Skip to content
2000
Volume 32, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective

This study explores the application of Raman spectroscopy for identifying and quantifying itopride in solid dosage forms with varying concentrations of active ingredients and excipients. Raman spectroscopy provides a non-invasive, rapid, and accurate detection method that is ideal for pharmaceutical analysis.

Methods

The Raman spectral features of itopride in solid dosage forms were analyzed using Principal Component Analysis (PCA) and Partial Least Squares Regression Analysis (PLS-RA) as multivariate data analysis techniques.

Results

PCA effectively distinguished Raman spectral data of various itopride drug samples. PLS-RA facilitated quantitative analysis, yielding an R2 value of 0.999%, indicating an excellent explanation of model variability. The root mean square error of calibration and prediction were 0.23 mg and 3.02 mg, respectively. Furthermore, PLS-RA accurately determined the active pharmaceutical ingredient concentration in unknown formulations, with a calculated concentration of 79.66/80 mg (w/w) compared to the actual concentration of 80/140 mg (w/w).

Conclusion

These findings demonstrated that the concentration of itopride in pharmaceutical samples using an established Partial Least Squares Regression calibration model can be determined with reliability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128355113250414043255
2025-05-05
2026-01-31
Loading full text...

Full text loading...

References

  1. SinghviI. PillaiS. Quantitative estimation of itopride hydrochloride and rabeprazole sodium from capsule formulation.Indian J. Pharm. Sci.200870565866110.4103/0250‑474X.45411 21394269
    [Google Scholar]
  2. RagabM.T. Abd El-RahmanM.K. RamadanN.K. El-RagehyN.A. El-ZeanyB.A. Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form.Talanta2015138283510.1016/j.talanta.2015.01.045 25863367
    [Google Scholar]
  3. BankaN. Role of prokinetics in dyspepsia.Gastroenterol Today20037114
    [Google Scholar]
  4. ChhipaP. PetheA. TekadeA. Formulation optimization of sustained release pellets of itopride hydrochloride using different polymers.J. Pharm. Res.20092814041408
    [Google Scholar]
  5. GaoY. LuanY. RenM. Equilibrium solubilities, model analysis, solvent effect, molecular dynamic simulation, and thermodynamic properties of itopride hydrochloride in eleven organic pure solvents at different temperatures.J. Chem. Thermodyn.202419110722410.1016/j.jct.2023.107224
    [Google Scholar]
  6. G.Smith J.Brown Advances in raman spectroscopy: Applications in pharmaceuticals.J Analyt Sci202034212313510.1016/j.jas.2020.02.005
    [Google Scholar]
  7. BajwaN. SarochP. BaldiA. Mplementation of analytical quality by design methodology to develop a UV spectrometric technique for arteether quantification.Indian J Pharm Educ Res2023573s805s813
    [Google Scholar]
  8. HuY. FengS. GaoF. Li-ChanE.C.Y. GrantE. LuX. Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.Food Chem.201517612312910.1016/j.foodchem.2014.12.051 25624214
    [Google Scholar]
  9. SahooS. ChakrabortiC. MishraS. Qualitative analysis of controlled release ciprofloxacin/carbopol 934 mucoadhesive suspension.J. Adv. Pharm. Technol. Res.20112319520410.4103/2231‑4040.85541 22171318
    [Google Scholar]
  10. DesaiV.N. AfierohoO.E. DagunduroB.O. OkonkwoT.J. NduC.C. A simple UV spectrophotometric method for the determination of levofloxacin in dosage formulations.Trop. J. Pharm. Res.201110110.4314/tjpr.v10i1.66545
    [Google Scholar]
  11. BajwaJ. NawazH. MajeedM.I. Quantitative analysis of solid dosage forms of cefixime using Raman spectroscopy.Spectrochim. Acta A Mol. Biomol. Spectrosc.202023811844610.1016/j.saa.2020.118446 32408230
    [Google Scholar]
  12. SkoulikaS.G. GeorgiouC.A. Rapid quantitative determination of ciprofloxacin in pharmaceuticals by use of solid-state FT-Raman spectroscopy.Appl. Spectrosc.20015591259126510.1366/0003702011953298
    [Google Scholar]
