Skip to content
2000
Volume 32, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

PDT is a common and minimally invasive treatment used for certain types of cancer. Photodynamic therapy involves the generation of reactive oxygen species, resulting in cellular apoptosis and disruption of the tumor microenvironment. This review presents a comprehensive examination of recent developments in Photodynamic Therapy (PDT), detailing its mechanisms, the importance of photosensitizers, and their applications across various cancer types. Photosensitizers are essential in photodynamic therapy as they generate reactive oxygen species when exposed to light. Advanced photosensitizers demonstrate high conversion efficiency, improved tumor specificity, and reduced adverse effects. Recent advancements have led to the creation of photosensitizers that exhibit enhanced solubility, stability, and the ability to selectively accumulate in tumors. Combination therapies that incorporate PDT exhibit notable therapeutic outcomes, indicating substantial progress in the field. Recent developments in photodynamic therapy, particularly those that boost immune responses, show considerable promise in significantly enhancing the effectiveness of tumor elimination. These advancements have the potential to enhance the therapeutic application of photodynamic therapy, offering new possibilities for cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128364893250603035546
2025-06-19
2025-12-10
Loading full text...

Full text loading...

References

  1. ZhaoW. WangL. ZhangM. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies.MedComm202457e60310.1002/mco2.603 38911063
    [Google Scholar]
  2. MoanJ. Properties for optimal PDT sensitizers.J. Photochem. Photobiol. B199053-452152410.1016/1011‑1344(90)85064‑4 2115921
    [Google Scholar]
  3. AllisonR.R. DownieG.H. CuencaR. HuX.H. ChildsC.J.H. SibataC.H. Photosensitizers in clinical PDT.Photodiagn. Photodyn. Ther.200411274210.1016/S1572‑1000(04)00007‑9 25048062
    [Google Scholar]
  4. CastanoA.P. DemidovaT.N. HamblinM.R. Mechanisms in PDT: part one-photosensitizers, photochemistry and cellular localization.Photodiagnosis and PDT20041427929310.1016/S1572‑1000(05)00007‑4 25048432
    [Google Scholar]
  5. PrasadP.N. Introduction to biophotonics.Hoboken, New JerseyJohn Wiley & Sons2004
    [Google Scholar]
  6. LloydA.A. GravesM.S. RossE.V. Laser-tissue interactions: Dermatologic applications.In:Lasers in Dermatology and Medicine.ChamSpringer201810.1007/978‑3‑319‑76118‑3_1
    [Google Scholar]
  7. AndersonR.R. ParrishJ.A. The optics of human skin.J. Invest. Dermatol.1981771131910.1111/1523‑1747.ep12479191 7252245
    [Google Scholar]
  8. JuzenieneA. NielsenK.P. MoanJ. Biophysical aspects of PDT.J. Environ. Pathol. Toxicol. Oncol.2006251-210.1615/JEnvironPatholToxicolOncol.v25.i1‑2.20 16566708
    [Google Scholar]
  9. AgostinisP. BergK. CengelK.A. PDT of cancer: an update.CA Cancer J. Clin.201161425028110.3322/caac.20114 21617154
    [Google Scholar]
  10. SharmaR. MalviyaR. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer.Biochim. Biophys. Acta Rev. Cancer20231878318886910.1016/j.bbcan.2023.188869 36842767
    [Google Scholar]
  11. BrancaleonL. MoseleyH. Laser and non-laser light sources for PDT.Lasers Med. Sci.20021717318610.1007/s101030200027 12181632
    [Google Scholar]
  12. HaedersdalM. Togsverd‐BoK. WulfH.C. Evidence‐based review of lasers, light sources and PDT in the treatment of acne vulgaris.J. Eur. Acad. Dermatol. Venereol.200822326727810.1111/j.1468‑3083.2007.02503.x 18221341
    [Google Scholar]
  13. JuzenieneA. JuzenasP. MaL.W. IaniV. MoanJ. Effectiveness of different light sources for 5-aminolevulinic acid PDT.Lasers Med. Sci.20041913914910.1007/s10103‑004‑0314‑x 15503248
