Skip to content
2000
Volume 31, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Endometriosis is a prevalent gynecological disorder characterized by the growth of endometrial tissue outside the uterine cavity. The disease often involves internal organs and leads to chronic pelvic pain and infertility. While its pathogenesis remains incompletely understood, the disease is considered estrogen-dependent, and reducing estrogen levels is a primary clinical treatment strategy. Despite extensive research and diverse treatment modalities, including surgery and pharmacotherapy, current treatments are associated with significant complications and recurrence. This review aims to explore recent studies on phytoestrogens' therapeutic potential in endometriosis treatment by examining the underlying mechanisms contributing to their efficacy.

Methods

An extensive evaluation of Google Scholar and PubMed, utilizing relevant keywords including “Endometriosis, Phytoestrogen, Estrogen, inflammation, pelvic pain, and Infertility” was carried out to assess the potential therapeutic efficacy of phytoestrogens in managing endometriosis, based on recent research findings. This review considered a wide range of studies, including , , and clinical studies, as well as reviews and research articles, to provide a comprehensive overview of the current state of knowledge on this topic.

Results

Phytoestrogens, with their structural similarity to estrogen, have emerged as a novel therapeutic approach. These compounds compete for estrogen receptor binding, displaying anti-estrogenic or weak pro-estrogenic properties upon binding.

Conclusion

Exhibiting anti-proliferative, antioxidant, anti-angiogenic, and pro-apoptotic properties, phytoestrogens have demonstrated substantial therapeutic potential in endometriosis management. Extensive cellular, animal, and clinical investigations support their therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128364775250326161410
2025-04-23
2025-10-14
Loading full text...

Full text loading...

References

  1. KianiK. Sadati LamardiS.N. LaschkeM.W. Medicinal plants and natural compounds in the treatment of experimental endometriosis: A systematic review protocol.Evid. Based Preclin. Med.2016321610.1002/ebm2.19
    [Google Scholar]
  2. HorneAW MissmerSA Pathophysiology, diagnosis, and management of endometriosis.BMJ2022379e07075010.1136/bmj‑2022‑070750
    [Google Scholar]
  3. BerkerB. SevalM. Problems with the diagnosis of endometriosis.Womens Health (Lond. Engl.)201511559760110.2217/whe.15.44 26389666
    [Google Scholar]
  4. SignorileP.G. ViceconteR. BaldiA. New insights in pathogenesis of endometriosis.Front. Med. (Lausanne)2022987901510.3389/fmed.2022.879015 35572957
    [Google Scholar]
  5. KlemmtP.A.B. Starzinski-PowitzA. Molecular and cellular pathogenesis of endometriosis.Curr. Womens Health Rev.201814210611610.2174/1573404813666170306163448 29861704
    [Google Scholar]
  6. CramerD. Epidemiology of endometriosis in adolescents Endometriosis.New YorkAlan Liss19875
    [Google Scholar]
  7. WellberyC. Diagnosis and treatment of endometriosis.Am Fam Physician19996061753-1762, 1767-1768. 10537390
    [Google Scholar]
  8. OliveD.L. SchwartzL.B. Endometriosis.N. Engl. J. Med.1993328241759176910.1056/NEJM199306173282407 8110213
