Skip to content
2000
image of Cancer Management Using Photodynamic Therapy: Fundamentals, Mechanism and Advances

Abstract

PDT is a common and minimally invasive treatment used for certain types of cancer. Photodynamic therapy involves the generation of reactive oxygen species, resulting in cellular apoptosis and disruption of the tumor microenvironment. This review presents a comprehensive examination of recent developments in Photodynamic Therapy (PDT), detailing its mechanisms, the importance of photosensitizers, and their applications across various cancer types. Photosensitizers are essential in photodynamic therapy as they generate reactive oxygen species when exposed to light. Advanced photosensitizers demonstrate high conversion efficiency, improved tumor specificity, and reduced adverse effects. Recent advancements have led to the creation of photosensitizers that exhibit enhanced solubility, stability, and the ability to selectively accumulate in tumors. Combination therapies that incorporate PDT exhibit notable therapeutic outcomes, indicating substantial progress in the field. Recent developments in photodynamic therapy, particularly those that boost immune responses, show considerable promise in significantly enhancing the effectiveness of tumor elimination. These advancements have the potential to enhance the therapeutic application of photodynamic therapy, offering new possibilities for cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128364893250603035546
2025-06-19
2025-10-27
Loading full text...

Full text loading...

References

  1. Zhao W. Wang L. Zhang M. Liu Z. Wu C. Pan X. Huang Z. Lu C. Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm 2024 5 7 e603 10.1002/mco2.603 38911063
    [Google Scholar]
  2. Moan J. Properties for optimal PDT sensitizers. J. Photochem. Photobiol. B 1990 5 3-4 521 524 10.1016/1011‑1344(90)85064‑4 2115921
    [Google Scholar]
  3. Allison R.R. Downie G.H. Cuenca R. Hu X.H. Childs C.J.H. Sibata C.H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004 1 1 27 42 10.1016/S1572‑1000(04)00007‑9 25048062
    [Google Scholar]
  4. Castano A.P. Demidova T.N. Hamblin M.R. Mechanisms in PDT: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis and PDT. 2004 1 4 279 293 10.1016/S1572‑1000(05)00007‑4 25048432
    [Google Scholar]
  5. Prasad PN Introduction to biophotonics. Hoboken, New Jersey John Wiley & Sons 2004
    [Google Scholar]
  6. Lloyd AA Graves MS Ross EV Laser-tissue interactions: Dermatologic applications. Lasers in Dermatology and Medicine Cham Springer 2018 10.1007/978‑3‑319‑76118‑3_1
    [Google Scholar]
  7. Anderson R.R. Parrish J.A. The optics of human skin. J. Invest. Dermatol. 1981 77 1 13 19 10.1111/1523‑1747.ep12479191 7252245
    [Google Scholar]
  8. Juzeniene A. Nielsen K.P. Moan J. Biophysical aspects of PDT. J. Environ. Pathol. Toxicol. Oncol. 2006 25 1-2 10.1615/JEnvironPatholToxicolOncol.v25.i1‑2.20 16566708
    [Google Scholar]
  9. Agostinis P. Berg K. Cengel K.A. Foster T.H. Girotti A.W. Gollnick S.O. Hahn S.M. Hamblin M.R. Juzeniene A. Kessel D. Korbelik M. PDT of cancer: an update. CA Cancer J. Clin. 2011 61 4 250 281 10.3322/caac.20114 21617154
    [Google Scholar]
  10. Sharma R. Malviya R. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer 2023 1878 3 188869 10.1016/j.bbcan.2023.188869 36842767
    [Google Scholar]
  11. Brancaleon L. Moseley H. Laser and non-laser light sources for PDT. Lasers Med. Sci. 2002 17 173 186 10.1007/s101030200027 12181632
    [Google Scholar]
  12. Haedersdal M. Togsverd‐Bo K. Wulf H.C. Evidence‐based review of lasers, light sources and PDT in the treatment of acne vulgaris. J. Eur. Acad. Dermatol. Venereol. 2008 22 3 267 278 10.1111/j.1468‑3083.2007.02503.x 18221341
    [Google Scholar]
  13. Juzeniene A. Juzenas P. Ma L.W. Iani V. Moan J. Effectiveness of different light sources for 5-aminolevulinic acid PDT. Lasers Med. Sci. 2004 19 139 149 10.1007/s10103‑004‑0314‑x 15503248
    [Google Scholar]
  14. Etcheverry M.E. Pasquale M.A. Garavaglia M. PDT of HeLa cell cultures by using LED or laser sources. J. Photochem. Photobiol. B 2016 160 271 277 10.1016/j.jphotobiol.2016.04.013 27152675