    [Google Scholar]
  14. EtcheverryM.E. PasqualeM.A. GaravagliaM. PDT of HeLa cell cultures by using LED or laser sources.J. Photochem. Photobiol. B201616027127710.1016/j.jphotobiol.2016.04.013 27152675
    [Google Scholar]
  15. LaneK.L. HovenicW. BallK. ZacharyC.B. Daylight PDT: The southern california experience.Lasers Surg. Med.201547216817210.1002/lsm.22323 25663047
    [Google Scholar]
  16. LeeC.N. HsuR. ChenH. WongT.W. Daylight PDT: An update.Molecules20202521519510.3390/molecules25215195 33171665
    [Google Scholar]
  17. SorbelliniE. RuccoM. RinaldiF. Photodynamic and photobiological effects of light-emitting diode (LED) therapy in dermatological disease: an update.Lasers Med. Sci.20183371431143910.1007/s10103‑018‑2584‑8 30006754
    [Google Scholar]
  18. HendersonB.W. BuschT.M. SnyderJ.W. Fluence rate as a modulator of PDT mechanisms.Lasers Surg. Med.200638548949310.1002/lsm.20327 16615136
    [Google Scholar]
  19. GrossmanC.E. CarterS.L. CzuprynaJ. WangL. PuttM.E. BuschT.M. Fluence rate differences in PDT efficacy and activation of epidermal growth factor receptor after treatment of the tumor-involved murine thoracic cavity.Int. J. Mol. Sci.201617110110.3390/ijms17010101 26784170
    [Google Scholar]
  20. MarianC.M. Spin-orbit coupling and intersystem crossing in molecules.Wiley Interdiscip. Rev. Comput. Mol. Sci.20122218720310.1002/wcms.83
    [Google Scholar]
  21. FooteC.S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems.Science1968162385796397010.1126/science.162.3857.963 4972417
    [Google Scholar]
  22. AlvarezN. SevillaA. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies.Int. J. Mol. Sci.2024252102310.3390/ijms25021023 38256096
    [Google Scholar]
  23. HendersonB.W. DoughertyT.J. How does PDT work?Photochem. Photobiol.199255114515710.1111/j.1751‑1097.1992.tb04222.x 1603846
    [Google Scholar]
  24. WainwrightM. Photodynamic antimicrobial chemotherapy (PACT).J. Antimicrob. Chemother.1998421132810.1093/jac/42.1.13 9700525
    [Google Scholar]
  25. Huisin’t VeldR.V. HeutsJ. MaS. CruzL.J. OssendorpF.A. JagerM.J. Current challenges and opportunities of PDT against cancer.Pharmaceutics202315233010.3390/pharmaceutics15020330 36839652
    [Google Scholar]
  26. AlvarezN. SevillaA. Current advances in PDT (PDT) and the future potential of PDT-combinatorial cancer therapies.Int. J. Mol. Sci.2024252102310.3390/ijms25021023 38256096
    [Google Scholar]
  27. MerlinJ.P.J. CrousA. AbrahamseH. Nano‐phototherapy: Favorable prospects for cancer treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024161e193010.1002/wnan.1930 37752098
    [Google Scholar]
  28. MoanJ. BergK. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen.Photochem. Photobiol.199153454955310.1111/j.1751‑1097.1991.tb03669.x 1830395
    [Google Scholar]
  29. DoughertyT.J. Photodynamic therapy.J. Natl. Cancer Inst.1998901288990510.1093/jnci/90.12.889
    [Google Scholar]
  30. YadavD SharmaPK MishraP MalviyaR Management of cancer using photodynamic therapy: Advancement and applications.Curr. Can Ther. Rev.202420435737110.2174/0115733947239258231003091058
    [Google Scholar]
  31. ShiX. ZhangC.Y. GaoJ. WangZ. Recent advances in photodynamic therapy for cancer and infectious diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019115e156010.1002/wnan.1560 31058443
    [Google Scholar]
  32. KorbelikM. KroslG. Cellular levels of photosensitisers in tumours: the role of proximity to the blood supply.Br. J. Cancer199470460461010.1038/bjc.1994.358 7917904
    [Google Scholar]
