Skip to content
2000
Volume 31, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Renal secondary hyperparathyroidism (SHPT) represents a prevalent complication among dialysis patients, significantly impacting long-term prognosis. Parathyroidectomy (PTX) serves as a clinically effective therapeutic option for patients diagnosed with refractory secondary hyperparathyroidism.

Objective

This study aims to assess the impact of PTX on cardiovascular events (CVEs) and all-cause mortality in dialysis patients, as well as to analyze the incidence and potential determinants of postoperative cardiovascular events and all-cause mortality.

Methods

We collected data on 710 patients with renal secondary hyperparathyroidism who were treated with PTX between February 2011 and April 2019. A total of 633 patients who underwent PTX were finally included and matched with 462 patients who did not undergo PTX on a 1:1 basis according to age and follow-up duration. Ultimately, 179 pairs were successfully matched to investigate the differences in all-cause mortality and CVEs. The Logistic/Cox regression analyses were employed to identify independent factors associated with adverse CVEs and all-cause mortality among patients receiving PTX. Nomogram prediction models were constructed based on independent influencing factors.

Results

Among 633 patients who underwent PTX, 117 (18.5%) died and 192 (30.3%) experienced CVEs during median 5-year follow-up. No significant differences in cardiovascular/death events were observed between matched groups. In patients who underwent PTX, the logistic regression analysis revealed that age and history of diabetes mellitus were independent risk factors for CVEs. The pre-operative use of cinacalcet and/or calcitriol was associated with a reduced risk of CVEs. With respect to preoperative and postoperative calcium levels, the highest tertile was identified as a risk factor when compared with the lowest tertile. Cox regression showed age, diabetes history, and highest preoperative phosphorus tertile negatively correlated with survival, while albumin (ALB) was positively correlated. The predictive nomogram model had an area under the receiver operating characteristic (ROC) curve of 0.649 for CVE prediction. The areas under the ROC curve for predicting 3-, 5-, and 10-year mortality prediction were 0.865, 0.865, and 0.953, respectively.

Conclusion

PTX does not reduce the incidence of cardiovascular events and mortality in patients on maintenance dialysis. In patients who underwent PTX, older age, a history of diabetes mellitus, and higher preoperative calcium/postoperative calcium levels were independent risk factors for adverse CVEs; preoperative use of cinacalcet and/or calcitriol was a protective risk for CVEs. Older age, a history of diabetes mellitus, lower ALB levels, and hyperphosphatemia were independent risk factors for all-cause mortality following PTX. These predictive models may assist in clinical decision-making to some extent.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128390373250507062606
2025-05-12
2025-10-22
Loading full text...

Full text loading...