    [Google Scholar]
  9. GiudiceL.C. OskotskyT.T. FalakoS. Opoku-AnaneJ. SirotaM. Endometriosis in the era of precision medicine and impact on sexual and reproductive health across the lifespan and in diverse populations.FASEB J.2023379e2313010.1096/fj.202300907 37641572
    [Google Scholar]
  10. AldermanM.H.III YoderN. TaylorH.S. Eds. The systemic effects of endometriosis.Semin Reprod Med201735326310.1055/s‑0037‑1603582
    [Google Scholar]
  11. TaylorH.S. KotlyarA.M. FloresV.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations.Lancet20213971027683985210.1016/S0140‑6736(21)00389‑5 33640070
    [Google Scholar]
  12. LamcevaJ. UljanovsR. StrumfaI. The main theories on the pathogenesis of endometriosis.Int. J. Mol. Sci.2023245425410.3390/ijms24054254 36901685
    [Google Scholar]
  13. LiuZ. YanY. LiuZ. WangY. Inflammation and endometriosis.Front. Biosci.201621594194810.2741/4431 27100482
    [Google Scholar]
  14. ZondervanK.T. BeckerC.M. KogaK. MissmerS.A. TaylorR.N. ViganòP. Endometriosis.Nat. Rev. Dis. Primers201841910.1038/s41572‑018‑0008‑5 30026507
    [Google Scholar]
  15. BartiromoL. SchimberniM. VillanacciR. Endometriosis and phytoestrogens: Friends or foes? A systematic review.Nutrients2021138253210.3390/nu13082532 34444692
    [Google Scholar]
  16. RomanoA. XanthouleaS. GiacominiE. DelvouxB. AllevaE. ViganoP. Endometriotic cell culture contamination and authenticity: A source of bias in in vitro research?Hum. Reprod.202035236437610.1093/humrep/dez266 32106286
    [Google Scholar]
  17. GonçalvesG.A. p27 kip1 as a key regulator of endometriosis.Eur. J. Obstet. Gynecol. Reprod. Biol.20182211410.1016/j.ejogrb.2017.11.026 29216564
    [Google Scholar]
  18. StrattonP. BerkleyK.J. Chronic pelvic pain and endometriosis: Translational evidence of the relationship and implications.Hum. Reprod. Update201117332734610.1093/humupd/dmq050 21106492
    [Google Scholar]
  19. BinaF. SoleymaniS. ToliatT. Plant-derived medicines for treatment of endometriosis: A comprehensive review of molecular mechanisms.Pharmacol. Res.2019139769010.1016/j.phrs.2018.11.008 30412733
    [Google Scholar]
  20. GuoS.W. Recurrence of endometriosis and its control.Hum. Reprod. Update200915444146110.1093/humupd/dmp007 19279046
    [Google Scholar]
  21. AbramiukM. MertowskaP. FrankowskaK. How can selected dietary ingredients influence the development and progression of endometriosis?Nutrients202416115410.3390/nu16010154 38201982
    [Google Scholar]
  22. Canivenc-LavierM.C. Bennetau-PelisseroC. Phytoestrogens and health effects.Nutrients202315231710.3390/nu15020317 36678189
    [Google Scholar]
  23. SzukiewiczD. Insight into the potential mechanisms of endocrine disruption by dietary phytoestrogens in the context of the etiopathogenesis of endometriosis.Int. J. Mol. Sci.202324151219510.3390/ijms241512195 37569571
    [Google Scholar]
  24. CaiX. LiuM. ZhangB. ZhaoS.J. JiangS.W. Phytoestrogens for the management of endometriosis: Findings and issues.Pharmaceuticals202114656910.3390/ph14060569 34198709
    [Google Scholar]
  25. AfrinS. AlAshqarA. El SabehM. Diet and nutrition in gynecological disorders: A focus on clinical studies.Nutrients2021136174710.3390/nu13061747 34063835
    [Google Scholar]