    [Google Scholar]
  15. Lane K.L. Hovenic W. Ball K. Zachary C.B. Daylight pdt: the southern california experience. Lasers Surg. Med. 2015 47 2 168 172 10.1002/lsm.22323 25663047
    [Google Scholar]
  16. Lee C.N. Hsu R. Chen H. Wong T.W. Daylight PDT: An update. Molecules 2020 25 21 5195 10.3390/molecules25215195 33171665
    [Google Scholar]
  17. Sorbellini E. Rucco M. Rinaldi F. Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update. Lasers Med. Sci. 2018 33 7 1431 1439 10.1007/s10103‑018‑2584‑8 30006754
    [Google Scholar]
  18. Henderson B.W. Busch T.M. Snyder J.W. Fluence rate as a modulator of PDT mechanisms. Lasers Surg. Med. 2006 38 5 489 493 10.1002/lsm.20327 16615136
    [Google Scholar]
  19. Grossman C.E. Carter S.L. Czupryna J. Wang L. Putt M.E. Busch T.M. Fluence rate differences in PDT efficacy and activation of epidermal growth factor receptor after treatment of the tumor-involved murine thoracic cavity. Int. J. Mol. Sci. 2016 17 1 101 10.3390/ijms17010101 26784170
    [Google Scholar]
  20. Marian C.M. Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012 2 2 187 203 10.1002/wcms.83
    [Google Scholar]
  21. Foote C.S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science 1968 162 3857 963 970 10.1126/science.162.3857.963 4972417
    [Google Scholar]
  22. Alvarez N. Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. Int. J. Mol. Sci. 2024 25 2 1023 10.3390/ijms25021023 38256096
    [Google Scholar]
  23. Henderson B.W. Dougherty T.J. How does PDT work? Photochem. Photobiol. 1992 55 1 145 157 10.1111/j.1751‑1097.1992.tb04222.x 1603846
    [Google Scholar]
  24. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 1998 42 1 13 28 10.1093/jac/42.1.13 9700525
    [Google Scholar]
  25. Huis in ’t Veld R.V. Heuts J. Ma S. Cruz L.J. Ossendorp F.A. Jager M.J. Current challenges and opportunities of PDT against cancer. Pharmaceutics 2023 15 2 330 10.3390/pharmaceutics15020330 36839652
    [Google Scholar]
  26. Alvarez N. Sevilla A. Current advances in PDT (PDT) and the future potential of PDT-combinatorial cancer therapies. Int. J. Mol. Sci. 2024 25 2 1023 10.3390/ijms25021023 38256096
    [Google Scholar]
  27. Merlin J.P.J. Crous A. Abrahamse H. Nano‐phototherapy: Favorable prospects for cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1930 10.1002/wnan.1930 37752098
    [Google Scholar]
  28. Moan J. Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 1991 53 4 549 553 10.1111/j.1751‑1097.1991.tb03669.x 1830395
    [Google Scholar]
  29. Dougherty TJ Photodynamic therapy. J. Natl. Cancer Inst. 1998 90 12 889 905 10.1093/jnci/90.12.889
    [Google Scholar]
  30. Yadav D Sharma PK Mishra P Malviya R Management of cancer using photodynamic therapy: Advancement and applications. Curr Can Ther Rev 20 4 357 371 2010 10.2174/0115733947239258231003091058
    [Google Scholar]
  31. Shi X. Zhang C.Y. Gao J. Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019 11 5 e1560 10.1002/wnan.1560 31058443
    [Google Scholar]
  32. Korbelik M. Krosl G. Cellular levels of photosensitisers in tumours: the role of proximity to the blood supply. Br. J. Cancer 1994 70 4 604 610 10.1038/bjc.1994.358 7917904
    [Google Scholar]
  33. Shirmanova M.V. Lukina M.M. Sirotkina M.A. Shimolina L.E. Dudenkova V.V. Ignatova N.I. Tobita S. Shcheslavskiy V.I. Zagaynova E.V. Effects of pdt on tumor metabolism and oxygenation revealed by fluorescence and phosphorescence lifetime imaging. Int. J. Mol. Sci. 2024 25 3 1703 10.3390/ijms25031703 38338976
    [Google Scholar]
  34. Rajput S. Malviya R. Srivastava S. Ahmad I. Rab O.S. Uniyal P. In vivo evaluation of apoptosis-inducing herbs for the treatment of breast cancer: recent developments and mechanism of action. Curr. Nutr. Food Sci. 2025 21 3 282 294 10.2174/0115734013303288240730061019
    [Google Scholar]
  35. Pogue B.W. O’Hara J.A. Demidenko E. Wilmot C.M. Goodwin I.A. Chen B. Swartz H.M. Hasan T. PDT with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity. Cancer Res. 2003 63 5 1025 1033 12615718
    [Google Scholar]
