Skip to content
2000
Volume 31, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease primarily characterized by insufficient insulin secretion or reduced insulin sensitivity in the body's cells, leading to persistently high blood glucose levels. triterpenoids, as important secondary metabolites of , have shown preliminary potential efficacy in the treatment of T2DM according to existing research. However, due to the structural complexity and diversity of these triterpenoid compounds, as well as the intricate interactions between their therapeutic targets and active ingredients, the precise molecular and pharmacological mechanisms remain to be further explored.

Objective

In the present research, we aim to fully employ the integrated approach of network pharmacology and molecular docking methodologies, delving deeply into the potential therapeutic targets and their underlying pharmacological mechanisms in the management of T2DM triterpenoids.

Methods

The active compounds were sourced from prior research and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Their potential targets were predicted with the aid of Swiss Target Prediction. Genes linked to T2DM were gathered from DisGeNET and GeneCards. Using Cytoscape, we established the network connecting active ingredients, targets, and pathways, and the target protein-protein interaction (PPI) network was created using data from the STRING database. The core targets of triterpenoids underwent gene enrichment analysis DAVID. Lastly, to validate our chosen triterpenoids, we conducted molecular docking experiments between the compounds and their targets.

Results

A total of 53 triterpenoids and 116 associated targets were identified. Among these, SRC, MAPK1, MAPK3, HSP90AA1, TP53, PIK3CA, and AKT1 emerged as pivotal targets. We retrieved 447 Gene Ontology (GO) functional annotations and 153 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, notably including the PI3K-Akt signaling pathway, Endocrine resistance, Rap1 signaling pathway, and Lipid and Atherosclerosis, which are known to be associated with T2DM. Our findings suggest that triterpenoids may confer resistance to T2DM through mechanisms related to hyperexcitability, cell death, cell survival, proliferation, differentiation, and inflammation.

Conclusion

A comprehensive, interdisciplinary, and multi-technology approach has been established, which uncovers the collaborative effects and underlying principles of triterpenoids in the management and therapy of T2DM from a holistic perspective. This approach provides new insights into the development of novel biological control products for Type 2 Diabetes Mellitus (T2DM) and lays the foundation for future systematic studies on the interactions between Ganoderma triterpenes and different targets, elucidating their primary and secondary pathways for lowering blood glucose.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128365423250126035306
2025-02-13
2025-10-23
Loading full text...

Full text loading...

