Skip to content
2000
image of The Quantitative Analysis of Solid Dosage Forms of Itopride using Raman Spectroscopy

Abstract

Objective

This study explores the application of Raman spectroscopy for identifying and quantifying itopride in solid dosage forms with varying concentrations of active ingredients and excipients. Raman spectroscopy provides a non-invasive, rapid, and accurate detection method that is ideal for pharmaceutical analysis.

Methods

The Raman spectral features of itopride in solid dosage forms were analyzed using Principal Component Analysis (PCA) and Partial Least Squares Regression Analysis (PLS-RA) as multivariate data analysis techniques.

Results

PCA effectively distinguished Raman spectral data of various itopride drug samples. PLS-RA facilitated quantitative analysis, yielding an R2 value of 0.999%, indicating an excellent explanation of model variability. The root mean square error of calibration and prediction were 0.23 mg and 3.02 mg, respectively. Furthermore, PLS-RA accurately determined the active pharmaceutical ingredient concentration in unknown formulations, with a calculated concentration of 79.66/80 mg (w/w) compared to the actual concentration of 80/140 mg (w/w).

Conclusion

These findings demonstrated that the concentration of itopride in pharmaceutical samples using an established Partial Least Squares Regression calibration model can be determined with reliability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128355113250414043255
2025-05-05
2025-09-10
Loading full text...

Full text loading...