  36. Domka W. Bartusik-Aebisher D. Mytych W. Myśliwiec A. Dynarowicz K. Cieślar G. Kawczyk-Krupka A. Aebisher D. PDT for eye, ear, laryngeal area, and nasal and oral cavity diseases: a review. Cancers 2024 16 3 645 10.3390/cancers16030645 38339396
    [Google Scholar]
  37. Cabral F.V. Riahi M. Persheyev S. Lian C. Cortez M. Samuel I.D. Ribeiro M.S. PDT offers a novel approach to managing miltefosine-resistant cutaneous leishmaniasis. Biomed. Pharmacother. 2024 177 116881 10.1016/j.biopha.2024.116881 38917757
    [Google Scholar]
  38. Iinuma S. Schomacker K.T. Wagnieres G. Rajadhyaksha M. Bamberg M. Momma T. Hasan T. In vivo fluence rate and fractionation effects on tumor response and photobleaching: PDT with two photosensitizers in an orthotopic rat tumor model. Cancer Res. 1999 59 24 6164 6170 10626808
    [Google Scholar]
  39. Goyal P. Malviya R. Advances in nuclei targeted delivery of nanoparticles for the management of cancer. Biochim. Biophys. Acta Rev. Cancer 2023 1878 3 188881 10.1016/j.bbcan.2023.188881 36965678
    [Google Scholar]
  40. Jain R.K. Carmeliet P.F. Vessels of death or life. Sci. Am. 2001 285 6 38 45 10.1038/scientificamerican1201‑38 11759584
    [Google Scholar]
  41. Mušković M. Pokrajac R. Malatesti N. Combination of two photosensitisers in anticancer, antimicrobial and upconversion PDT. Pharmaceuticals. 2023 16 4 613 10.3390/ph16040613 37111370
    [Google Scholar]
  42. Henderson B.W. Fingar V.H. Relationship of tumor hypoxia and response to PDT in an experimental mouse tumor. Cancer Res. 1987 47 12 3110 3114 3581062
    [Google Scholar]
  43. Busch T.M. Wileyto E.P. Emanuele M.J. Piero D.F. Marconato L. Glatstein E. Koch C.J. PDT creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen. Cancer Res. 2002 62 24 7273 7279 12499269
    [Google Scholar]
  44. Malviya R. Sundram S. Targeted Cancer Therapy in Biomedical Engineering. Cham Springer 2023 10.1007/978‑981‑19‑9786‑0
    [Google Scholar]
  45. Dolmans D.E. Kadambi A. Hill J.S. Waters C.A. Robinson B.C. Walker J.P. Fukumura D. Jain R.K. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy. Cancer Res. 2002 62 7 2151 2156 11929837
    [Google Scholar]
  46. Oskroba A. Bartusik-Aebisher D. Myśliwiec A. Dynarowicz K. Cieślar G. Kawczyk-Krupka A. Aebisher D. PDT and cardiovascular diseases. Int. J. Mol. Sci. 2024 25 5 2974 10.3390/ijms25052974 38474220
    [Google Scholar]
  47. Safia I.H. Tang Y.Y. Ping W. Jie J. Matsika J. The efficacy and safety of head and neck cancer treatment using photodynamic and ultrasound therapy: a systematic review. J. Oncol. Res. Ther. 2023 8 10184
    [Google Scholar]
  48. Fingar V.H. Wieman T.J. Haydon P.S. The effects of thrombocytopenia on vessel stasis and macromolecular leakage after PDT using photofrin. Photochem. Photobiol. 1997 66 4 513 517 10.1111/j.1751‑1097.1997.tb03182.x 9337624
    [Google Scholar]
  49. Ferrario A. Tiehl V.K.F. Rucker N. Schwarz M.A. Gill P.S. Gomer C.J. Antiangiogenic treatment enhances PDT responsiveness in a mouse mammary carcinoma. Cancer Res. 2000 60 15 4066 4069 10945611
    [Google Scholar]
  50. Sorrin A.J. Liu C. Cicalo J. Reader J. Najafali D. Zhang Y. Roque D.M. Huang H.C. Photodynamic priming improves the anti-migratory activity of prostaglandin E receptor 4 antagonist in cancer cells in vitro. Cancerss 2021 13 21 5259 10.3390/cancers13215259 34771424
    [Google Scholar]
  51. Shumaker B.P. Hetzel F.W. Clinical laser PDT in the treatment of bladder carcinoma. Photochem. Photobiol. 1987 46 5 899 901 10.1111/j.1751‑1097.1987.tb04866.x 3441511
    [Google Scholar]
  52. Bartusik-Aebisher D. Serafin I. Dynarowicz K. Aebisher D. PDT and associated targeting methods for treatment of brain cancer. Front. Pharmacol. 2023 14 1250699 10.3389/fphar.2023.1250699 37841921
    [Google Scholar]
  53. Safia IH Tang YY Ping W Jie J Harnessing photo-dynamic treatment for immune system diseases: A promising therapeutic approach: A systematic review. East Afric. Schol. J. Med. Surg. 2024 6 3 105 114 10.36349/easjms.2024.v06i03.005
    [Google Scholar]
  54. Korbelik M. Krosl G. Krosl J. Dougherty G.J. The role of host lymphoid populations in the response of mouse EMT6 tumor to PDT. Cancer Res. 1996 56 24 5647 5652 8971170