  26. MeresmanG.F. GötteM. LaschkeM.W. Plants as source of new therapies for endometriosis: A review of preclinical and clinical studies.Hum. Reprod. Update202127236739210.1093/humupd/dmaa039 33124671
    [Google Scholar]
  27. Della CorteL. NoventaM. CiebieraM. Phytotherapy in endometriosis: An up-to-date review.J. Complement. Integr. Med.20201732019008410.1515/jcim‑2019‑0084 31532753
    [Google Scholar]
  28. RaoT. TanZ. PengJ. The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective.Pharmacol. Res.201914610428310.1016/j.phrs.2019.104283 31129178
    [Google Scholar]
  29. NieQ. XingM. HuJ. HuX. NieS. XieM. Metabolism and health effects of phyto-estrogens.Crit. Rev. Food Sci. Nutr.201757112432245410.1080/10408398.2015.1077194 26558495
    [Google Scholar]
  30. KapoorR. StratopoulouC.A. DolmansM.M. Pathogenesis of endometriosis: New insights into prospective therapies.Int. J. Mol. Sci.202122211170010.3390/ijms222111700 34769130
    [Google Scholar]
  31. AhnS.H. SinghV. TayadeC. Biomarkers in endometriosis: Challenges and opportunities.Fertil. Steril.2017107352353210.1016/j.fertnstert.2017.01.009 28189296
    [Google Scholar]
  32. ZhangM. XuT. TongD. Research advances in endometriosis-related signaling pathways: A review.Biomed. Pharmacother.202316411490910.1016/j.biopha.2023.114909 37210898
    [Google Scholar]
  33. MatsuzakiS. MurakamiT. UeharaS. CanisM. SasanoH. OkamuraK. Expression of estrogen receptor alpha and beta in peritoneal and ovarian endometriosis.Fertil. Steril.20017561198120510.1016/S0015‑0282(01)01783‑6 11384649
    [Google Scholar]
  34. SutrisnoS. GayatriM. WiyasaI. KalsumU. AndariniS. Genistein affects estrogen receptor alpha (ER-α)/Estrogen Receptor Beta (ER-β) ratio, and nuclear factor-Kappa Beta (NF-κβ) in mice model of endometriosis.Bahrain Med. Bull.2021433
    [Google Scholar]
  35. BurneyR.O. GiudiceL.C. Pathogenesis and pathophysiology of endometriosis.Fertil. Steril.201298351151910.1016/j.fertnstert.2012.06.029 22819144
    [Google Scholar]
  36. SoaresS.R. Martínez-VareaA. Hidalgo-MoraJ.J. PellicerA. Pharmacologic therapies in endometriosis: A systematic review.Fertil. Steril.201298352955510.1016/j.fertnstert.2012.07.1120 22938768
    [Google Scholar]
  37. SitumorangH. HestiantoroA. PurbadiS. FlamanditaD. SahlanM. In-silico dynamic analysis of Sulawesi propolis as anti-endometriosis drug: Interaction study with TNF alpha receptor, NF-kB, estrogen receptor, progesterone receptor and prostaglandin receptor.Ann. Med. Surg. (Lond.)20216710245910.1016/j.amsu.2021.102459 34194730
    [Google Scholar]
  38. RižnerT.L. Estrogen metabolism and action in endometriosis.Mol. Cell. Endocrinol.20093071-281810.1016/j.mce.2009.03.022 19524121
    [Google Scholar]
  39. KimJ.J. KuritaT. BulunS.E. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer.Endocr. Rev.201334113016210.1210/er.2012‑1043 23303565
    [Google Scholar]
  40. JiangI. YongP.J. AllaireC. BedaiwyM.A. Intricate connections between the microbiota and endometriosis.Int. J. Mol. Sci.20212211564410.3390/ijms22115644 34073257
    [Google Scholar]
  41. SutrisnoS. MaharaniM. Genistein ameliorated vascular endothelial growth Factor-A (VEGF-A) and estrogen receptor-alpha (ER-α) in endometriosis mice model, in vivo and in silico.Scientific World J.2024202411710.1155/2024/5338212 38304042