References

  1. Singhvi I. Pillai S. Quantitative estimation of itopride hydrochloride and rabeprazole sodium from capsule formulation. Indian J. Pharm. Sci. 2008 70 5 658 661 10.4103/0250‑474X.45411 21394269
    [Google Scholar]
  2. Ragab M.T. Abd El-Rahman M.K. Ramadan N.K. El-Ragehy N.A. El-Zeany B.A. Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form. Talanta 2015 138 28 35 10.1016/j.talanta.2015.01.045 25863367
    [Google Scholar]
  3. Banka N. Role of prokinetics in dyspepsia. Gastroenterol Today 2003 7 1 1 4
    [Google Scholar]
  4. Chhipa P. Pethe A. Tekade A. Formulation optimization of sustained release pellets of itopride hydrochloride using different polymers. J. Pharm. Res. 2009 2 8 1404 1408
    [Google Scholar]
  5. Gao Y. Luan Y. Ren M. Cao Z. Li Y. Li T. Ren B. Equilibrium solubilities, model analysis, solvent effect, molecular dynamic simulation, and thermodynamic properties of itopride hydrochloride in eleven organic pure solvents at different temperatures. J. Chem. Thermodyn. 2024 191 107224 10.1016/j.jct.2023.107224
    [Google Scholar]
  6. G. Smith J. Brown Advances in raman spectroscopy: Applications in pharmaceuticals. J Analyt Sci 2020 34 2 123 135 10.1016/j.jas.2020.02.005
    [Google Scholar]
  7. Bajwa N. Saroch P. Baldi A. mplementation of analytical quality by design methodology to develop a UV spectrometric technique for arteether quantification. Indian J. Pharm. Educ. Res. 2023 57 3 s805 s813
    [Google Scholar]
  8. Hu Y. Feng S. Gao F. Li-Chan E.C.Y. Grant E. Lu X. Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem. 2015 176 123 129 10.1016/j.foodchem.2014.12.051 25624214
    [Google Scholar]
  9. Sahoo S. Chakraborti C. Mishra S. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension. J. Adv. Pharm. Technol. Res. 2011 2 3 195 204 10.4103/2231‑4040.85541 22171318
    [Google Scholar]
  10. Desai V.N. Afieroho O.E. Dagunduro B.O. Okonkwo T.J. Ndu C.C. A simple UV spectrophotometric method for the determination of levofloxacin in dosage formulations. Trop. J. Pharm. Res. 2011 10 1 10.4314/tjpr.v10i1.66545
    [Google Scholar]
  11. Bajwa J. Nawaz H. Majeed M.I. Hussain A.I. Farooq S. Rashid N. Bakkar M.A. Ahmad S. Hyat H. Bashir S. Ali S. Kashif M. Quantitative analysis of solid dosage forms of cefixime using Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 238 118446 10.1016/j.saa.2020.118446 32408230
    [Google Scholar]
  12. Skoulika S.G. Georgiou C.A. Rapid quantitative determination of ciprofloxacin in pharmaceuticals by use of solid-state FT-Raman spectroscopy. Appl. Spectrosc. 2001 55 9 1259 1265 10.1366/0003702011953298
    [Google Scholar]
  13. Strachan C.J. Rades T. Gordon K.C. Rantanen J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J. Pharm. Pharmacol. 2007 59 2 179 192 10.1211/jpp.59.2.0005 17270072
    [Google Scholar]
  14. Cailletaud J. De Bleye C. Dumont E. Sacré P.Y. Netchacovitch L. Gut Y. Boiret M. Ginot Y.M. Hubert P. Ziemons E. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field. J. Pharm. Biomed. Anal. 2018 147 458 472 10.1016/j.jpba.2017.06.056 28688617
    [Google Scholar]
  15. Aymen S. Nawaz H. Majeed M.I. Rashid N. Ehsan U. Shahzad R. Ali M.Z. Rimsha G. Fatima R. Meraj L. Sadaf N. Ali Z. Raman spectroscopy for the quantitative analysis of Lornoxicam in solid dosage forms. J. Raman Spectrosc. 2023 54 3 250 257 10.1002/jrs.6476
    [Google Scholar]
  16. Patel D. Mehta P.J. Patel D. An overview: application of Raman spectroscopy in pharmaceutical field. Curr. Pharm. Anal. 2010 6 2 131 141 10.2174/157341210791202654
    [Google Scholar]
  17. Shahbaz M. Tariq A. Majeed M.I. Nawaz H. Rashid N. Shehnaz H. Kainat K. Hajab H. Tahira M. Huda N. Tahseen H. Imran M. Qualitative and quantitative analysis of Azithromycin as solid dosage by raman spectroscopy. ACS Omega 2023 8 39 36393 36400 10.1021/acsomega.3c05245 37810726
    [Google Scholar]
  18. Wang T. Xie C. You Q. Tian X. Xu X. Qualitative and quantitative analysis of four benzimidazole residues in food by surface-enhanced Raman spectroscopy combined with chemometrics. Food Chem. 2023 424 136479 10.1016/j.foodchem.2023.136479 37263093
    [Google Scholar]
  19. Nawaz H. Rashid N. Saleem M. Asif Hanif M. Irfan Majeed M. Amin I. Iqbal M. Rahman M. Ibrahim O. Baig S.M. Ahmed M. Bonnier F. Byrne H.J. Prediction of viral loads for diagnosis of Hepatitis C infection in human plasma samples using Raman spectroscopy coupled with partial least squares regression analysis. J. Raman Spectrosc. 2017 48 5 697 704 10.1002/jrs.5108
    [Google Scholar]
  20. De Veij M. Vandenabeele M. Remon T. Reference database of Raman spectra of pharmaceutical excipients. J. Raman Spectrosc. 2009 40 297 307 10.1002/jrs.2125
    [Google Scholar]
  21. Hidi I.J. Jahn M. Weber K. Cialla-May D. Popp J. Droplet based microfluidics: Spectroscopic characterization of levofloxacin and its SERS detection. Phys. Chem. Chem. Phys. 2015 17 33 21236 21242 10.1039/C4CP04970E 25613024
    [Google Scholar]
  22. Hernández B. Pflüger F. Kruglik S.G. Cohen R. Ghomi M. Protonation–deprotonation and structural dynamics of antidiabetic drug metformin. J. Pharm. Biomed. Anal. 2015 114 42 48 10.1016/j.jpba.2015.04.041 26004226
    [Google Scholar]
  23. Cozar I. Szabó L. Leopold N. Chis V. Raman, SERS and DFT study of atenolol and metoprolol cardiovascular drugs. Rom. J. Phys. 2010 55 7-8 772 781
    [Google Scholar]
  24. Mizera M. Lewadowska K. Talaczyńska A. Cielecka-Piontek J. Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 137 1029 1038 10.1016/j.saa.2014.09.036 25286115
    [Google Scholar]
  25. Cozar O. Szabó L. Cozar I.B. Leopold N. David L. Căinap C. Chiş V. Spectroscopic and DFT study of atenolol and metoprolol and their copper complexes. J. Mol. Struct. 2011 993 1-3 357 366 10.1016/j.molstruc.2010.12.014