    [Google Scholar]
  55. Rajput S. Sharma K.P. Malviya R. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies. Med. Drug Discov. 2023 18 100158 10.1016/j.medidd.2023.100158
    [Google Scholar]
  56. Gollnick S.O. Vaughan L. Henderson B.W. Generation of effective antitumor vaccines using PDT. Cancer Res. 2002 62 6 1604 1608 11912128
    [Google Scholar]
  57. Dolmans D.E. Fukumura D. Jain R.K. PDT for cancer. Nat. Rev. Cancer 2003 3 5 380 387 10.1038/nrc1071 12724736
    [Google Scholar]
  58. Yadav D. Malviya R. Exploring potential of exosomes drug delivery system in the treatment of cancer: Advances and prospective. Med. Drug Discov. 2023 20 100163 10.1016/j.medidd.2023.100163
    [Google Scholar]
  59. Son S. Kim J.H. Wang X. Zhang C. Yoon S.A. Shin J. Sharma A. Lee M.H. Cheng L. Wu J. Kim J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020 49 11 3244 3261 10.1039/C9CS00648F 32337527
    [Google Scholar]
  60. Cheng Y.J. Hu J.J. Qin S.Y. Zhang A.Q. Zhang X.Z. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer. Biomaterials 2020 232 119738 10.1016/j.biomaterials.2019.119738 31901695
    [Google Scholar]
  61. Wei G. Wang Y. Yang G. Wang Y. Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021 11 13 6370 6392 10.7150/thno.57828 33995663
    [Google Scholar]
  62. Yao X. Chen X. He C. Chen L. Chen X. Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and PDT. J. Mater. Chem. B Mater. Biol. Med. 2015 3 23 4707 4714 10.1039/C5TB00256G 32262486
    [Google Scholar]
  63. Xu Y. Zhang X. Hu G. Wu X. Nie Y. Wu H. Kong D. Ning X. Multistage targeted “Photoactive neutrophil” for enhancing synergistic photo-chemotherapy. Biomaterials 2021 279 121224 10.1016/j.biomaterials.2021.121224 34710792
    [Google Scholar]
  64. Menilli L. Milani C. Reddi E. Moret F. Overview of nanoparticle-based approaches for the combination of PDT (PDT) and chemotherapy at the preclinical stage. Cancers 2022 14 18 4462 10.3390/cancers14184462 36139623
    [Google Scholar]
  65. Ippolito M.R. Martis V. Martin S. Tijhuis A.E. Hong C. Wardenaar R. Dumont M. Zerbib J. Spierings D.C.J. Fachinetti D. Ben-David U. Foijer F. Santaguida S. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy. Dev. Cell 2021 56 17 2440 2454.e6 10.1016/j.devcel.2021.07.006 34352223
    [Google Scholar]
  66. Zhao Y. Zhang C. Gao L. Yu X. Lai J. Lu D. Bao R. Wang Y. Jia B. Wang F. Liu Z. Chemotherapy-induced macrophage infiltration into tumors enhances nanographene-based PDT. Cancer Res. 2017 77 21 6021 6032 10.1158/0008‑5472.CAN‑17‑1655 28916656
    [Google Scholar]
  67. Wu P. Wang X. Wang Z. Ma W. Guo J. Chen J. Yu Z. Li J. Zhou D. Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy. ACS Appl. Mater. Interfaces 2019 11 20 18691 18700 10.1021/acsami.9b02346 31038909
    [Google Scholar]
  68. Wang M. Zhai Y. Ye H. Lv Q. Sun B. Luo C. Jiang Q. Zhang H. Xu Y. Jing Y. Huang L. High co-loading capacity and stimuli-responsive release based on cascade reaction of self-destructive polymer for improved chemo-PDT. ACS Nano 2019 13 6 7010 7023 10.1021/acsnano.9b02096 31188559
    [Google Scholar]
  69. Citrin D.E. Recent developments in radiotherapy. N. Engl. J. Med. 2017 377 11 1065 1075 10.1056/NEJMra1608986 28902591
    [Google Scholar]
  70. Price T.W. Yap S.Y. Gillet R. Savoie H. Charbonnière L.J. Boyle R.W. Nonat A.M. Stasiuk G.J. Evaluation of a bispidine‐based chelator for gallium‐68 and of the porphyrin conjugate as PET/PDT theranostic agent. Chemistry 2020 26 34 7602 7608 10.1002/chem.201905776 32068310
    [Google Scholar]
  71. Sun W. Shi T. Luo L. Chen X. Lv P. Lv Y. Zhuang Y. Zhu J. Liu G. Chen X. Chen H. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low‐dose X‐ray‐induced deep‐penetrating PDT. Adv. Mater. 2019 31 16 1808024 10.1002/adma.201808024 30848541
    [Google Scholar]
  72. Tyagi R. Maan K. Khushu S. Rana P. Urine metabolomics based prediction model approach for radiation exposure. Sci. Rep. 2020 10 1 16063 10.1038/s41598‑020‑72426‑4 32999294
    [Google Scholar]