  13. StrachanC.J. RadesT. GordonK.C. RantanenJ. Raman spectroscopy for quantitative analysis of pharmaceutical solids.J. Pharm. Pharmacol.200759217919210.1211/jpp.59.2.0005 17270072
    [Google Scholar]
  14. CailletaudJ. De BleyeC. DumontE. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field.J. Pharm. Biomed. Anal.201814745847210.1016/j.jpba.2017.06.056 28688617
    [Google Scholar]
  15. AymenS. NawazH. MajeedM.I. Raman spectroscopy for the quantitative analysis of Lornoxicam in solid dosage forms.J. Raman Spectrosc.202354325025710.1002/jrs.6476
    [Google Scholar]
  16. PatelD. MehtaP.J. PatelD. An overview: application of Raman spectroscopy in pharmaceutical field.Curr. Pharm. Anal.20106213114110.2174/157341210791202654
    [Google Scholar]
  17. ShahbazM. TariqA. MajeedM.I. Qualitative and quantitative analysis of Azithromycin as solid dosage by raman spectroscopy.ACS Omega2023839363933640010.1021/acsomega.3c05245 37810726
    [Google Scholar]
  18. WangT. XieC. YouQ. TianX. XuX. Qualitative and quantitative analysis of four benzimidazole residues in food by surface-enhanced Raman spectroscopy combined with chemometrics.Food Chem.202342413647910.1016/j.foodchem.2023.136479 37263093
    [Google Scholar]
  19. NawazH. RashidN. SaleemM. Prediction of viral loads for diagnosis of Hepatitis C infection in human plasma samples using Raman spectroscopy coupled with partial least squares regression analysis.J. Raman Spectrosc.201748569770410.1002/jrs.5108
    [Google Scholar]
  20. De VeijM. VandenabeeleM. RemonT. Reference database of Raman spectra of pharmaceutical excipients.J. Raman Spectrosc.20094029730710.1002/jrs.2125
    [Google Scholar]
  21. HidiI.J. JahnM. WeberK. Cialla-MayD. PoppJ. Droplet based microfluidics: Spectroscopic characterization of levofloxacin and its SERS detection.Phys. Chem. Chem. Phys.20151733212362124210.1039/C4CP04970E 25613024
    [Google Scholar]
  22. HernándezB. PflügerF. KruglikS.G. CohenR. GhomiM. Protonation-deprotonation and structural dynamics of antidiabetic drug metformin.J. Pharm. Biomed. Anal.2015114424810.1016/j.jpba.2015.04.041 26004226
    [Google Scholar]
  23. CozarI. SzabóL. LeopoldN. ChisV. Raman, SERS and DFT study of atenolol and metoprolol cardiovascular drugs.Rom. J. Phys.2010557-8772781
    [Google Scholar]
  24. MizeraM. LewadowskaK. TalaczyńskaA. Cielecka-PiontekJ. Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium.Spectrochim. Acta A Mol. Biomol. Spectrosc.20151371029103810.1016/j.saa.2014.09.036 25286115
    [Google Scholar]
  25. CozarO. SzabóL. CozarI.B. Spectroscopic and DFT study of atenolol and metoprolol and their copper complexes.J. Mol. Struct.20119931-335736610.1016/j.molstruc.2010.12.014
    [Google Scholar]
  26. BhandaruJ.S. MalothuN. AkkinepallyR.R. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate.Cryst. Growth Des.20151531173117910.1021/cg501532k
    [Google Scholar]
  27. ZerilliT. PyonE. Sitagliptin phosphate: A DPP-4 inhibitor for the treatment of type 2 diabetes mellitus.Clin. Ther.200729122614263410.1016/j.clinthera.2007.12.034 18201579
    [Google Scholar]
  28. Lin-VienD. ColthupN.B. GrasselliJ.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules.Elsevier1991
    [Google Scholar]
  29. ParadkarM.M. IrudayarajJ. Discrimination and classification of beet and cane inverts in honey by FT-Raman spectroscopy.Food Chem.200276223123910.1016/S0308‑8146(01)00292‑8
    [Google Scholar]
  30. LiY. WangH. ZhangW. WuH. WangZ. Evaluation of nutrition components in Lanzhou lily bulb by confocal Raman microscopy.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124411883710.1016/j.saa.2020.118837 32866804
    [Google Scholar]
  31. SchulzH. BaranskaM. Identification and quantification of valuable plant substances by IR and Raman spectroscopy.Vib. Spectrosc.2007431132510.1016/j.vibspec.2006.06.001
    [Google Scholar]
  32. O’BrienL.E. TimminsP. WilliamsA.C. YorkP. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs.J. Pharm. Biomed. Anal.200436233534010.1016/j.jpba.2004.06.024 15496326
    [Google Scholar]