References

  1. FoleyR.N. ParfreyP.S. SarnakM.J. Clinical epidemiology of cardiovascular disease in chronic renal disease.Am. J. Kidney Dis.1998325S112S11910.1053/ajkd.1998.v32.pm9820470 9820470
    [Google Scholar]
  2. HiramitsuT. HasegawaY. FutamuraK. Treatment for secondary hyperparathyroidism focusing on parathyroidectomy.Front. Endocrinol. (Lausanne)202314116979310.3389/fendo.2023.1169793 37152972
    [Google Scholar]
  3. MagagnoliL. CiceriP. CozzolinoM. Secondary hyperparathyroidism in chronic kidney disease: pathophysiology, current treatments and investigational drugs.Expert Opin. Investig. Drugs202433877578910.1080/13543784.2024.2369307 38881200
    [Google Scholar]
  4. MiedziaszczykM. Idasiak-PiechockaI. WiśniewskiO.W. LackaK. A systematic review of the pharmacotherapy of secondary hyperparathyroidism (SHPT) in grades 3-5 Chronic Kidney Disease (CKD).Eur. Rev. Med. Pharmacol. Sci.202226123223910.26355/eurrev_202201_27773 35049000
    [Google Scholar]
  5. BrandenburgV. KettelerM. Vitamin D and Secondary Hyperparathyroidism in Chronic Kidney Disease: A Critical Appraisal of the Past, Present, and the Future.Nutrients20221415300910.3390/nu14153009 35893866
    [Google Scholar]
  6. GoldensteinP.T. EliasR.M. do CarmoL.P.F. Parathyroidectomy improves survival in patients with severe hyperparathyroidism: A comparative study.PLoS One201388e6887010.1371/journal.pone.0068870 23940515
    [Google Scholar]
  7. EidmanK.E. WetmoreJ.B. The role of parathyroidectomy in the management of secondary hyperparathyroidism.Curr. Opin. Nephrol. Hypertens.201726651652210.1097/MNH.0000000000000365 28985191
    [Google Scholar]
  8. DreamS. KuoL.E. KuoJ.H. The American Association of Endocrine Surgeons Guidelines for the Definitive Surgical Management of Secondary and Tertiary Renal Hyperparathyroidism.Ann. Surg.20222763e141e17610.1097/SLA.0000000000005522 35848728
    [Google Scholar]
  9. BoverJ. EvenepoelP. Ureña-TorresP. Pro: Cardiovascular calcifications are clinically relevant.Nephrol. Dial. Transplant.201530334535110.1093/ndt/gfv020 25712934
    [Google Scholar]
  10. CovicA. KothawalaP. BernalM. RobbinsS. ChalianA. GoldsmithD. Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease.Nephrol. Dial. Transplant.20092451506152310.1093/ndt/gfn613 19001560
    [Google Scholar]
  11. LangoteA. AhearnM. ZimmermanD. Dialysate calcium concentration, mineral metabolism disorders, and cardiovascular disease: deciding the hemodialysis bath.Am. J. Kidney Dis.201566234835810.1053/j.ajkd.2015.02.336 25958080
    [Google Scholar]
  12. ConzoG. PernaA.F. SavicaV. PalazzoA. Della PietraC. IngrossoD. Impact of parathyroidectomy on cardiovascular outcomes and survival in chronic hemodialysis patients with secondary hyperparathyroidism. A retrospective study of 50 cases prior to the calcimimetics era.BMC Surg.201313Suppl. 2S410.1186/1471‑2482‑13‑S2‑S4
    [Google Scholar]
  13. IvarssonK.M. AkaberiS. IsakssonE. Cardiovascular and cerebrovascular events after parathyroidectomy in patients on renal replacement therapy.World J. Surg.20194381981198810.1007/s00268‑019‑05020‑z 31087130
    [Google Scholar]
  14. LiuM. LiZ. ZhangX. WeiX. A nomograph model for predicting the risk of diabetes nephropathy.Int. Urol. Nephrol.2025571919193110.1007/s11255‑024‑04351‑8 39776401
    [Google Scholar]
  15. MaF. HuangJ. Nomograph of cancer‐specific survival in elderly patients with endometrial cancer based on SEER database.J. Obstet. Gynaecol. Res.2025511e1621410.1111/jog.16214 39832800
    [Google Scholar]
  16. WuJ. ZhangH. LiL. A nomogram for predicting overall survival in patients with low‐grade endometrial stromal sarcoma: A population‐based analysis.Cancer Commun. (Lond.)202040730131210.1002/cac2.12067 32558385
    [Google Scholar]
  17. StackB.C. Secondary hyperparathyroidism.Otolaryngol. Clin. North Am.20245719911010.1016/j.otc.2023.07.010 37634982