  73. Liu Z. Zou H. Zhao Z. Zhang P. Shan G.G. Kwok R.T. Lam J.W. Zheng L. Tang B.Z. Tuning organelle specificity and PDT efficiency by molecular function design. ACS Nano 2019 13 10 11283 11293 10.1021/acsnano.9b04430 31525947
    [Google Scholar]
  74. Zhou Y. Ren X. Hou Z. Wang N. Jiang Y. Luan Y. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation. Nanoscale Horiz. 2021 6 2 120 131 10.1039/D0NH00480D 33206735
    [Google Scholar]
  75. Deng G. Peng X. Sun Z. Zheng W. Yu J. Du L. Chen H. Gong P. Zhang P. Cai L. Tang B.Z. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics. ACS Nano 2020 14 9 11452 11462 10.1021/acsnano.0c03824 32820907
    [Google Scholar]
  76. Chen Q. He Y. Wang Y. Li C. Zhang Y. Guo Q. Zhang Y. Chu Y. Liu P. Chen H. Zhou Z. Zhou W. Zhao Z. Li X. Sun T. Jiang C. Penetrable nanoplatform for “cold” tumor immune microenvironment reeducation. Adv. Sci. 2020 7 17 2000411 10.1002/advs.202000411 32995118
    [Google Scholar]
  77. Sun F. Zhu Q. Li T. Saeed M. Xu Z. Zhong F. Song R. Huai M. Zheng M. Xie C. Xu L. Yu H. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer. Adv. Sci. 2021 8 4 2002746 10.1002/advs.202002746 33643795
    [Google Scholar]
  78. Cheng H. Fan X. Ye E. Chen H. Yang J. Ke L. You M. Liu M. Zhang Y.W. Wu Y.L. Liu G. Loh X.J. Li Z. Dual tumor microenvironment remodeling by glucose‐contained radical copolymer for MRI‐guided photoimmunotherapy. Adv. Mater. 2022 34 25 2107674 10.1002/adma.202107674 34755922
    [Google Scholar]
  79. Belete T.M. The current status of gene therapy for the treatment of cancer. Biologics 2021 15 67 77 33776419
    [Google Scholar]
  80. Feng Y. Tonon C.C. Ashraf S. Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv. Drug Deliv. Rev. 2021 177 113941 10.1016/j.addr.2021.113941 34419503
    [Google Scholar]
  81. Zhao Y. Li R. Sun J. Zou Z. Wang F. Liu X. Multifunctional DNAzyme-anchored metal–organic framework for efficient suppression of tumor metastasis. ACS Nano 2022 16 4 5404 5417 10.1021/acsnano.1c09008 35384646
    [Google Scholar]
  82. Chen L. Li G. Wang X. Li J. Zhang Y. Spherical nucleic acids for near-infrared light-responsive self-delivery of small-interfering RNA and antisense oligonucleotide. ACS Nano 2021 15 7 11929 11939 10.1021/acsnano.1c03072 34170121
    [Google Scholar]
  83. Pan M. Jiang Q. Sun J. Xu Z. Zhou Y. Zhang L. Liu X. Programming DNA nanoassembly for enhanced PDT. Angew. Chem. 2020 132 5 1913 1921 10.1002/ange.201912574
    [Google Scholar]
  84. Zhao H. Li L. Li F. Liu C. Huang M. Li J. Gao F. Ruan X. Yang D. An energy‐storing DNA‐based nanocomplex for laser‐free PDT. Adv. Mater. 2022 34 13 2109920 10.1002/adma.202109920
    [Google Scholar]
  85. Liu S.Y. Xu Y. Yang H. Liu L. Zhao M. Yin W. Xu Y.T. Huang Y. Tan C. Dai Z. Zhang H. Ultrathin 2D copper (I) 1, 2, 4‐triazolate coordination polymer nanosheets for efficient and selective gene silencing and PDT. Adv. Mater. 2021 33 18 2100849 10.1002/adma.202100849 33797149
    [Google Scholar]
  86. Sajjad F. Jin H. Han Y. Wang L. Bao L. Chen T. Yan Y. Qiu Y. Chen Z.L. Incorporation of green emission polymer dots into pyropheophorbide-α enhance the PDT effect and biocompatibility. Photodiagn. Photodyn. Ther. 2022 37 102562 10.1016/j.pdpdt.2021.102562 34610430
    [Google Scholar]
  87. Liu Y. Zhou Z. Hou J. Xiong W. Kim H. Chen J. Zheng C. Jiang X. Yoon J. Shen J. Tumor selective metabolic reprogramming as a prospective pd‐l1 depression strategy to reactivate immunotherapy. Adv. Mater. 2022 34 41 2206121 10.1002/adma.202206121 36017886
    [Google Scholar]
  88. Jiang W. Liang M. Lei Q. Li G. Wu S. The current status of PDT in cancer treatment. Cancers 2023 15 3 585 10.3390/cancers15030585 36765543
    [Google Scholar]
  89. Siegel R.L. Miller K.D. Jemal A. Cancer statistics. CA Cancer J. Clin. 2018 68 1 7 30 10.3322/caac.21442 29313949
    [Google Scholar]
  90. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  91. Allison R. Moghissi K. Downie G. Dixon K. PDT (PDT) for lung cancer. Photodiagnosis and PDT. 2011 8 3 231 239 10.1016/j.pdpdt.2011.03.342 21864796
    [Google Scholar]
  92. Hamblin M.R. PDT for cancer: what’s past is prologue. Photochem. Photobiol. 2020 96 3 506 516 10.1111/php.13190 31820824