References

  1. FranceN.L. SyedY.Y. Tirzepatide: A review in type 2 diabetes.Drugs202484222723810.1007/s40265‑023‑01992‑4 38388874
    [Google Scholar]
  2. TaheriS. Type 2 diabetes remission: A new mission in diabetes care.Diabetes Care2024471474910.2337/dci23‑0062 38117996
    [Google Scholar]
  3. PatelD.K. KumarR. LalooD. HemalathaS. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity.Asian Pac. J. Trop. Biomed.20122541142010.1016/S2221‑1691(12)60067‑7 23569941
    [Google Scholar]
  4. PetersmannA WielandMD MüllerU A Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes2019127S 01S1-7.10.1055/a‑1018‑9078
  5. DeFronzoR.A. FerranniniE. GroopL. Type 2 diabetes mellitus.Nat. Rev. Dis. Primers2015111501910.1038/nrdp.2015.19 27189025
    [Google Scholar]
  6. SchramM.T. SepS.J.S. van der KallenC.J. The Maastricht Study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities.Eur. J. Epidemiol.201429643945110.1007/s10654‑014‑9889‑0 24756374
    [Google Scholar]
  7. HanL. FangC. ZhuR. PengQ. LiD. WangM. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking.Int. J. Biol. Macromol.20179552052710.1016/j.ijbiomac.2016.11.089 27894824
    [Google Scholar]
  8. LebovitzH.E. alpha-Glucosidase inhibitors.Endocrinol. Metab. Clin. North Am.199726353955110.1016/S0889‑8529(05)70266‑8 9314014
    [Google Scholar]
  9. ImranS. TahaM. IsmailN.H. Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies.Eur. J. Med. Chem.201510515617010.1016/j.ejmech.2015.10.017 26491979
    [Google Scholar]
  10. KimJ.H. ChoC.W. KimH.Y. α -Glucosidase inhibition by prenylated and lavandulyl compounds from Sophora flavescens roots and in silico analysis.Int. J. Biol. Macromol.201710296096910.1016/j.ijbiomac.2017.04.092 28455256
    [Google Scholar]
  11. SalarU. TahaM. KhanK.M. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α -glucosidase inhibitory activity, and molecular modeling studies.Eur. J. Med. Chem.201612219620410.1016/j.ejmech.2016.06.037 27371923
    [Google Scholar]
  12. TrinhB.T.D. StaerkD. JägerA.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes.J. Ethnopharmacol.201618618919510.1016/j.jep.2016.03.060 27041401
    [Google Scholar]
  13. KohdaH. TokumotoW. SakamotoK. The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes.Chem. Pharm. Bull. (Tokyo)19853341367137410.1248/cpb.33.1367 2412714
    [Google Scholar]
  14. KubotaT. AsakaY. MiuraI. MoriH. Structures of Ganoderic Acid A and B, Two New Lanostane Type Bitter Triterpenes from Ganoderma lucidum (FR.) K ARST.Helv. Chim. Acta198265261161910.1002/hlca.19820650221
    [Google Scholar]
  15. ChenR.Y. YuD.Q. Progress of studies on the chemical constituents of Ganoderma triterpene.Yao Xue Xue Bao19902512940953 2104477
    [Google Scholar]
  16. HuangS.Z. MaQ.Y. KongF.D. Lanostane-type triterpenoids from the fruiting body of Ganoderma calidophilum.Phytochemistry201714310411010.1016/j.phytochem.2017.07.015 28800421
    [Google Scholar]
  17. RenL. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats.Saudi J. Biol. Sci.20192681961197210.1016/j.sjbs.2019.07.005 31889779
    [Google Scholar]
  18. ShaoC.S. ZhouX.H. ZhengX.X. HuangQ. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells.J. Ethnopharmacol.202026211321310.1016/j.jep.2020.113213 32755651
    [Google Scholar]
  19. JiaY. ZhangD. LiH. Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism.Biochem. Pharmacol.202118511442210.1016/j.bcp.2021.114422 33482151
    [Google Scholar]
  20. ChiuH.F. FuH.Y. LuY.Y. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum: A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers.Pharm. Biol.20175511041104610.1080/13880209.2017.1288750 28183232
    [Google Scholar]
  21. SuL. LiuL. JiaY. Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation.Kidney Int.20179261404141810.1016/j.kint.2017.04.013 28709639
    [Google Scholar]
  22. KomodaY. ShimizuM. SonodaY. SatoY. Ganoderic acid and its derivatives as cholesterol synthesis inhibitors.Chem. Pharm. Bull.198937253153310.1248/cpb.37.531 2743504