    [Google Scholar]
  42. ChenP.N. HsiehY.S. ChiouH.L. ChuS.C. Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways.Chem. Biol. Interact.20051562-314115010.1016/j.cbi.2005.08.005 16169542
    [Google Scholar]
  43. ChenF. CastranovaV. ShiX. New insights into the role of nuclear factor-kappaB in cell growth regulation.Am. J. Pathol.2001159238739710.1016/S0002‑9440(10)61708‑7 11485895
    [Google Scholar]
  44. TakadaY. SinghS. AggarwalB.B. Identification of a p65 peptide that selectively inhibits NF-κB activation induced by various inflammatory stimuli and its role in down-regulation of NF-kappaB-mediated gene expression and up-regulation of apoptosis.J. Biol. Chem.200427915150961510410.1074/jbc.M311192200 14711835
    [Google Scholar]
  45. BahassiE.M. KaryalaS. TomlinsonC.R. SartorM.A. MedvedovicM. HenniganR.F. Critical regulation of genes for tumor cell migration by AP-1.Clin. Exp. Metastasis200421429330410.1023/B:CLIN.0000046132.46946.dd 15554385
    [Google Scholar]
  46. XiongW. ZhangL. YuL. Estradiol promotes cells invasion by activating β-catenin signaling pathway in endometriosis.Reproduction2015150650751610.1530/REP‑15‑0371 26432349
    [Google Scholar]
  47. BabooK.D. ChenZ.Y. ZhangX.M. Role of oxidative stress and antioxidant therapies in endometriosis.Reprod. Dev. Med.20193317017610.4103/2096‑2924.268154
    [Google Scholar]
  48. MachairiotisN. VasilakakiS. KouroutouP. Natural products: Potential lead compounds for the treatment of endometriosis.Eur. J. Obstet. Gynecol. Reprod. Biol.202024571210.1016/j.ejogrb.2019.11.019 31835203
    [Google Scholar]
  49. ThompsonL.U. RobbP. SerrainoM. CheungF. Mammalian lignan production from various foods.Nutr. Cancer19911614310.1080/01635589109514139
    [Google Scholar]
  50. MurkiesA.L. WilcoxG. DavisS.R. Clinical review 92: Phytoestrogens.J. Clin. Endocrinol. Metab.1998832297303 9467531
    [Google Scholar]
  51. UsuiT. Pharmaceutical prospects of phytoestrogens.Endocr. J.200653172010.1507/endocrj.53.7 16543667
    [Google Scholar]
  52. KuiperG.G.J.M. CarlssonB. GrandienK. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β.Endocrinology1997138386387010.1210/endo.138.3.4979 9048584
    [Google Scholar]
  53. ChenY. ChenC. ShiS. Endometriotic implants regress in rat models treated with puerarin by decreasing estradiol level.Reprod. Sci.201118988689110.1177/1933719111398500 21673282
    [Google Scholar]
  54. ShiS.F. YuC.Q. Progress in research on phytoestrogens and their effect targets.J. Chin. Integr. Med.20053540841010.3736/jcim20050521 16159582
    [Google Scholar]
  55. NikolićI.L. SavićG.I.M. TačićA.D. SavićI.M. Classification and biological activity of phytoestrogens: A review.Adv Technol2017629610610.5937/savteh1702096N
    [Google Scholar]
  56. YuL. RiosE. CastroL. LiuJ. YanY. DixonD. Genistein: Dual role in women’s health.Nutrients2021139304810.3390/nu13093048 34578926
    [Google Scholar]
  57. YousefluS. Jahanian SadatmahallehS.H. MottaghiA. KazemnejadA. Dietary phytoestrogen intake and the risk of endometriosis in Iranian women: A case-control study.Int. J. Fertil. Steril.2020134296300 31710190
    [Google Scholar]
  58. PatraS. GoraiS. PalS. GhoshK. PradhanS. ChakrabartiS. A review on phytoestrogens: Current status and future direction.Phytother. Res.20233773097312010.1002/ptr.7861 37246823