    [Google Scholar]
  93. Bansal S. Bechara R. Patel J. Mehta H. Ferguson J. Casal R. Safety and feasibility study of PDT for ablation of peripheral lung cancer. Chest 2020 157 6 A239 10.1016/j.chest.2020.05.295
    [Google Scholar]
  94. Allison R.R. Bansal S. PDT for peripheral lung cancer. Photodiagnosis and PDT. 2022 38 102825 10.1016/j.pdpdt.2022.102825
    [Google Scholar]
  95. Adimoolam M.G. Vijayalakshmi A. Nalam M.R. Sunkara M.V. Chlorin e6 loaded lactoferrin nanoparticles for enhanced PDT. J. Mater. Chem. B Mater. Biol. Med. 2017 5 46 9189 9196 10.1039/C7TB02599H 32264601
    [Google Scholar]
  96. Hu X. Tian H. Jiang W. Song A. Li Z. Luan Y. Rational design of IR820‐ and Ce6‐based versatile micelle for single nir laser–induced imaging and dual‐modal phototherapy. Small 2018 14 52 1802994 10.1002/smll.201802994
    [Google Scholar]
  97. Kustov A.V. Morshnev P.K. Kukushkina N.V. Smirnova N.L. Berezin D.B. Karimov D.R. Shukhto O.V. Kustova T.V. Belykh D.V. Mal’shakova M.V. Zorin V.P. Zorina T.E. Solvation, cancer cell photoinactivation and the interaction of chlorin photosensitizers with a potential passive carrier non-ionic surfactant Tween 80. Int. J. Mol. Sci. 2022 23 10 5294 10.3390/ijms23105294 35628108
    [Google Scholar]
  98. Kato H. Furukawa K. Sato M. Okunaka T. Kusunoki Y. Kawahara M. Fukuoka M. Miyazawa T. Yana T. Matsui K. Shiraishi T. Phase II clinical study of PDT using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer 2003 42 1 103 111 10.1016/S0169‑5002(03)00242‑3 14512194
    [Google Scholar]
  99. Usuda J. Inoue T. Tsuchida T. Ohtani K. Maehara S. Ikeda N. Ohsaki Y. Sasaki T. Oka K. Clinical trial of PDT for peripheral-type lung cancers using a new laser device in a pilot study. Photodiag. PDT. 2020 30 101698 10.1016/j.pdpdt.2020.101698 32198020
    [Google Scholar]
  100. Tsuchida T. Matsumoto Y. Imabayashi T. Uchimura K. Sasada S. PDT can be safely performed with Talaporfin sodium as a day treatment for central-type early-stage lung cancer. Photodiagnosis and PDT. 2022 38 102836 10.1016/j.pdpdt.2022.102836 35367388
    [Google Scholar]
  101. Wei C. Li X. The role of photoactivated and non-photoactivated verteporfin on tumor. Front. Pharmacol. 2020 11 557429 10.3389/fphar.2020.557429 33178014
    [Google Scholar]
  102. Rajput S. Malviya R. Uniyal P. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma. Can. J. Ophthalmol. 2024 59 5 281 299 10.1016/j.jcjo.2024.01.018 38369298
    [Google Scholar]
  103. Cerrati E.W. Nguyen S.A. Farrar J.D. Lentsch E.J. The efficacy of PDT in the treatment of oral squamous cell carcinoma: a meta-analysis. Ear Nose Throat J. 2015 94 2 72 79 10.1177/014556131509400208 25651350
    [Google Scholar]
  104. Gomes-da-Silva L.C. Kepp O. Kroemer G. Regulatory approval of photoimmunotherapy: PDT that induces immunogenic cell death. OncoImmunology 2020 9 1 1841393 10.1080/2162402X.2020.1841393 33178498
    [Google Scholar]
  105. Cognetti D.M. Johnson J.M. Curry J.M. Kochuparambil S.T. McDonald D. Mott F. Fidler M.J. Stenson K. Vasan N.R. Razaq M.A. Campana J. Ha P. Mann G. Ishida K. Garcia-Guzman M. Biel M. Gillenwater A.M. Phase 1/2a, open‐label, multicenter study of RM ‐1929 photoimmunotherapy in patients with locoregional, recurrent head and neck squamous cell carcinoma. Head Neck 2021 43 12 3875 3887 10.1002/hed.26885 34626024
    [Google Scholar]
  106. Straten V.D. Mashayekhi V. Bruijn D.H.S. Oliveira S. Robinson D.J. Oncologic PDT: basic principles, current clinical status and future directions. Cancers 2017 9 2 19 10.3390/cancers9020019 28218708
    [Google Scholar]
  107. Ericson M.B. Wennberg A.M. Larkö O. Review of PDT in actinic keratosis and basal cell carcinoma. Ther. Clin. Risk Manag. 2008 4 1 1 9 18728698
    [Google Scholar]
  108. Morton C.A. Szeimies R.M. Sidoroff A. Braathen L.R. European guidelines for topical PDT part 1: treatment delivery and current indications–actinic keratoses, Bowen’s disease, basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2013 27 5 536 544 10.1111/jdv.12031 23181594
    [Google Scholar]