    [Google Scholar]
  18. WuQ. FanW. ZhongX. ZhangL. NiuJ. GuY. Klotho/FGF23 and Wnt in SHPT associated with CKD via regulating miR-29a.Am. J. Transl. Res.2022142876887 35273691
    [Google Scholar]
  19. WangX.R. ZhangJ.J. XuX.X. WuY.G. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis.Ren. Fail.201941124425610.1080/0886022X.2019.1595646 31014155
    [Google Scholar]
  20. ZhuJ. WuY. HuangT. JiangG. YangZ. Efficacy and safety of total parathyroidectomy with autotransplantation vs. subtotal parathyroidectomy for secondary hyperparathyroidism: A retrospective study.Heliyon202395e1575210.1016/j.heliyon.2023.e15752 37144191
    [Google Scholar]
  21. EvansM. MethvenS. GaspariniA. Cinacalcet use and the risk of cardiovascular events, fractures and mortality in chronic kidney disease patients with secondary hyperparathyroidism.Sci. Rep.201881210310.1038/s41598‑018‑20552‑5 29391567
    [Google Scholar]
  22. LiuJ. LouisT.A. PanW. MaJ.Z. CollinsA.J. State-level adjusted ESRD incident rates: Use of observed vs model-predicted category-specific rates.Kidney Int.20066981459146310.1038/sj.ki.5000299 16531980
    [Google Scholar]
  23. HerzogC.A. MangrumJ.M. PassmanR. Sudden cardiac death and dialysis patients.Semin. Dial.200821430030710.1111/j.1525‑139X.2008.00455.x 18627568
    [Google Scholar]
  24. NakaiK. KonoK. YamadaS. TaniguchiM. HamanoT. FukagawaM. Calcimimetics treatment strategy for serum calcium and phosphate management in patients with secondary hyperparathyroidism undergoing dialysis: A systematic review and meta‐analysis of randomized studies.Ther. Apher. Dial.202428455757110.1111/1744‑9987.14125 38499495
    [Google Scholar]
  25. AlvaradoL. SharmaN. LermaR. Parathyroidectomy versus cinacalcet for the treatment of secondary hyperparathyroidism in hemodialysis patients.World J. Surg.202246481381910.1007/s00268‑022‑06439‑7 35022799
    [Google Scholar]
  26. MorosettiM. JankovicL. ZappalàL. AgafonovaE. PryshlyakI. Long-term use of etelcalcetide for the treatment of secondary hyperparathyroidism in patients undergoing hemodialysis for end-stage renal failure: A real-life retrospective observational study.Int. Urol. Nephrol.20235571865187310.1007/s11255‑023‑03505‑4 36790677
    [Google Scholar]
  27. SchneiderR. BartschD.K. Role of surgery in the treatment of renal secondary hyperparathyroidism.Br. J. Surg.2015102428929010.1002/bjs.9661 25359005
    [Google Scholar]
  28. SaitoY. IkedaY. TakamiH. Scoping review of approaches used for remote‐access parathyroidectomy: A contemporary review of techniques, tools, pros and cons.Head Neck20224481976199010.1002/hed.27068 35467046
    [Google Scholar]
  29. LiY. YuanL. XuB. Outcomes of limited parathyroidectomy in secondary hyperparathyroidism.J. Coll. Physicians Surg. Pak.202232111386139110.29271/jcpsp.2022.11.1386 36377002
    [Google Scholar]
  30. VervloetM.G. du Buf-VereijkenP.W. Potter van LoonB.J. ManamleyN. ReichertL.J. Smak GregoorP.J. Cinacalcet for secondary hyperparathyroidism: From improved mineral levels to improved mortality?Neth. J. Med.2013717348354 24038560
    [Google Scholar]
  31. CarboneF. LiberaleL. LibbyP. MontecuccoF. Vitamin D in atherosclerosis and cardiovascular events.Eur. Heart J.202344232078209410.1093/eurheartj/ehad165 36943351
    [Google Scholar]
  32. InagumaD. TanakaA. ShinjoH. KatoA. MurataM. Predialysis vitamin D receptor activator treatment and cardiovascular events after dialysis initiation: A multicenter observational study.Nephron J.20161331354310.1159/000445507 27054694
    [Google Scholar]
  33. ShojiT. MarubayashiS. ShigematsuT. IsekiK. TsubakiharaY. Use of vitamin D receptor activator, incident cardiovascular disease and death in a cohort of hemodialysis patients.Ther. Apher. Dial.201519323524410.1111/1744‑9987.12274 25530222
    [Google Scholar]