    [Google Scholar]
  59. PetrineJ.C.P. Del Bianco-BorgesB. The influence of phytoestrogens on different physiological and pathological processes: An overview.Phytother. Res.202135118019710.1002/ptr.6816 32780464
    [Google Scholar]
  60. SetchellK. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones.Am J Clin Nutr19986861333S10.1093/ajcn/68.6.1333S
    [Google Scholar]
  61. SrideviV. NaveenP. KarnamV.S. ReddyP.R. ArifullahM. Beneficiary and adverse effects of phytoestrogens: A potential constituent of plant-based diet.Curr. Pharm. Des.202127680281510.2174/18734286MTEw0MDMz4 32942973
    [Google Scholar]
  62. SeoH. SeoH. LeeS.H. ParkY. Receptor mediated biological activities of phytoestrogens.Int. J. Biol. Macromol.2024278Pt 213432010.1016/j.ijbiomac.2024.134320 39084415
    [Google Scholar]
  63. LaddhaA.P. KulkarniY.A. Pharmacokinetics, pharmacodynamics, toxicity, and formulations of daidzein: An important isoflavone.Phytother. Res.20233762578260410.1002/ptr.7852 37118928
    [Google Scholar]
  64. EdmundsK.M. HollowayA.C. CrankshawD.J. AgarwalS.K. FosterW.G. The effects of dietary phytoestrogens on aromatase activity in human endometrial stromal cells.Reprod. Nutr. Dev.200545670972010.1051/rnd:2005055 16285913
    [Google Scholar]
  65. YousefluS. SadatmahallehS.J. MottaghiA. NasiriM. Association between dietary inflammatory index and endometriosis risk in a case-control study.J. Endometr. Pelvic Pain Disord.2021132778210.1177/2284026520984415
    [Google Scholar]
  66. PakzamirM MitchellN The association between dietary phytoestrogens and endometriosis development.(URNCST) J2024831710.26685/urncst.456
    [Google Scholar]
  67. Sharifi-RadJ. QuispeC. ImranM. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits.Oxid. Med. Cell. Longev.202120211326813610.1155/2021/3268136 34336089
    [Google Scholar]
  68. HughesC.L. FosterW.G. AgarwalS.K. The impact of endometriosis across the lifespan of women: Foreseeable research and therapeutic prospects.BioMed Res. Int.2015201511810.1155/2015/158490 26064879
    [Google Scholar]
  69. RochaA.L.L. ReisF.M. TaylorR.N. Angiogenesis and Endometriosis.Obstet. Gynecol. Int.201320131810.1155/2013/859619 23766765
    [Google Scholar]
  70. SutrisnoS. AprinaH. SimanungkalitH.M. Genistein modulates the estrogen receptor and suppresses angiogenesis and inflammation in the murine model of peritoneal endometriosis.J. Tradit. Complement. Med.20188227828110.1016/j.jtcme.2017.03.002 29736382
    [Google Scholar]
  71. HsiaoK-Y. LinS-C. WuM-H. TsaiS-J. Pathological functions of hypoxia in endometriosis.Front. Biosci. (Elite Ed.)201572309321 25553382
    [Google Scholar]
  72. SutrisnoS. DestikatariL. Genistein effect on estrogen receptor especially interleukin-6 and tumor necrosis factor-α in mice model of endometriosis: A systematic review and meta-analysis.Asian J Health Res2023219610410.55561/ajhr.v2i1.90
    [Google Scholar]
  73. SutrisnoS. MiryaniI. Made DwijayasaP. Rini SuproboN. Arsana WiyasaI.W. Genistein administration increases the level of superoxide dismutase and glutathione peroxidase in the endometriosis mice model: An experimental study.Int. J. Reprod. Biomed. (Yazd)2022201087388210.18502/ijrm.v20i10.12271 36381358
    [Google Scholar]