  109. León D. Buchegger K. Silva R. Riquelme I. Viscarra T. Mora-Lagos B. Zanella L. Schafer F. Kurachi C. Roa J.C. Ili C. Brebi P. Epigallocatechin gallate enhances MAL-PDT cytotoxic effect on PDT-resistant skin cancer squamous cells. Int. J. Mol. Sci. 2020 21 9 3327 10.3390/ijms21093327 32397263
    [Google Scholar]
  110. Haak C.S. Togsverd‐Bo K. Thaysen‐Petersen D. Wulf H.C. Paasch U. Anderson R.R. Hædersdal M. Fractional laser‐mediated PDT of high‐risk basal cell carcinomas–a randomized clinical trial. Br. J. Dermatol. 2015 172 1 215 222 10.1111/bjd.13166 24903544
    [Google Scholar]
  111. Ozog D.M. Rkein A.M. Fabi S.G. Gold M.H. Goldman M.P. Lowe N.J. Martin G.M. Munavalli G.S. PDT: a clinical consensus guide. Dermatol. Surg. 2016 42 7 804 827 10.1097/DSS.0000000000000800 27336945
    [Google Scholar]
  112. Gupta N. Malviya R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 2 188532 10.1016/j.bbcan.2021.188532 33667572
    [Google Scholar]
  113. Shi H. Sadler P.J. How promising is phototherapy for cancer? Br. J. Cancer 2020 123 6 871 873 10.1038/s41416‑020‑0926‑3 32587359
    [Google Scholar]
  114. Sunnatovich MU Treatment of basal cell skin cancer at the present stage. Available from: https://www.skincancer.org/skin-cancer-information/basal-cell-carcinoma/bcc-treatment-options/
  115. Miller K.D. Nogueira L. Devasia T. Mariotto A.B. Yabroff K.R. Jemal A. Kramer J. Siegel R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022 72 5 409 436 10.3322/caac.21731 35736631
    [Google Scholar]
  116. Osuchowski M. Bartusik-Aebisher D. Osuchowski F. Aebisher D. PDT for prostate cancer–A narrative review. Photodiagnosis and PDT. 2021 33 102158 10.1016/j.pdpdt.2020.102158 33352313
    [Google Scholar]
  117. Monro S. Colon K.L. Yin H. Roque J. III Konda P. Gujar S. Thummel R.P. Lilge L. Cameron C.G. McFarland S.A. Transition metal complexes and PDT from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2018 119 2 797 828 10.1021/acs.chemrev.8b00211 30295467
    [Google Scholar]
  118. McFarland S.A. Mandel A. Dumoulin-White R. Gasser G. Metal-based photosensitizers for PDT: the future of multimodal oncology? Curr. Opin. Chem. Biol. 2020 56 23 27 10.1016/j.cbpa.2019.10.004 31759225
    [Google Scholar]
  119. Noweski A. Roosen A. Lebdai S. Barret E. Emberton M. Benzaghou F. Apfelbeck M. Gaillac B. Gratzke C. Stief C. Azzouzi A.R. Medium-term follow-up of vascular-targeted PDT of localized prostate cancer using TOOKAD soluble WST-11 (phase II trials). Eur. Urol. Focus 2019 5 6 1022 1028 10.1016/j.euf.2018.04.003 29661587
    [Google Scholar]
  120. Xu Z.Y. Mao W. Zhao Z. Wang Z.K. Liu Y.Y. Wu Y. Wang H. Zhang D.W. Li Z.T. Ma D. Self-assembled nanoparticles based on supramolecular-organic frameworks and temoporfin for an enhanced PDT in vitro and in vivo. J. Mater. Chem. B Mater. Biol. Med. 2022 10 6 899 908 10.1039/D1TB02601A 35043828
    [Google Scholar]
  121. Wiehe A. Senge M.O. The photosensitizer temoporfin (m THPC ) – chemical, pre‐clinical and clinical developments in the last decade † ‡. Photochem. Photobiol. 2023 99 2 356 419 10.1111/php.13730 36161310
    [Google Scholar]
  122. Wyss P. Schwarz V. Dobler‐Girdziunaite D. Hornung R. Walt H. Degen A. Fehr M. PDT of locoregional breast cancer recurrences using a chlorin‐type photosensitizer. Int. J. Cancer 2001 93 5 720 724 10.1002/ijc.1400 11477585
    [Google Scholar]
  123. Rajput S. Malviya R. Sridhar S.B. Nanoparticle-based photodynamic therapy for targeted treatment of breast cancer. Nano Struct. Nano Obj. 2024 40 101405 10.1016/j.nanoso.2024.101405
    [Google Scholar]
  124. Renschler MF Yuen AR Panella TJ Wieman TJ Dougherty S Esserman L Panjehpour M Taber SW Fingar VH Lowe E Engel JS PDT trials with lutetium texaphyrin (Lu-Tex) in patients with locally recurrent breast cancer. Optical Meth. Tum. Treat. Detect. Mech, Tech. 1998 3247 35 39
    [Google Scholar]
  125. Chen J.J. Liu S.P. Zhao J. Wang S.C. Liu T.J. Li X. Effects of a novel photoactivated photosensitizer on MDR1 over-expressing human breast cancer cells. J. Photochem. Photobiol. B 2017 171 67 74 10.1016/j.jphotobiol.2017.04.037 28478351
    [Google Scholar]