  34. VogelJ.O. FreireC.H. MunhozL. AndradeB.A.B. TenórioJ.R. Mandibular bone imaging assessment in chronic kidney disease: A systematic review and meta-analysis.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2024138456557410.1016/j.oooo.2024.05.007 38918134
    [Google Scholar]
  35. ShojiT. InabaM. FukagawaM. Effect of oral alfacalcidol on clinical outcomes in patients without secondary hyperparathyroidism receiving maintenance hemodialysis.JAMA2018320222325233410.1001/jama.2018.17749 30535217
    [Google Scholar]
  36. WangR. DisharoonM. FrazierR. Less is more: Parathyroidectomy and association with postoperative hypocalcemia in dialysis patients.J. Am. Coll. Surg.2023236463964510.1097/XCS.0000000000000539 36728468
    [Google Scholar]
  37. TsaiS.H. KanW.C. JhenR.N. Secondary hyperparathyroidism in chronic kidney disease: A narrative review focus on therapeutic strategy.Clin. Med. (Lond.)202424510023810.1016/j.clinme.2024.100238 39208984
    [Google Scholar]
  38. DreyerP. OheM.N. SantosL.M. KuniiI.S. SantosR.O. CarvalhoA.B. Parathyroid responsiveness during hypocalcemia after total parathyroidectomy and autotransplantation in patients with renal hyperparathyroidism.J. Bras. Nefrol.201638218319010.5935/0101‑2800.20160027
    [Google Scholar]
  39. ChengJ. LvY. ZhangL. LiuY. Construction and validation of a predictive model for hypocalcemia after parathyroidectomy in patients with secondary hyperparathyroidism.Front. Endocrinol. (Lausanne)202213104026410.3389/fendo.2022.1040264 36531501
    [Google Scholar]
  40. YamadaS. NakanoT. Role of chronic kidney disease (CKD)-mineral and bone disorder (MBD) in the pathogenesis of cardiovascular disease in CKD.J. Atheroscler. Thromb.202330883585010.5551/jat.RV22006 37258233
    [Google Scholar]
  41. TangJ.K.K. RabkinS.W. Hypocalcemia-InducedQ.T. Interval prolongation.Cardiology2022147219119510.1159/000515985 35078204
    [Google Scholar]
  42. GotoS. HamanoT. FujiiH. Hypocalcemia and cardiovascular mortality in cinacalcet users.Nephrol. Dial. Transplant.202439463764710.1093/ndt/gfad213 37777840
    [Google Scholar]
  43. RivelliGG LimaML MazzaliM Therapy for persistent hypercalcemic hyperparathyroidism post-renal transplant: Cinacalcet versus parathyroidectomy. J Bras Nefrol 20204233152210.1590/2175‑8239‑jbn‑2019‑0207 32720971
  44. NeyraJ.A. HuM.C. MoeO.W. Klotho in Clinical Nephrology.Clin. J. Am. Soc. Nephrol.202116116217610.2215/CJN.02840320 32699047
    [Google Scholar]
  45. LeeY.T. LinC.S. FangW.H. Artificial intelligence-enabled electrocardiography detects hypoalbuminemia and identifies the mechanism of hepatorenal and cardiovascular events.Front. Cardiovasc. Med.2022989520110.3389/fcvm.2022.895201 35770216
    [Google Scholar]
  46. RossingP. BaeresF.M.M. BakrisG. The rationale, design and baseline data of FLOW, a kidney outcomes trial with once-weekly semaglutide in people with type 2 diabetes and chronic kidney disease.Nephrol. Dial. Transplant.20233892041205110.1093/ndt/gfad009 36651820
    [Google Scholar]
  47. McLeanT.W. ShahN.S. BarrR.D. ToozeJ.A. Hypoalbuminemia and nutritional status in children with cancer.Pediatr. Blood Cancer2025722e3145010.1002/pbc.31450 39568166
    [Google Scholar]
  48. ShabilM. BushiG. ApostolopoulosV. Hypoalbuminemia as a predictor of severe dengue: A systematic review and meta-analysis.Expert Rev. Anti Infect. Ther.202523110511810.1080/14787210.2024.2448721 39745180
    [Google Scholar]
  49. BiancucciM. BarbieroR. PennellaB. Hypoalbuminaemia and heart failure: A practical review of current evidence.Eur. J. Heart Fail.202527229330610.1002/ejhf.3363 38962822
    [Google Scholar]
  50. KatalinicL. PremuzicV. Basic-JukicN. BarisicI. JelakovicB. Hypoproteinemia as a factor in assessing malnutrition and predicting survival on hemodialysis.J. Artif. Organs201922323023610.1007/s10047‑019‑01098‑3
    [Google Scholar]
  51. GuestS. Hypoalbuminemia in peritoneal dialysis patients.Adv. Perit. Dial.2013295560
    [Google Scholar]