  74. WatsonR.R. Handbook of fertility: Nutrition, diet, lifestyle and reproductive health.Academic Press2015
    [Google Scholar]
  75. PrietoL. QuesadaJ.F. CamberoO. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis.Fertil. Steril.201298112613010.1016/j.fertnstert.2012.03.052 22578534
    [Google Scholar]
  76. Yahya Irwanto IrwantoY. Effect of genistein on Proliferating Cell Nuclear Antigen (PCNA) expression and vascular density in the peritoneum of endometriosis mice model.Asian J Health Res20232351110.55561/ajhr.v2i3.104
    [Google Scholar]
  77. Bologna-MolinaR. Mosqueda-TaylorA. Molina-FrecheroN. Mori-EstevezA.D. Sánchez-AcuñaG. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors.Med. Oral Patol. Oral Cir. Bucal2013182e174e17910.4317/medoral.18573 23229269
    [Google Scholar]
  78. OliveiraM. LauxenI. ChavesA.C.M. Immunohistochemical analysis of the patterns of p53 and PCNA expression in odontogenic cystic lesions.Oral Surg. Oral Med. Oral Pathol.20085e275e280
    [Google Scholar]
  79. AlshehriM.M. Sharifi-RadJ. Herrera-BravoJ. Therapeutic potential of isoflavones with an emphasis on daidzein.Oxid. Med. Cell. Longev.202120211633163010.1155/2021/6331630 34539970
    [Google Scholar]
  80. CassidyA. Potential risks and benefits of phytoestrogen-rich diets.Int. J. Vitam. Nutr. Res.200373212012610.1024/0300‑9831.73.2.120 12747219
    [Google Scholar]
  81. BinghamS.A. AtkinsonC. LigginsJ. BluckL. CowardA. Phyto-oestrogens: Where are we now?Br. J. Nutr.199879539340610.1079/BJN19980068 9682657
    [Google Scholar]
  82. DwieckiK. NeunertG. PolewskiP. PolewskiK. Antioxidant activity of daidzein, a natural antioxidant, and its spectroscopic properties in organic solvents and phosphatidylcholine liposomes.J. Photochem. Photobiol. B200996324224810.1016/j.jphotobiol.2009.06.012 19648024
    [Google Scholar]
  83. SathyamoorthyN. WangT.T.Y. Differential effects of dietary phyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells.Eur. J. Cancer199733142384238910.1016/S0959‑8049(97)00303‑1 9616286
    [Google Scholar]
  84. AdjaklyM. NgolloM. BoiteuxJ-P. BignonY-J. GuyL. Bernard-GallonD. Genistein and daidzein: Different molecular effects on prostate cancer.Anticancer Res.20133313944 23267126
    [Google Scholar]
  85. VitaleD.C. PiazzaC. MelilliB. DragoF. SalomoneS. Isoflavones: Estrogenic activity, biological effect and bioavailability.Eur. J. Drug Metab. Pharmacokinet.2013381152510.1007/s13318‑012‑0112‑y 23161396
    [Google Scholar]
  86. GołąbekA. KowalskaK. OlejnikA. Polyphenols as a diet therapy concept for endometriosis—current opinion and future perspectives.Nutrients2021134134710.3390/nu13041347 33919512
    [Google Scholar]
  87. MasilamaniM. WeiJ. SampsonH.A. Regulation of the immune response by soybean isoflavones.Immunol. Res.2012541-39511010.1007/s12026‑012‑8331‑5 22484990
    [Google Scholar]
  88. LoF.H. MakN.K. LeungK.N. Studies on the anti-tumor activities of the soy isoflavone daidzein on murine neuroblastoma cells.Biomed. Pharmacother.200761959159510.1016/j.biopha.2007.08.021 17905565
    [Google Scholar]
  89. TakaokaA MoriT OkimuraH Daidzein-rich isoflavone aglycones inhibit cell growth and inflammation in endometriosis.J Steroid Biochem Mol Biol20181811253210.1016/j.jsbmb.2018.04.004 29679753