    [Google Scholar]
  26. Bhandaru J.S. Malothu N. Akkinepally R.R. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst. Growth Des. 2015 15 3 1173 1179 10.1021/cg501532k
    [Google Scholar]
  27. Zerilli T. Pyon E. Sitagliptin phosphate: A DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Clin. Ther. 2007 29 12 2614 2634 10.1016/j.clinthera.2007.12.034 18201579
    [Google Scholar]
  28. Lin-Vien D. Colthup N.B. Grasselli J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Elsevier 1991
    [Google Scholar]
  29. Paradkar M.M. Irudayaraj J. Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy. Food Chem. 2002 76 2 231 239 10.1016/S0308‑8146(01)00292‑8
    [Google Scholar]
  30. Li Y. Wang H. Zhang W. Wu H. Wang Z. Evaluation of nutrition components in Lanzhou lily bulb by confocal Raman microscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 244 118837 10.1016/j.saa.2020.118837 32866804
    [Google Scholar]
  31. Schulz H. Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007 43 1 13 25 10.1016/j.vibspec.2006.06.001
    [Google Scholar]
  32. O’Brien L.E. Timmins P. Williams A.C. York P. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs. J. Pharm. Biomed. Anal. 2004 36 2 335 340 10.1016/j.jpba.2004.06.024 15496326
    [Google Scholar]
  33. Martínez V.R. Aguirre M.V. Todaro J.S. Piro O.E. Echeverría G.A. Naso L.G. Ferrer E.G. Williams P.A.M. Interaction of Zn with losartan. Activation of intrinsic apoptotic signaling pathway in lung cancer cells and effects on alkaline and acid phosphatases. Biol. Trace Elem. Res. 2018 186 2 413 429 10.1007/s12011‑018‑1334‑x 29651733
    [Google Scholar]
  34. Raghavan K. Dwivedi A. Campbell G.C. Jr Johnston E. Levorse D. McCauley J. Hussain M. A spectroscopic investigation of losartan polymorphs. Pharm. Res. 1993 10 6 900 904 10.1023/A:1018973530443 8321860
    [Google Scholar]
  35. Raj A. Raju K. Varghese H.T. Granadeiro C.M. Nogueira H.I.S. Panicker C.Y. IR, Raman and SERS spectra of 2-(methoxycarbonylmethylsulfanyl)-3,5-dinitrobenzene carboxylic acid. J. Braz. Chem. Soc. 2009 20 3 549 559 10.1590/S0103‑50532009000300021
    [Google Scholar]
  36. Yu X. Li W. Liang O. Bai Y. Xie Y. Molecular orientation and specificity in the identification of biomolecules via surface enhanced Raman spectroscopy. Anal. Biochem. 2020 599 113709 10.1016/j.ab.2020.113709 32298641
    [Google Scholar]
  37. Rama P. Baldelli A. Vignesh A. Altemimi A.B. Lakshmanan G. Selvam R. Arunagirinathan N. Murugesan K. Pratap-Singh A. Antimicrobial, antioxidant, and angiogenic bioactive silver nanoparticles produced using Murraya paniculata (L.) jack leaves. Nanomater. Nanotechnol 2022 12 10.1177/18479804211056167
    [Google Scholar]
  38. Falamas A. Faur C.I. Ciupe S. Chirila M. Rotaru H. Hedesiu M. Cinta Pinzaru S. Rapid and noninvasive diagnosis of oral and oropharyngeal cancer based on micro-Raman and FT-IR spectra of saliva. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 252 119477 10.1016/j.saa.2021.119477 33545509
    [Google Scholar]
  39. Liu S. Rong M. Zhang H. Chen N. Pang F. Chen Z. Wang T. Yan J. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe. Biomed. Opt. Express 2016 7 3 810 815 10.1364/BOE.7.000810 27231590
    [Google Scholar]
  40. Saade J. Pacheco M.T.T. Rodrigues M.R. Jr L.S. Identification of hepatitis C in human blood serum by near-infrared Raman spectroscopy. Spectroscopy (Springf.) 2008 22 5 387 395 10.1155/2008/419783
    [Google Scholar]
  41. Roggo Y. Edmond A. Chalus P. Ulmschneider M. Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal. Chim. Acta 2005 535 1-2 79 87 10.1016/j.aca.2004.12.037
    [Google Scholar]
  42. Gabrielsson J. Lindberg N.O. Lundstedt T. Multivariate methods in pharmaceutical applications. Chemometrics 2002 16 141 160 10.1002/cem.697
    [Google Scholar]
  43. Bashir S. Nawaz H. Majeed M.I. Mohsin M. Abdullah S. Ali S. Rashid N. Kashif M. Batool F. Abubakar M. Ahmad S. Abdulraheem A. Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surface Enhanced Raman Spectroscopy combined with chemometric tools. Photodiagn. Photodyn. Ther. 2021 34 102280 10.1016/j.pdpdt.2021.102280 33823284
    [Google Scholar]
  44. Amigo J.M. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem. 2010 398 1 93 109 10.1007/s00216‑010‑3828‑z 20496027
    [Google Scholar]
  45. Bouhsain Z. Garrigues S. de la Guardia M. PLS-UV spectrophotometric method for the simultaneous determination of paracetamol, acetylsalicylic acid and caffeine in pharmaceutical formulations. Fresenius J. Anal. Chem. 1997 357 7 973 976 10.1007/s002160050284
    [Google Scholar]
  46. Meade A.D. Clarke C. Byrne H.J. Lyng F.M. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry. Radiat. Res. 2010 173 2 225 237 10.1667/RR1836.1 20095855
    [Google Scholar]
  47. Gidskehaug L. Anderssen E. Flatberg A. Alsberg B.K. A framework for significance analysis of gene expression data using dimension reduction methods. BMC Bioinformatics 2007 8 1 346 10.1186/1471‑2105‑8‑346 17877799
    [Google Scholar]
  48. Ahmad S. Majeed M.I. Nawaz H. Javed M.R. Rashid N. Abubakar M. Batool F. Bashir S. Kashif M. Ali S. Tahira M. Tabbasum S. Amin I. Characterization and prediction of viral loads of Hepatitis B serum samples by using surface-enhanced Raman spectroscopy (SERS). Photodiagn. Photodyn. Ther. 2021 35 102386 10.1016/j.pdpdt.2021.102386 34116250
    [Google Scholar]
  49. Amro A.N. Emran K. Alanazi H. Voltammetric determination of itopride using carbon paste electrode modified with Gd doped TiO2nanotubes. Turk. J. Chem. 2020 44 4 1122 1133 10.3906/kim‑2003‑56 33488217
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128355113250414043255
Loading
/content/journals/cpd/10.2174/0113816128355113250414043255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test