  52. JatupornpoonsubT. ThimachaiP. SupasyndhO. WongsawatY. QEEG characteristics associated with malnutrition-inflammation complex syndrome.Front. Hum. Neurosci.20231794498810.3389/fnhum.2023.944988 36825130
    [Google Scholar]
  53. YamadaS. AraseH. YoshidaH. Malnutrition-inflammation complex syndrome and bone fractures and cardiovascular disease events in patients undergoing hemodialysis: The Q-Cohort study.Kidney Med.20224310040810.1016/j.xkme.2022.100408 35386605
    [Google Scholar]
  54. BramaniaP.K. RuggajoP. BramaniaR. MahmoudM. FuriaF.F. Prevalence of malnutrition inflammation complex syndrome among patients on maintenance haemodialysis at Muhimbili National Hospital in Tanzania: A cross-sectional study.BMC Nephrol.202021152110.1186/s12882‑020‑02171‑3 33256618
    [Google Scholar]
  55. UchaI. MamvenM. AdejumoO. NwankwoE.A. Malnutrition inflammation complex syndrome in pre-dialysis chronic kidney disease patients in a nigerian tertiary hospital.West Afr. J. Med.2022391212531259 36580888
    [Google Scholar]
  56. RajR. KadiyalaA. PatelC. Malnutrition-inflammation complex Syndrome: A cause of low parathyroid hormone in patients with chronic kidney disease.Cureus20211312e2032410.7759/cureus.20324 35028221
    [Google Scholar]
  57. de MutsertR. KredietR.T. Malnutrition, inflammation and atherosclerosis (MIA-syndrome) in dialysis patients.Ned. Tijdschr. Geneeskd.20061503720232027 17058458
    [Google Scholar]
  58. ZhangY. WuM. MaoC. Risk factors and their association with mortality in patients undergoing long-term hemodialysis or/and kidney transplant patients or late-stage chronic kidney disease: A single center, prospective observational study.Medicine (Baltimore)20241031e3680510.1097/MD.0000000000036805 38181232
    [Google Scholar]
  59. LanA.P.T. ThanhA.T. NgocQ.L. NhatT.P. DuyT.D. Prevalence and factors associated with malnutrition among hemodialysis patients in a single hemodialysis center in Vietnam: A cross-sectional study.Medicine (Baltimore)202410314e3767910.1097/MD.0000000000037679 38579083
    [Google Scholar]
  60. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation.Am. J. Kidney Dis.2000356Suppl. 2S17S10410.1053/ajkd.2000.v35.aajkd03517 10895784
    [Google Scholar]
  61. JakubauskasM. BeišaV. StrupasK. Risk factors of developing the hungry bone syndrome after parathyroidectomy for primary hyperparathyroidism.Acta Med. Litu.2018251455110.6001/actamedica.v25i1.3703 29928157
    [Google Scholar]
  62. PergolaP.E. RosenbaumD.P. YangY. ChertowG.M. A Randomized trial of tenapanor and phosphate binders as a dual-mechanism treatment for hyperphosphatemia in patients on maintenance dialysis (AMPLIFY).J. Am. Soc. Nephrol.20213261465147310.1681/ASN.2020101398 33766811
    [Google Scholar]
  63. AnandA AoyagiH. Understudied hyperphosphatemia (chronic kidney disease) treatment targets and new biological approaches. medicina (Kaunas) 202359595910.3390/medicina59050959 37241191
  64. Rubio-AliagaI. KrapfR. Phosphate intake, hyperphosphatemia, and kidney function.Pflugers Arch.2022474893594710.1007/s00424‑022‑02691‑x 35511366
    [Google Scholar]
  65. LatifF. KhalidM.M. KhanF. OmarZ. AliF.A. Role of hyperphosphatemia-mediated vascular calcification in cardiovascular outcomes and its management.J. Cardiovasc. Med. (Hagerstown)201314641041510.2459/JCM.0b013e32835ec53d 23392553
    [Google Scholar]
  66. IsakaY. HamanoT. FujiiH. Optimal phosphate control related to coronary artery calcification in dialysis patients.J. Am. Soc. Nephrol.202132372373510.1681/ASN.2020050598 33547218
    [Google Scholar]
  67. BacchettaJ. BernardorJ. GarnierC. NaudC. RanchinB. Hyperphosphatemia and chronic kidney disease: A major daily concern both in adults and in children.Calcif. Tissue Int.2021108111612710.1007/s00223‑020‑00665‑8 31996964
    [Google Scholar]