  33. ShirmanovaM.V. LukinaM.M. SirotkinaM.A. Effects of pdt on tumor metabolism and oxygenation revealed by fluorescence and phosphorescence lifetime imaging.Int. J. Mol. Sci.2024253170310.3390/ijms25031703 38338976
    [Google Scholar]
  34. RajputS. MalviyaR. SrivastavaS. AhmadI. RabO.S. UniyalP. In vivo evaluation of apoptosis-inducing herbs for the treatment of breast cancer: recent developments and mechanism of action.Curr. Nutr. Food Sci.202521328229410.2174/0115734013303288240730061019
    [Google Scholar]
  35. PogueB.W. O’HaraJ.A. DemidenkoE. PDT with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity.Cancer Res.200363510251033 12615718
    [Google Scholar]
  36. DomkaW. Bartusik-AebisherD. MytychW. PDT for eye, ear, laryngeal area, and nasal and oral cavity diseases: a review.Cancers202416364510.3390/cancers16030645 38339396
    [Google Scholar]
  37. CabralF.V. RiahiM. PersheyevS. PDT offers a novel approach to managing miltefosine-resistant cutaneous leishmaniasis.Biomed. Pharmacother.202417711688110.1016/j.biopha.2024.116881 38917757
    [Google Scholar]
  38. IinumaS. SchomackerK.T. WagnieresG. In vivo fluence rate and fractionation effects on tumor response and photobleaching: PDT with two photosensitizers in an orthotopic rat tumor model.Cancer Res.1999592461646170 10626808
    [Google Scholar]
  39. GoyalP. MalviyaR. Advances in nuclei targeted delivery of nanoparticles for the management of cancer.Biochim. Biophys. Acta Rev. Cancer20231878318888110.1016/j.bbcan.2023.188881 36965678
    [Google Scholar]
  40. JainR.K. CarmelietP.F. Vessels of death or life.Sci. Am.20012856384510.1038/scientificamerican1201‑38 11759584
    [Google Scholar]
  41. MuškovićM. PokrajacR. MalatestiN. Combination of two photosensitisers in anticancer, antimicrobial and upconversion PDT.Pharmaceuticals202316461310.3390/ph16040613 37111370
    [Google Scholar]
  42. HendersonB.W. FingarV.H. Relationship of tumor hypoxia and response to PDT in an experimental mouse tumor.Cancer Res.1987471231103114 3581062
    [Google Scholar]
  43. BuschT.M. WileytoE.P. EmanueleM.J. PDT creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen.Cancer Res.2002622472737279 12499269
    [Google Scholar]
  44. MalviyaR. SundramS. Targeted Cancer Therapy in Biomedical Engineering.ChamSpringer202310.1007/978‑981‑19‑9786‑0
    [Google Scholar]
  45. DolmansD.E. KadambiA. HillJ.S. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy.Cancer Res.200262721512156 11929837
    [Google Scholar]
  46. OskrobaA. Bartusik-AebisherD. MyśliwiecA. PDT and cardiovascular diseases.Int. J. Mol. Sci.2024255297410.3390/ijms25052974 38474220
    [Google Scholar]
  47. SafiaI.H. TangY.Y. PingW. JieJ. MatsikaJ. The efficacy and safety of head and neck cancer treatment using photodynamic and ultrasound therapy: a systematic review.J. Oncol. Res. Ther.2023810184
    [Google Scholar]
  48. FingarV.H. WiemanT.J. HaydonP.S. The effects of thrombocytopenia on vessel stasis and macromolecular leakage after PDT using photofrin.Photochem. Photobiol.199766451351710.1111/j.1751‑1097.1997.tb03182.x 9337624
    [Google Scholar]
  49. FerrarioA. TiehlV.K.F. RuckerN. SchwarzM.A. GillP.S. GomerC.J. Antiangiogenic treatment enhances PDT responsiveness in a mouse mammary carcinoma.Cancer Res.2000601540664069 10945611
    [Google Scholar]
  50. SorrinA.J. LiuC. CicaloJ. Photodynamic priming improves the anti-migratory activity of prostaglandin E receptor 4 antagonist in cancer cells in vitro.Cancerss20211321525910.3390/cancers13215259 34771424
    [Google Scholar]
  51. ShumakerB.P. HetzelF.W. Clinical laser PDT in the treatment of bladder carcinoma.Photochem. Photobiol.198746589990110.1111/j.1751‑1097.1987.tb04866.x 3441511
    [Google Scholar]