    [Google Scholar]
  90. ZhangY ZhangD MengT SGK1 is involved in doxorubicin-induced chronic cardiotoxicity and dysfunction through activation of the NFκB pathway.Int Immunopharmacol2023125Pt B11115110.1016/j.intimp.2023.111151 37948859
    [Google Scholar]
  91. KattupalliP. BabuP.S. JeevaniK. SrinivasK. MounikaP. TriveniM. Green Tea: Empowering women’s health naturally.Asian J Adv Res202471174182
    [Google Scholar]
  92. LiX. ChenL. HuaY. ChenY. KongX. ZhangC. Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins.Food Hydrocoll.202010510584610.1016/j.foodhyd.2020.105846
    [Google Scholar]
  93. NagleD.G. FerreiraD. ZhouY.D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives.Phytochemistry200667171849185510.1016/j.phytochem.2006.06.020 16876833
    [Google Scholar]
  94. ChenW. ChenX. LiangW. Moderation-excess interactions of epigallocatechin gallate and CaCl2 modulate the gelation performance of egg white transparent gels.Food Chem. X20242210151210.1016/j.fochx.2024.101512 38883918
    [Google Scholar]
  95. XueH. LuoX. TuY. ZhaoY. ZhangG. Amelioration of ovalbumin gel properties by EGCG via protein aggregation, hydrogen, and van der Waals force.Food Chem.202342213624810.1016/j.foodchem.2023.136248 37126957
    [Google Scholar]
  96. CipollettiM. Solar FernandezV. MontalesiE. MarinoM. FiocchettiM. Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ERs) signaling.Int. J. Mol. Sci.2018199262410.3390/ijms19092624 30189583
    [Google Scholar]
  97. SinghA.K. ChakravartyB. ChaudhuryK. Nanoparticle-assisted combinatorial therapy for effective treatment of endometriosis.J. Biomed. Nanotechnol.201511578980410.1166/jbn.2015.2020 26349392
    [Google Scholar]
  98. ChenD. WanS.B. YangH. YuanJ. ChanT.H. DouQ.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment.Adv. Clin. Chem.20115315517710.1016/B978‑0‑12‑385855‑9.00007‑2 21404918
    [Google Scholar]
  99. LaschkeM.W. SchwenderC. ScheuerC. VollmarB. MengerM.D. Epigallocatechin-3-gallate inhibits estrogen-induced activation of endometrial cells in vitro and causes regression of endometriotic lesions in vivo.Hum. Reprod.200823102308231810.1093/humrep/den245 18603648
    [Google Scholar]
  100. XuH. LuiW.T. ChuC.Y. NgP.S. WangC.C. RogersM.S. Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model.Hum. Reprod.200824360861810.1093/humrep/den417 19088106
    [Google Scholar]
  101. Yalçın BahatP. AyhanI. Üreyen ÖzdemirE. İncebozÜ. OralE. Dietary supplements for treatment of endometriosis: A review.Acta Biomed.2022931e2022159 35315418
    [Google Scholar]
  102. RicciA.G. OlivaresC.N. BilotasM.A. Natural therapies assessment for the treatment of endometriosis.Hum. Reprod.201328117818810.1093/humrep/des369 23081870
    [Google Scholar]
  103. Starzinski-PowitzA. GaetjeR. ZeitvogelA. Tracing cellular and molecular mechanisms involved in endometriosis.Hum. Reprod. Update19984572472910.1093/humupd/4.5.724 10027626
    [Google Scholar]
  104. GuanQ.H. ShiW.J. ZhouL.S. TaoA.L. LiL. Effect of epigallocatechin‐3‐gallate on the status of DNA methylation of E‐cadherin promoter region on endometriosis mouse.J. Obstet. Gynaecol. Res.202046102076208310.1111/jog.14358 32840012
    [Google Scholar]
  105. BommaritoP.A. FryR.C. The role of DNA methylation in gene regulation.Toxicoepigenetics.Elsevier201912715110.1016/B978‑0‑12‑812433‑8.00005‑8