    [Google Scholar]
  23. PuD. LiX. LinJ. Triterpenoids from Ganoderma gibbosum: A class of sensitizers of FLC-resistant Candida albicans to fluconazole.J. Nat. Prod.20198282067207710.1021/acs.jnatprod.9b00148 31310122
    [Google Scholar]
  24. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  25. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  26. TangH.C. HuangH.J. LeeC.C. ChenC.Y.C. Network pharmacology-based approach of novel traditional Chinese medicine formula for treatment of acute skin inflammation in silico.Comput. Biol. Chem.201771708110.1016/j.compbiolchem.2017.08.013 28987294
    [Google Scholar]
  27. AzmiA.S. Adopting network pharmacology for cancer drug discovery.Curr. Drug Discov. Technol.20131029510510.2174/1570163811310020002 23237672
    [Google Scholar]
  28. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  29. YamashitaF. HashidaM. In silico approaches for predicting ADME properties of drugs.Drug Metab. Pharmacokinet.200419532733810.2133/dmpk.19.327 15548844
    [Google Scholar]
  30. ZhangP. ZhangD. ZhouW. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518 38197310
    [Google Scholar]
  31. LuoT. ZhaoZ. WuM. Network pharmacology screening, in vitro and in vivo evaluation of antianxiety and antidepressant drug-food analogue.Phytomedicine202413415599910.1016/j.phymed.2024.155999 39241390
    [Google Scholar]
  32. BilenE. ÖzmenO.Ü. ÇeteS. AlyarS. YaşarA. Bioactive sulfonyl hydrazones with alkyl derivative: Characterization, ADME properties, molecular docking studies and investigation of inhibition on choline esterase enzymes for the diagnosis of Alzheimer’s disease.Chem. Biol. Interact.202236010995610.1016/j.cbi.2022.109956 35452634
    [Google Scholar]
  33. GuoY. DingY. XuF. Systems pharmacology-based drug discovery for marine resources: An example using sea cucumber (Holothurians).J. Ethnopharmacol.2015165617210.1016/j.jep.2015.02.029 25701746
    [Google Scholar]
  34. WangX. XuX. TaoW. LiY. WangY. YangL. A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease.Evid. Based Complement. Alternat. Med.2012201211510.1155/2012/519031 23243453
    [Google Scholar]
  35. RuJ. LiP. WangJ. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  36. XuX. ZhangW. HuangC. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  37. LipinskiC.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions.Adv. Drug Deliv. Rev.2016101344110.1016/j.addr.2016.04.029 27154268
    [Google Scholar]
  38. ButinaD. SegallM.D. FrankcombeK. Predicting ADME properties in silico: Methods and models.Drug Discov. Today2002711S83S8810.1016/S1359‑6446(02)02288‑2 12047885
    [Google Scholar]
  39. KimS. ChenJ. ChengT. PubChem in 2021: New data content and improved web interfaces.Nucleic Acids Res.202149D1D1388D139510.1093/nar/gkaa971 33151290
    [Google Scholar]
  40. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357-6410.1093/nar/gkz382 31106366
    [Google Scholar]
  41. UniProt UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky1049 30395287
    [Google Scholar]
  42. SafranM. DalahI. AlexanderJ. GeneCards Version 3: The human gene integrator.Database201020100baq02010.1093/database/baq020 20689021
    [Google Scholar]
  43. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑293 25176396
    [Google Scholar]
  44. ZhouY. ZhangY. LianX. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  45. KohlM. WieseS. WarscheidB. Cytoscape: Software for visualization and analysis of biological networks.Methods Mol. Biol.201169629130310.1007/978‑1‑60761‑987‑1_18
    [Google Scholar]
  46. SzklarczykD. GableA.L. LyonD. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  47. ZhouY. ZhouB. PacheL. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  48. TangD. ChenM. HuangX. SRplot: A free online platform for data visualization and graphing.PLoS One20231811e029423610.1371/journal.pone.0294236 37943830
    [Google Scholar]