  52. Bartusik-AebisherD. SerafinI. DynarowiczK. AebisherD. PDT and associated targeting methods for treatment of brain cancer.Front. Pharmacol.202314125069910.3389/fphar.2023.1250699 37841921
    [Google Scholar]
  53. SafiaI.H. TangY.Y. PingW. JieJ. Harnessing photo-dynamic treatment for immune system diseases: A promising therapeutic approach: A systematic review.East Afric Schol J Med Surg20246310511410.36349/easjms.2024.v06i03.005
    [Google Scholar]
  54. KorbelikM. KroslG. KroslJ. DoughertyG.J. The role of host lymphoid populations in the response of mouse EMT6 tumor to PDT.Cancer Res.1996562456475652 8971170
    [Google Scholar]
  55. RajputS. SharmaK.P. MalviyaR. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies.Med. Drug Discov.20231810015810.1016/j.medidd.2023.100158
    [Google Scholar]
  56. GollnickS.O. VaughanL. HendersonB.W. Generation of effective antitumor vaccines using PDT.Cancer Res.200262616041608 11912128
    [Google Scholar]
  57. DolmansD.E. FukumuraD. JainR.K. PDT for cancer.Nat. Rev. Cancer20033538038710.1038/nrc1071 12724736
    [Google Scholar]
  58. YadavD. MalviyaR. Exploring potential of exosomes drug delivery system in the treatment of cancer: Advances and prospective.Med. Drug Discov.20232010016310.1016/j.medidd.2023.100163
    [Google Scholar]
  59. SonS. KimJ.H. WangX. Multifunctional sonosensitizers in sonodynamic cancer therapy.Chem. Soc. Rev.202049113244326110.1039/C9CS00648F 32337527
    [Google Scholar]
  60. ChengY.J. HuJ.J. QinS.Y. ZhangA.Q. ZhangX.Z. Recent advances in functional mesoporous silica-based nanoplatforms for combinational photo-chemotherapy of cancer.Biomaterials202023211973810.1016/j.biomaterials.2019.119738 31901695
    [Google Scholar]
  61. WeiG. WangY. YangG. WangY. JuR. Recent progress in nanomedicine for enhanced cancer chemotherapy.Theranostics202111136370639210.7150/thno.57828 33995663
    [Google Scholar]
  62. YaoX. ChenX. HeC. ChenL. ChenX. Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and PDT.J. Mater. Chem. B Mater. Biol. Med.20153234707471410.1039/C5TB00256G 32262486
    [Google Scholar]
  63. XuY. ZhangX. HuG. Multistage targeted “Photoactive neutrophil” for enhancing synergistic photo-chemotherapy.Biomaterials202127912122410.1016/j.biomaterials.2021.121224 34710792
    [Google Scholar]
  64. MenilliL. MilaniC. ReddiE. MoretF. Overview of nanoparticle-based approaches for the combination of PDT (PDT) and chemotherapy at the preclinical stage.Cancers20221418446210.3390/cancers14184462 36139623
    [Google Scholar]
  65. IppolitoM.R. MartisV. MartinS. Gene copy-number changes and chromosomal instability induced by aneuploidy confer resistance to chemotherapy.Dev. Cell2021561724402454.e610.1016/j.devcel.2021.07.006 34352223
    [Google Scholar]
  66. ZhaoY. ZhangC. GaoL. Chemotherapy-induced macrophage infiltration into tumors enhances nanographene-based PDT.Cancer Res.201777216021603210.1158/0008‑5472.CAN‑17‑1655 28916656
    [Google Scholar]
  67. WuP. WangX. WangZ. Light-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and combination therapy.ACS Appl. Mater. Interfaces20191120186911870010.1021/acsami.9b02346 31038909
    [Google Scholar]
  68. WangM. ZhaiY. YeH. High co-loading capacity and stimuli-responsive release based on cascade reaction of self-destructive polymer for improved chemo-PDT.ACS Nano20191367010702310.1021/acsnano.9b02096 31188559
    [Google Scholar]
  69. CitrinD.E. Recent developments in radiotherapy.N. Engl. J. Med.2017377111065107510.1056/NEJMra1608986 28902591
    [Google Scholar]
  70. PriceT.W. YapS.Y. GilletR. Evaluation of a bispidine‐based chelator for gallium‐68 and of the porphyrin conjugate as PET/PDT theranostic agent.Chemistry202026347602760810.1002/chem.201905776 32068310