  33. MartínezV.R. AguirreM.V. TodaroJ.S. Interaction of Zn with losartan. Activation of intrinsic apoptotic signaling pathway in lung cancer cells and effects on alkaline and acid phosphatases.Biol. Trace Elem. Res.2018186241342910.1007/s12011‑018‑1334‑x 29651733
    [Google Scholar]
  34. RaghavanK. DwivediA. CampbellG.C.Jr A spectroscopic investigation of losartan polymorphs.Pharm. Res.199310690090410.1023/A:1018973530443 8321860
    [Google Scholar]
  35. RajA. RajuK. VargheseH.T. GranadeiroC.M. NogueiraH.I.S. PanickerCY. IR, Raman and SERS spectra of 2-(methoxycar-bonylmethylsulfanyl)-3,5-dinitrobenzene carboxylic acid.J. Braz. Chem. Soc.200920354955910.1590/S0103‑50532009000300021
    [Google Scholar]
  36. YuX. LiW. LiangO. BaiY. XieY. Molecular orientation and specificity in the identification of biomolecules via surface enhanced Raman spectroscopy.Anal. Biochem.202059911370910.1016/j.ab.2020.113709 32298641
    [Google Scholar]
  37. RamaP. BaldelliA. VigneshA. Antimicrobial, antioxidant, and angiogenic bioactive silver nanoparticles produced using Murraya paniculata (L.) jack leaves.Nanomater Nanotechnol.20221210.1177/18479804211056167
    [Google Scholar]
  38. FalamasA. FaurC.I. CiupeS. Rapid and noninvasive diagnosis of oral and oropharyngeal cancer based on micro-Raman and FT-IR spectra of saliva.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125211947710.1016/j.saa.2021.119477 33545509
    [Google Scholar]
  39. LiuS. RongM. ZhangH. In vivo Raman measurement of levofloxacin lactate in blood using a nanoparticle-coated optical fiber probe.Biomed. Opt. Express20167381081510.1364/BOE.7.000810 27231590
    [Google Scholar]
  40. SaadeJ. PachecoM.T.T. RodriguesM.R. JrL.S. Identification of hepatitis C in human blood serum by near-infrared Raman spectroscopy.Spectroscopy (Springf.)200822538739510.1155/2008/419783
    [Google Scholar]
  41. RoggoY. EdmondA. ChalusP. UlmschneiderM. Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms.Anal. Chim. Acta20055351-2798710.1016/j.aca.2004.12.037
    [Google Scholar]
  42. GabrielssonJ. LindbergN.O. LundstedtT. Multivariate methods in pharmaceutical applications.Chemometrics20021614116010.1002/cem.697
    [Google Scholar]
  43. BashirS. NawazH. MajeedM.I. Rapid and sensitive discrimination among carbapenem resistant and susceptible E. coli strains using Surface Enhanced Raman Spectroscopy combined with chemometric tools.Photodiagn. Photodyn. Ther.20213410228010.1016/j.pdpdt.2021.102280 33823284
    [Google Scholar]
  44. AmigoJ.M. Practical issues of hyperspectral imaging analysis of solid dosage forms.Anal. Bioanal. Chem.201039819310910.1007/s00216‑010‑3828‑z 20496027
    [Google Scholar]
  45. BouhsainZ. GarriguesS. de la GuardiaM. PLS-UV spectrophotometric method for the simultaneous determination of paracetamol, acetylsalicylic acid and caffeine in pharmaceutical formulations.Fresenius J. Anal. Chem.1997357797397610.1007/s002160050284
    [Google Scholar]
  46. MeadeA.D. ClarkeC. ByrneH.J. LyngF.M. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry.Radiat. Res.2010173222523710.1667/RR1836.1 20095855
    [Google Scholar]
  47. GidskehaugL. AnderssenE. FlatbergA. AlsbergB.K. A framework for significance analysis of gene expression data using dimension reduction methods.BMC Bioinformatics20078134610.1186/1471‑2105‑8‑346 17877799
    [Google Scholar]
  48. AhmadS. MajeedM.I. NawazH. Characterization and prediction of viral loads of Hepatitis B serum samples by using surface-enhanced Raman spectroscopy (SERS).Photodiagn. Photodyn. Ther.20213510238610.1016/j.pdpdt.2021.102386 34116250
    [Google Scholar]
  49. AmroA.N. EmranK. AlanaziH. Voltammetric determination of itopride using carbon paste electrode modified with Gd doped TiO2 nanotubes.Turk. J. Chem.20204441122113310.3906/kim‑2003‑56 33488217
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128355113250414043255
Loading
/content/journals/cpd/10.2174/0113816128355113250414043255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test