  49. KanehisaM. FurumichiM. SatoY. WatanabeI.M. TanabeM. KEGG: Integrating viruses and cellular organisms.Nucleic Acids Res.202149D1D545D55110.1093/nar/gkaa970 33125081
    [Google Scholar]
  50. PaggiJ.M. PanditA. DrorR.O. The art and science of molecular docking.Annu. Rev. Biochem.202493138941010.1146/annurev‑biochem‑030222‑120000 38594926
    [Google Scholar]
  51. MaB. ZhangH. LiR. Molecular-docking electrolytes enable high-voltage lithium battery chemistries.Nat. Chem.20241691427143510.1038/s41557‑024‑01585‑y 39009795
    [Google Scholar]
  52. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  53. TunyasuvunakoolK. AdlerJ. WuZ. Highly accurate protein structure prediction for the human proteome.Nature2021596787359059610.1038/s41586‑021‑03828‑1 34293799
    [Google Scholar]
  54. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  55. WangZ.Z. YangJ. SunX.D. Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations.J. Biomol. Struct. Dyn.201937133482349510.1080/07391102.2018.1518158 30175693
    [Google Scholar]
  56. CarterP.J. QuarmbyV. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics.Nat. Rev. Drug Discov.2024231289891310.1038/s41573‑024‑01051‑x 39424922
    [Google Scholar]
  57. SwansonK. WaltherP. LeitzJ. ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries.Bioinformatics2024407btae41610.1093/bioinformatics/btae416 38913862
    [Google Scholar]
  58. TangY. FuZ. RaosG. MaF. ZhaoP. HouY. Molecular dynamics simulation of adhesion at the asphalt-aggregate interface: A review.Surf. Interfaces20244410370610.1016/j.surfin.2023.103706
    [Google Scholar]
  59. RamosR.H. FerreiraC.O.L. SimaoA. Human protein-protein interaction networks: A topological comparison review.Heliyon2024105e2727810.1016/j.heliyon.2024.e27278 38562502
    [Google Scholar]
  60. CaoM.Y. ZainudinS. DaudK.M. Protein features fusion using attributed network embedding for predicting protein-protein interaction.BMC Genomics202425146610.1186/s12864‑024‑10361‑8 38741045
    [Google Scholar]
  61. MuK. RanF. PengL. Identification of diagnostic biomarkers of rheumatoid arthritis based on machine learning-assisted comprehensive bioinformatics and its correlation with immune cells.Heliyon20241015e3551110.1016/j.heliyon.2024.e35511 39170142
    [Google Scholar]
  62. LiuZ. ZhaoP. Integrative analysis unveils ECM signatures and pathways driving hepatocellular carcinoma progression: A multi‐omics approach and prognostic model development.J. Cell. Mol. Med.2024288e1823010.1111/jcmm.18230 38568083
    [Google Scholar]
  63. XuF. GaoW. ZhangM. Diagnostic implications of ubiquitination-related gene signatures in Alzheimer’s disease.Sci. Rep.20241411072810.1038/s41598‑024‑61363‑1 38730027
    [Google Scholar]
  64. FrankJ.W. SaslowS.B. CamilleriM. ThomfordeG.M. DinneenS. RizzaR.A. Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus.Gastroenterology1995109375576510.1016/0016‑5085(95)90382‑8 7657103
    [Google Scholar]
  65. MaZ.A. ZhaoZ. TurkJ. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus.Exp. Diabetes Res.2012201211110.1155/2012/703538 22110477
    [Google Scholar]
  66. WangH. TanH. ZhanW. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs.J. Ethnopharmacol.202127411405610.1016/j.jep.2021.114056 33771638
    [Google Scholar]
  67. DuanH. KhanG.J. ShangL. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis.Food Chem. Toxicol.202115011205810.1016/j.fct.2021.112058 33582168
    [Google Scholar]
  68. WangZ. ShahO.J. HunterT. The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models.PLoS One201277e3696110.1371/journal.pone.0036961
    [Google Scholar]
  69. RowanB.G. WeigelN.L. O’MalleyB.W. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway.J. Biol. Chem.200027564475448310.1074/jbc.275.6.4475 10660621
    [Google Scholar]
  70. RenX.X. Effect of Fyn on hyperglycaemic induced podocytosis.ChinaShandong University201410.7666/d.Y2596976
    [Google Scholar]