    [Google Scholar]
  71. SunW. ShiT. LuoL. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low‐dose X‐ray‐induced deep‐penetrating PDT.Adv. Mater.20193116180802410.1002/adma.201808024 30848541
    [Google Scholar]
  72. TyagiR. MaanK. KhushuS. RanaP. Urine metabolomics based prediction model approach for radiation exposure.Sci. Rep.20201011606310.1038/s41598‑020‑72426‑4 32999294
    [Google Scholar]
  73. LiuZ. ZouH. ZhaoZ. Tuning organelle specificity and PDT efficiency by molecular function design.ACS Nano20191310112831129310.1021/acsnano.9b04430 31525947
    [Google Scholar]
  74. ZhouY. RenX. HouZ. WangN. JiangY. LuanY. Engineering a photosensitizer nanoplatform for amplified photodynamic immunotherapy via tumor microenvironment modulation.Nanoscale Horiz.20216212013110.1039/D0NH00480D 33206735
    [Google Scholar]
  75. DengG. PengX. SunZ. Natural-killer-cell-inspired nanorobots with aggregation-induced emission characteristics for near-infrared-II fluorescence-guided glioma theranostics.ACS Nano2020149114521146210.1021/acsnano.0c03824 32820907
    [Google Scholar]
  76. ChenQ. HeY. WangY. Penetrable nanoplatform for “cold” tumor immune microenvironment reeducation.Adv. Sci.2020717200041110.1002/advs.202000411 32995118
    [Google Scholar]
  77. SunF. ZhuQ. LiT. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer.Adv. Sci.202184200274610.1002/advs.202002746 33643795
    [Google Scholar]
  78. ChengH. FanX. YeE. Dual tumor microenvironment remodeling by glucose‐contained radical copolymer for MRI‐guided photoimmunotherapy.Adv. Mater.20223425210767410.1002/adma.202107674 34755922
    [Google Scholar]
  79. BeleteT.M. The current status of gene therapy for the treatment of cancer.Biologics2021156777 33776419
    [Google Scholar]
  80. FengY. TononC.C. AshrafS. HasanT. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives.Adv. Drug Deliv. Rev.202117711394110.1016/j.addr.2021.113941 34419503
    [Google Scholar]
  81. ZhaoY. LiR. SunJ. ZouZ. WangF. LiuX. Multifunctional DNAzyme-anchored metal-organic framework for efficient suppression of tumor metastasis.ACS Nano20221645404541710.1021/acsnano.1c09008 35384646
    [Google Scholar]
  82. ChenL. LiG. WangX. LiJ. ZhangY. Spherical nucleic acids for near-infrared light-responsive self-delivery of small-interfering RNA and antisense oligonucleotide.ACS Nano2021157119291193910.1021/acsnano.1c03072 34170121
    [Google Scholar]
  83. PanM. JiangQ. SunJ. Programming DNA nanoassembly for enhanced PDT.Angew. Chem.202013251913192110.1002/ange.201912574
    [Google Scholar]
  84. ZhaoH. LiL. LiF. An energy‐storing DNA‐based nanocomplex for laser‐free PDT.Adv. Mater.20223413210992010.1002/adma.202109920
    [Google Scholar]
  85. LiuS.Y. XuY. YangH. Ultrathin 2D copper (I) 1,2,4‐triazolate coordination polymer nanosheets for efficient and selective gene silencing and PDT.Adv. Mater.20213318210084910.1002/adma.202100849 33797149
    [Google Scholar]
  86. SajjadF. JinH. HanY. Incorporation of green emission polymer dots into pyropheophorbide-α enhance the PDT effect and biocompatibility.Photodiagn. Photodyn. Ther.20223710256210.1016/j.pdpdt.2021.102562 34610430
    [Google Scholar]
  87. LiuY. ZhouZ. HouJ. Tumor selective metabolic reprogramming as a prospective pd‐l1 depression strategy to reactivate immunotherapy.Adv. Mater.20223441220612110.1002/adma.202206121 36017886
    [Google Scholar]
  88. JiangW. LiangM. LeiQ. LiG. WuS. The current status of PDT in cancer treatment.Cancers202315358510.3390/cancers15030585 36765543
    [Google Scholar]
  89. SiegelR.L. MillerK.D. JemalA. Cancer statistics.CA Cancer J. Clin.201868173010.3322/caac.21442 29313949
    [Google Scholar]