  68. BozicM. Diaz-TocadosJ.M. Bermudez-LopezM. Independent effects of secondary hyperparathyroidism and hyperphosphataemia on chronic kidney disease progression and cardiovascular events: An analysis from the NEFRONA cohort.Nephrol. Dial. Transplant.202237466367210.1093/ndt/gfab184 34021359
    [Google Scholar]
  69. HuL. NapoletanoA. ProvenzanoM. Mineral bone disorders in kidney disease Patients: The ever-current topic.Int. J. Mol. Sci.202223201222310.3390/ijms232012223 36293076
    [Google Scholar]
  70. OgataH. FukagawaM. HirakataH. Effect of treating hyperphosphatemia with lanthanum carbonate vs. calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing hemodialysis.JAMA2021325191946195410.1001/jama.2021.4807 34003226
    [Google Scholar]
  71. SongM. GraubardB.I. RabkinC.S. EngelsE.A. Neutrophil-to-lymphocyte ratio and mortality in the United States general population.Sci. Rep.202111146410.1038/s41598‑020‑79431‑7 33431958
    [Google Scholar]
  72. AyrancıM.K. KüçükceranK. DundarZ.D. NLR and CRP to albumin ratio as a predictor of in-hospital mortality in the geriatric ED patients.Am. J. Emerg. Med.202144505510.1016/j.ajem.2021.01.053 33578332
    [Google Scholar]
  73. HaranC. GimpelD. ClarkH. McCormackD.J. Preoperative neutrophil and lymphocyte ratio as a predictor of mortality and morbidity after cardiac surgery.Heart Lung Circ.202130341441810.1016/j.hlc.2020.05.115 32665173
    [Google Scholar]
  74. AngkananardT. AnothaisintaweeT. McEvoyM. AttiaJ. ThakkinstianA. Neutrophil lymphocyte ratio and cardiovascular disease risk: A systematic review and meta-analysis.BioMed Res. Int.2018201811110.1155/2018/2703518 30534554
    [Google Scholar]
  75. XuY. FangH. QiuZ. ChengX. Prognostic role of neutrophil-to-lymphocyte ratio in aortic disease: A meta-analysis of observational studies.J. Cardiothorac. Surg.202015121510.1186/s13019‑020‑01263‑3 32778122
    [Google Scholar]
  76. RosenstockJ. PerkovicV. JohansenO.E. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk.JAMA20193211697910.1001/jama.2018.18269 30418475
    [Google Scholar]
  77. PerkovicV. TuttleK.R. RossingP. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes.N. Engl. J. Med.2024391210912110.1056/NEJMoa2403347 38785209
    [Google Scholar]
  78. GersteinH.C. SattarN. RosenstockJ. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes.N. Engl. J. Med.20213851089690710.1056/NEJMoa2108269 34215025
    [Google Scholar]
  79. FujiiH. Association between parathyroid hormone and cardiovascular disease.Ther. Apher. Dial.201822323624110.1111/1744‑9987.12679 29707916
    [Google Scholar]
  80. LiM. ChengJ. ZhaoJ. Relationship between intact parathyroid hormone and all-cause death, cardiovascular events, and ectopic calcification in patients with diabetic kidney disease: A retrospective study.Diabetes Res. Clin. Pract.202117710892610.1016/j.diabres.2021.108926 34161808
    [Google Scholar]
  81. TentoriF. WangM. BieberB.A. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: The DOPPS study.Clin. J. Am. Soc. Nephrol.20151019810910.2215/CJN.12941213 25516917
    [Google Scholar]
  82. KomabaH. TaniguchiM. WadaA. IsekiK. TsubakiharaY. FukagawaM. Parathyroidectomy and survival among Japanese hemodialysis patients with secondary hyperparathyroidism.Kidney Int.201588235035910.1038/ki.2015.72 25786097
    [Google Scholar]
  83. RaoS. WengM. LianR. Correlation between coronary calcification and cardiac structure in non‐dialysis patients with chronic kidney disease.ESC Heart Fail.202512119921010.1002/ehf2.15057 39239806
    [Google Scholar]
  84. SaritasT. ReinartzS.D. NadalJ. Epicardial fat, cardiovascular risk factors and calcifications in patients with chronic kidney disease.Clin. Kidney J.202013457157910.1093/ckj/sfz030 32905245
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128390373250507062606
Loading
/content/journals/cpd/10.2174/0113816128390373250507062606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test