalestriW. SharmaR. da SilvaV.A. BobotisB.C. CurleA.J. KothakotaV. KalantarniaF. HangadM.V. HoorfarM. JonesJ.L. TremblayM.È. El-JawhariJ.J. WillerthS.M. ReinwaldY. Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases.J. Neuroinflammation20242113210.1186/s12974‑024‑03024‑838263227
    [Google Scholar]
  58. TeliP. KaleV. VaidyaA. Beyond animal models: Revolutionizing neurodegenerative disease modeling using 3D in vitro organoids, microfluidic chips, and bioprinting.Cell Tissue Res.20233941759110.1007/s00441‑023‑03821‑237572163
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128374254250605070049
Loading
/content/journals/cpd/10.2174/0113816128374254250605070049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test