  90. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  91. AllisonR. MoghissiK. DownieG. DixonK. PDT (PDT) for lung cancer.Photodiagnosis and PDT20118323123910.1016/j.pdpdt.2011.03.342 21864796
    [Google Scholar]
  92. HamblinM.R. PDT for cancer: what’s past is prologue.Photochem. Photobiol.202096350651610.1111/php.13190 31820824
    [Google Scholar]
  93. BansalS. BecharaR. PatelJ. MehtaH. FergusonJ. CasalR. Safety and feasibility study of PDT for ablation of peripheral lung cancer.Chest20201576A23910.1016/j.chest.2020.05.295
    [Google Scholar]
  94. AllisonR.R. BansalS. PDT for peripheral lung cancer.Photodiagnosis and PDT20223810282510.1016/j.pdpdt.2022.102825
    [Google Scholar]
  95. AdimoolamM.G. VijayalakshmiA. NalamM.R. SunkaraM.V. Chlorin e6 loaded lactoferrin nanoparticles for enhanced PDT.J. Mater. Chem. B Mater. Biol. Med.20175469189919610.1039/C7TB02599H 32264601
    [Google Scholar]
  96. HuX. TianH. JiangW. SongA. LiZ. LuanY. Rational design of IR820‐ and Ce6‐based versatile micelle for single nir laser-induced imaging and dual‐modal phototherapy.Small20181452180299410.1002/smll.201802994
    [Google Scholar]
  97. KustovA.V. MorshnevP.K. KukushkinaN.V. Solvation, cancer cell photoinactivation and the interaction of chlorin photosensitizers with a potential passive carrier non-ionic surfactant Tween 80.Int. J. Mol. Sci.20222310529410.3390/ijms23105294 35628108
    [Google Scholar]
  98. KatoH. FurukawaK. SatoM. Phase II clinical study of PDT using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung.Lung Cancer200342110311110.1016/S0169‑5002(03)00242‑3 14512194
    [Google Scholar]
  99. UsudaJ. InoueT. TsuchidaT. Clinical trial of PDT for peripheral-type lung cancers using a new laser device in a pilot study.Photodiag PDT20203010169810.1016/j.pdpdt.2020.101698 32198020
    [Google Scholar]
  100. TsuchidaT. MatsumotoY. ImabayashiT. UchimuraK. SasadaS. PDT can be safely performed with Talaporfin sodium as a day treatment for central-type early-stage lung cancer.Photodiagnosis and PDT20223810283610.1016/j.pdpdt.2022.102836 35367388
    [Google Scholar]
  101. WeiC. LiX. The role of photoactivated and non-photoactivated verteporfin on tumor.Front. Pharmacol.20201155742910.3389/fphar.2020.557429 33178014
    [Google Scholar]
  102. RajputS. MalviyaR. UniyalP. Advancements in the diagnosis, prognosis, and treatment of retinoblastoma.Can. J. Ophthalmol.202459528129910.1016/j.jcjo.2024.01.018 38369298
    [Google Scholar]
  103. CerratiE.W. NguyenS.A. FarrarJ.D. LentschE.J. The efficacy of PDT in the treatment of oral squamous cell carcinoma: a meta-analysis.Ear Nose Throat J.2015942727910.1177/014556131509400208 25651350
    [Google Scholar]
  104. Gomes-da-SilvaL.C. KeppO. KroemerG. Regulatory approval of photoimmunotherapy: PDT that induces immunogenic cell death.OncoImmunology202091184139310.1080/2162402X.2020.1841393 33178498
    [Google Scholar]
  105. CognettiD.M. JohnsonJ.M. CurryJ.M. Phase 1/2a, open‐label, multicenter study of RM ‐1929 photoimmunotherapy in patients with locoregional, recurrent head and neck squamous cell carcinoma.Head Neck202143123875388710.1002/hed.26885 34626024
    [Google Scholar]
  106. StratenV.D. MashayekhiV. BruijnD.H.S. OliveiraS. RobinsonD.J. Oncologic PDT: basic principles, current clinical status and future directions.Cancers2017921910.3390/cancers9020019 28218708
    [Google Scholar]
  107. EricsonM.B. WennbergA.M. LarköO. Review of PDT in actinic keratosis and basal cell carcinoma.Ther. Clin. Risk Manag.20084119 18728698
    [Google Scholar]
  108. MortonC.A. SzeimiesR.M. SidoroffA. BraathenL.R. European guidelines for topical PDT part 1: treatment delivery and current indications-actinic keratoses, Bowen’s disease, basal cell carcinoma.J. Eur. Acad. Dermatol. Venereol.201327553654410.1111/jdv.12031 23181594