  71. McRobbL.S. McGrathK.C.Y. TsatralisT. Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation.Arterioscler. Thromb. Vasc. Biol.20173761127113710.1161/ATVBAHA.117.309054 28473445
    [Google Scholar]
  72. DuongP. TenkorangM.A.A. TrieuJ. McCuistonC. RybalchenkoN. CunninghamR.L. Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment.Biol. Sex Differ.20201111210.1186/s13293‑020‑0283‑1 32223745
    [Google Scholar]
  73. LindnerV. KimS.K. KarasR.H. KuiperG.G.J.M. GustafssonJ.Å. MendelsohnM.E. Increased expression of estrogen receptor-β mRNA in male blood vessels after vascular injury.Circ. Res.199883222422910.1161/01.RES.83.2.224 9686763
    [Google Scholar]
  74. OdenlundM. EkbladE. NilssonB.O. Stimulation of oestrogen receptor-expressing endothelial cells with oestrogen reduces proliferation of cocultured vascular smooth muscle cells.Clin. Exp. Pharmacol. Physiol.200835324524810.1111/j.1440‑1681.2007.04870.x 18290870
    [Google Scholar]
  75. OginoY. TohyamaS. KohnoS. Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR.J. Steroid Biochem. Mol. Biol.2018184384610.1016/j.jsbmb.2018.06.002 29885351
    [Google Scholar]
  76. HealdAH farYG LivingstonM Androgen receptor-reduced sensitivity is associated with increased mortality and poorer glycaemia in men with type 2 diabetes mellitus: A prospective cohort study.Cardiovasc. Endocrinol. Metab.2020101374410.1097/XCE.0000000000000230 33634254
    [Google Scholar]
  77. RissoG. BlausteinM. PozziB. MammiP. SrebrowA. Akt/PKB: One kinase, many modifications.Biochem. J.2015468220321410.1042/BJ20150041 25997832
    [Google Scholar]
  78. KaneS. SanoH. LiuS.C.H. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain.J. Biol. Chem.200227725221152211810.1074/jbc.C200198200 11994271
    [Google Scholar]
  79. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.27173 30263000
    [Google Scholar]
  80. MoscaE. BarcellaM. AlfieriR. BevilacquaA. CantiG. MilanesiL. Systems biology of the metabolic network regulated by the Akt pathway.Biotechnol. Adv.201230113114110.1016/j.biotechadv.2011.08.004 21856401
    [Google Scholar]
  81. MaY. ChenF. YangS. DuanY. SunZ. ShiJ. Silencing of TRB3 ameliorates diabetic tubule interstitial nephropathy via PI3K/AKT signaling in rats.Med. Sci. Monit.2017232816282410.12659/MSM.902581 28600485
    [Google Scholar]
  82. ZhangX. LiangD. HongZ.C. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells.Int. J. Mol. Med.20153561747175410.3892/ijmm.2015.2170 25872526
    [Google Scholar]
  83. MahmoudiM. AslaniS. FadaeiR. JamshidiA.R. New insights to the mechanisms underlying atherosclerosis in rheumatoid arthritis.Int. J. Rheum. Dis.201720328729710.1111/1756‑185X.12999 28205331
    [Google Scholar]
  84. SamuelV.T. ShulmanG.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux.J. Clin. Invest.20161261122210.1172/JCI77812 26727229
    [Google Scholar]
  85. WangY. ChenP. Combination of HPLC-Q-TOF-MS/MS, network pharmacology, and molecular docking to reveal the mechanism of apple pollen in the treatment of type 2 diabetes mellitus.Evid. Based Complement. Alternat. Med.2022202211410.1155/2022/3221196 35656465
    [Google Scholar]
  86. FischerS. KoeberleS.C. LauferS.A. p38α mitogen-activated protein kinase inhibitors, a patent review (2005-2011).Expert Opin. Ther. Pat.201121121843186610.1517/13543776.2011.636737 22082194
    [Google Scholar]
  87. RajeshM. MukhopadhyayP. BátkaiS. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy.J. Am. Coll. Cardiol.201056252115212510.1016/j.jacc.2010.07.033 21144973
    [Google Scholar]
  88. ThandavarayanR.A. WatanabeK. MaM. Dominant-negative p38α mitogen-activated protein kinase prevents cardiac apoptosis and remodeling after streptozotocin-induced diabetes mellitus.Am. J. Physiol. Heart Circ. Physiol.20092973H911H91910.1152/ajpheart.00124.2009 19617408
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128365423250126035306
Loading
/content/journals/cpd/10.2174/0113816128365423250126035306
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test