Full text loading...
PDT is a common and minimally invasive treatment used for certain types of cancer. Photodynamic therapy involves the generation of reactive oxygen species, resulting in cellular apoptosis and disruption of the tumor microenvironment. This review presents a comprehensive examination of recent developments in Photodynamic Therapy (PDT), detailing its mechanisms, the importance of photosensitizers, and their applications across various cancer types. Photosensitizers are essential in photodynamic therapy as they generate reactive oxygen species when exposed to light. Advanced photosensitizers demonstrate high conversion efficiency, improved tumor specificity, and reduced adverse effects. Recent advancements have led to the creation of photosensitizers that exhibit enhanced solubility, stability, and the ability to selectively accumulate in tumors. Combination therapies that incorporate PDT exhibit notable therapeutic outcomes, indicating substantial progress in the field. Recent developments in photodynamic therapy, particularly those that boost immune responses, show considerable promise in significantly enhancing the effectiveness of tumor elimination. These advancements have the potential to enhance the therapeutic application of photodynamic therapy, offering new possibilities for cancer treatment.
Article metrics loading...
Full text loading...
References
Data & Media loading...