    [Google Scholar]
  109. LeónD. BucheggerK. SilvaR. Epigallocatechin gallate enhances MAL-PDT cytotoxic effect on PDT-resistant skin cancer squamous cells.Int. J. Mol. Sci.2020219332710.3390/ijms21093327 32397263
    [Google Scholar]
  110. HaakC.S. Togsverd‐BoK. Thaysen‐PetersenD. Fractional laser‐mediated PDT of high‐risk basal cell carcinomas-a randomized clinical trial.Br. J. Dermatol.2015172121522210.1111/bjd.13166 24903544
    [Google Scholar]
  111. OzogD.M. RkeinA.M. FabiS.G. PDT: a clinical consensus guide.Dermatol. Surg.201642780482710.1097/DSS.0000000000000800 27336945
    [Google Scholar]
  112. GuptaN. MalviyaR. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer.Biochim. Biophys. Acta Rev. Cancer20211875218853210.1016/j.bbcan.2021.188532 33667572
    [Google Scholar]
  113. ShiH. SadlerP.J. How promising is phototherapy for cancer?Br. J. Cancer2020123687187310.1038/s41416‑020‑0926‑3 32587359
    [Google Scholar]
  114. SunnatovichMU Treatment of basal cell skin cancer at the present stage.Available from: https://www.skincancer.org/skin-cancer-information/basal-cell-carcinoma/bcc-treatment-options/
    [Google Scholar]
  115. MillerK.D. NogueiraL. DevasiaT. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.21731 35736631
    [Google Scholar]
  116. OsuchowskiM. Bartusik-AebisherD. OsuchowskiF. AebisherD. PDT for prostate cancer-A narrative review.Photodiagnosis and PDT20213310215810.1016/j.pdpdt.2020.102158 33352313
    [Google Scholar]
  117. MonroS. ColonK.L. YinH. Transition metal complexes and PDT from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433.Chem. Rev.2018119279782810.1021/acs.chemrev.8b00211 30295467
    [Google Scholar]
  118. McFarlandS.A. MandelA. Dumoulin-WhiteR. GasserG. Metal-based photosensitizers for PDT: the future of multimodal oncology?Curr. Opin. Chem. Biol.202056232710.1016/j.cbpa.2019.10.004 31759225
    [Google Scholar]
  119. NoweskiA. RoosenA. LebdaiS. Medium-term follow-up of vascular-targeted PDT of localized prostate cancer using TOOKAD soluble WST-11 (phase II trials).Eur. Urol. Focus2019561022102810.1016/j.euf.2018.04.003 29661587
    [Google Scholar]
  120. XuZ.Y. MaoW. ZhaoZ. Self-assembled nanoparticles based on supramolecular-organic frameworks and temoporfin for an enhanced PDT in vitro and in vivo.J. Mater. Chem. B Mater. Biol. Med.202210689990810.1039/D1TB02601A 35043828
    [Google Scholar]
  121. WieheA. SengeM.O. The photosensitizer temoporfin (M THPC) - chemical, pre‐clinical and clinical developments in the last decade † ‡.Photochem. Photobiol.202399235641910.1111/php.13730 36161310
    [Google Scholar]
  122. WyssP. SchwarzV. Dobler‐GirdziunaiteD. PDT of locoregional breast cancer recurrences using a chlorin‐type photosensitizer.Int. J. Cancer200193572072410.1002/ijc.1400 11477585
    [Google Scholar]
  123. RajputS. MalviyaR. SridharS.B. Nanoparticle-based photodynamic therapy for targeted treatment of breast cancer.Nano Struct Nano Obj20244010140510.1016/j.nanoso.2024.101405
    [Google Scholar]
  124. RenschlerM.F. YuenA.R. PanellaT.J. PDT trials with lutetium texaphyrin (Lu-Tex) in patients with locally recurrent breast cancer. Optical Meth Tum Treat Detect Mech.Tech199832473539
    [Google Scholar]
  125. ChenJ.J. LiuS.P. ZhaoJ. WangS.C. LiuT.J. LiX. Effects of a novel photoactivated photosensitizer on MDR1 over-expressing human breast cancer cells.J. Photochem. Photobiol. B2017171677410.1016/j.jphotobiol.2017.04.037 28478351
    [Google Scholar]