  126. Mfouo-Tynga I. Houreld N.N. Abrahamse H. Induced cell death pathway post PDT using a metallophthalocyanine photosensitizer in breast cancer cells. Photomed. Laser Surg. 2014 32 4 205 211 10.1089/pho.2013.3650 24661060
    [Google Scholar]
  127. Kim T.E. Chang J.E. Recent studies in PDT for cancer treatment: From basic research to clinical trials. Pharmaceutics 2023 15 9 2257 10.3390/pharmaceutics15092257 37765226
    [Google Scholar]
  128. Yamamoto S. Fukuhara H. Seki H. Kawada C. Nakayama T. Karashima T. Ogura S.I. Inoue K. Predictors of therapeutic efficacy of 5-aminolevulinic acid-based PDT in human prostate cancer. Photodiag. PDT. 2021 35 102452 10.1016/j.pdpdt.2021.102452 34303032
    [Google Scholar]
  129. Sutoris K. Vetvicka D. Horak L. Benes J. Nekvasil M. Jezek P. Zadinova M. Pouckova P. Evaluation of topical PDT of mammary carcinoma with an experimental gel containing liposomal hydroxyl-aluminium phthalocyanine. Anticancer Res. 2012 32 9 3769 3774 22993318
    [Google Scholar]
  130. Crous A. Abrahamse H. Effective gold nanoparticle-antibody-mediated drug delivery for PDT of lung cancer stem cells. Int. J. Mol. Sci. 2020 21 11 3742 10.3390/ijms21113742 32466428
    [Google Scholar]
  131. Crous A. Abrahamse H. Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells. R. Soc. Open Sci. 2021 8 9 210148 10.1098/rsos.210148 34527268
    [Google Scholar]
  132. Yang J. Hou M. Sun W. Wu Q. Xu J. Xiong L. Chai Y. Liu Y. Yu M. Wang H. Xu Z.P. Liang X. Zhang C. Sequential PDT and PTT using dual‐modal single‐walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv. Sci. 2020 7 16 2001088 10.1002/advs.202001088 32832363
    [Google Scholar]
  133. Menegazzi M. Masiello P. Novelli M. Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics. Antioxidants 2020 10 1 18 10.3390/antiox10010018 33379141
    [Google Scholar]
  134. Driel V.P.B. Boonstra M.C. Slooter M.D. Heukers R. Stammes M.A. Snoeks T.J. Bruijn D.H.S. Diest V.P.J. Vahrmeijer A.L. Henegouwen P.M. EGFR targeted nanobody–photosensitizer conjugates for PDT in a pre-clinical model of head and neck cancer. J. Control. Release 2016 229 93 105 10.1016/j.jconrel.2016.03.014 26988602
    [Google Scholar]
  135. Koudinova N.V. Pinthus J.H. Brandis A. Brenner O. Bendel P. Ramon J. Eshhar Z. Scherz A. Salomon Y. PDT with Pd‐bacteriopheophorbide (TOOKAD): Successful in vivo treatment of human prostatic small cell carcinoma xenografts. Int. J. Cancer 2003 104 6 782 789 10.1002/ijc.11002 12640688
    [Google Scholar]
  136. Lobo AC Gomes-da-Silva LC Rodrigues-Santos P. Immune responses after vascular PDT with redaporfin. J. Clin. Med. 2019 9 1 104 31906092
    [Google Scholar]
  137. Kim Y.J. Lee H.I. Kim J.K. Kim C.H. Kim Y.J. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted PDT of breast cancer. Colloids Surf. B Biointerf. 2020 189 110829 10.1016/j.colsurfb.2020.110829 32036332
    [Google Scholar]
  138. Castilho M.L. Jesus V.P.S. Vieira P.F.A. Hewitt K.C. Raniero L. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer. Photodiagn. Photodyn. Ther. 2021 33 102186 10.1016/j.pdpdt.2021.102186 33497816
    [Google Scholar]
  139. Boppana N.B. DeLor J.S. Buren V.E. Bielawska A. Bielawski J. Pierce J.S. Korbelik M. Separovic D. Enhanced apoptotic cancer cell killing after Foscan PDT combined with fenretinide via de novo sphingolipid biosynthesis pathway. J. Photochem. Photobiol. B 2016 159 191 195 10.1016/j.jphotobiol.2016.02.040 27085050
    [Google Scholar]
  140. Petri A. Yova D. Alexandratou E. Kyriazi M. Rallis M. Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan® and Fospeg in a human prostate cancer cell line. Photodiagn. Photodyn. Ther. 2012 9 4 344 354 10.1016/j.pdpdt.2012.03.008 23200016
    [Google Scholar]
  141. Gamal-Eldeen A.M. Alrehaili A.A. Alharthi A. Banjer H.J. Raafat B.M. Hawsawi N.M. Perftoran improves Visudyne-PDT via suppressing hypoxia pathway in murine lung cancer. J. Rad. Res. App. Sci. 2022 15 1 238 244 10.1016/j.jrras.2022.03.011
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128364893250603035546
Loading
/content/journals/cpd/10.2174/0113816128364893250603035546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test