  126. Mfouo-TyngaI. HoureldN.N. AbrahamseH. Induced cell death pathway post PDT using a metallophthalocyanine photosensitizer in breast cancer cells.Photomed. Laser Surg.201432420521110.1089/pho.2013.3650 24661060
    [Google Scholar]
  127. KimT.E. ChangJ.E. Recent studies in PDT for cancer treatment: From basic research to clinical trials.Pharmaceutics2023159225710.3390/pharmaceutics15092257 37765226
    [Google Scholar]
  128. YamamotoS. FukuharaH. SekiH. Predictors of therapeutic efficacy of 5-aminolevulinic acid-based PDT in human prostate cancer.Photodiag PDT20213510245210.1016/j.pdpdt.2021.102452 34303032
    [Google Scholar]
  129. SutorisK. VetvickaD. HorakL. Evaluation of topical PDT of mammary carcinoma with an experimental gel containing liposomal hydroxyl-aluminium phthalocyanine.Anticancer Res.201232937693774 22993318
    [Google Scholar]
  130. CrousA. AbrahamseH. Effective gold nanoparticle-antibody-mediated drug delivery for PDT of lung cancer stem cells.Int. J. Mol. Sci.20202111374210.3390/ijms21113742 32466428
    [Google Scholar]
  131. CrousA. AbrahamseH. Aluminium (III) phthalocyanine chloride tetrasulphonate is an effective photosensitizer for the eradication of lung cancer stem cells.R. Soc. Open Sci.20218921014810.1098/rsos.210148 34527268
    [Google Scholar]
  132. YangJ. HouM. SunW. Sequential PDT and PTT using dual‐modal single‐walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse.Adv. Sci.2020716200108810.1002/advs.202001088 32832363
    [Google Scholar]
  133. MenegazziM. MasielloP. NovelliM. Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics.Antioxidants20201011810.3390/antiox10010018 33379141
    [Google Scholar]
  134. DrielV.P.B. BoonstraM.C. SlooterM.D. EGFR targeted nanobody-photosensitizer conjugates for PDT in a pre-clinical model of head and neck cancer.J. Control. Release20162299310510.1016/j.jconrel.2016.03.014 26988602
    [Google Scholar]
  135. KoudinovaN.V. PinthusJ.H. BrandisA. PDT with Pd‐bacteriopheophorbide (TOOKAD): Successful in vivo treatment of human prostatic small cell carcinoma xenografts.Int. J. Cancer2003104678278910.1002/ijc.11002 12640688
    [Google Scholar]
  136. LoboA.C. Gomes-da-SilvaL.C. Rodrigues-SantosP. Immune responses after vascular PDT with redaporfin.J. Clin. Med.201991104 31906092
    [Google Scholar]
  137. KimY.J. LeeH.I. KimJ.K. KimC.H. KimY.J. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted PDT of breast cancer.Colloids Surf. B Biointerf202018911082910.1016/j.colsurfb.2020.110829 32036332
    [Google Scholar]
  138. CastilhoM.L. JesusV.P.S. VieiraP.F.A. HewittK.C. RanieroL. Chlorin e6-EGF conjugated gold nanoparticles as a nanomedicine based therapeutic agent for triple negative breast cancer.Photodiagn. Photodyn. Ther.20213310218610.1016/j.pdpdt.2021.102186 33497816
    [Google Scholar]
  139. BoppanaN.B. DeLorJ.S. BurenV.E. Enhanced apoptotic cancer cell killing after Foscan PDT combined with fenretinide via de novo sphingolipid biosynthesis pathway.J. Photochem. Photobiol. B201615919119510.1016/j.jphotobiol.2016.02.040 27085050
    [Google Scholar]
  140. PetriA. YovaD. AlexandratouE. KyriaziM. RallisM. Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan® and Fospeg in a human prostate cancer cell line.Photodiagn. Photodyn. Ther.20129434435410.1016/j.pdpdt.2012.03.008 23200016
    [Google Scholar]
  141. Gamal-EldeenA.M. AlrehailiA.A. AlharthiA. BanjerH.J. RaafatB.M. HawsawiN.M. Perftoran improves Visudyne-PDT via suppressing hypoxia pathway in murine lung cancer.J Rad Res App Sci202215123824410.1016/j.jrras.2022.03.011
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128364893250603035546
Loading
/content/journals/cpd/10.2174/0113816128364893250603035546
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test