    [Google Scholar]
  106. SutrisnoS. ParamadinaP.N. The role of herbal medicine as an alternative treatment option for endometriosis: A literature review.Asian J. Med. Sci.202323475410.55561/ajhr.v2i3.125
    [Google Scholar]
  107. VayaJ. TamirS. The relation between the chemical structure of flavonoids and their estrogen-like activities.Curr. Med. Chem.200411101333134310.2174/0929867043365251 15134523
    [Google Scholar]
  108. JoshiR. KulkarniY.A. WairkarS. Pharmacokinetic, pharmacodynamic and formulations aspects of Naringenin: An update.Life Sci.2018215435610.1016/j.lfs.2018.10.066 30391464
    [Google Scholar]
  109. WilcoxL.J. BorradaileN.M. HuffM.W. Antiatherogenic properties of naringenin, a citrus flavonoid.Cardiovasc. Drug Rev.199917216017810.1111/j.1527‑3466.1999.tb00011.x
    [Google Scholar]
  110. ParkS. LimW. BazerF.W. SongG. Naringenin induces mitochondria-mediated apoptosis and endoplasmic reticulum stress by regulating MAPK and AKT signal transduction pathways in endometriosis cells.Mol. Hum. Reprod.2017231284210.1093/molehr/gax057
    [Google Scholar]
  111. PatelK. SinghG.K. PatelD.K. A review on pharmacological and analytical aspects of naringenin.Chin. J. Integr. Med.201824755156010.1007/s11655‑014‑1960‑x 25501296
    [Google Scholar]
  112. BodetC. LaV.D. EpifanoF. GrenierD. Naringenin has anti‐inflammatory properties in macrophage and ex vivo human whole‐blood models.J. Periodontal Res.200843440040710.1111/j.1600‑0765.2007.01055.x 18503517
    [Google Scholar]
  113. AhmedL.A. ObaidA.A.Z. ZakiH.F. AghaA.M. Naringenin adds to the protective effect of l-arginine in monocrotaline-induced pulmonary hypertension in rats: Favorable modulation of oxidative stress, inflammation and nitric oxide.Eur. J. Pharm. Sci.20146216117010.1016/j.ejps.2014.05.011 24878387
    [Google Scholar]
  114. GalluzzoP. AscenziP. BulzomiP. MarinoM. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor α-palmitoylation.Endocrinology200814952567257510.1210/en.2007‑1173 18239068
    [Google Scholar]
  115. GuoY-J. PanW-W. LiuS-B. ShenZ-F. XuY. HuL-L. ERK/MAPK signalling pathway and tumorigenesis.Exp. Ther. Med.202019319972007 32104259
    [Google Scholar]
  116. NagayasuM. ImanakaS. KimuraM. MaruyamaS. KobayashiH. Nonhormonal treatment for endometriosis focusing on redox imbalance.Gynecol. Obstet. Invest.2021861-211210.1159/000512628 33395684
    [Google Scholar]
  117. KapoorR. SirohiV.K. GuptaK. DwivediA. Naringenin ameliorates progression of endometriosis by modulating Nrf2/Keap1/] HO1 axis and inducing apoptosis in rats.J. Nutr. Biochem.20197021522610.1016/j.jnutbio.2019.05.003 31252288
    [Google Scholar]
  118. MeresmanG.F. VighiS. BuquetR.A. Contreras-OrtizO. TesoneM. RumiL.S. Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis.Fertil. Steril.200074476076610.1016/S0015‑0282(00)01522‑3 11020520
    [Google Scholar]
  119. OltvaiZ. KorsmeyerS.J. Checkpoints of dueling dimers foil death wishes.Cell199479218919210.1016/0092‑8674(94)90188‑0 7954787
    [Google Scholar]
  120. KunitomiC. HaradaM. TakahashiN. Activation of endoplasmic reticulum stress mediates oxidative stress–induced apoptosis of granulosa cells in ovaries affected by endometrioma.Mol. Hum. Reprod.2020261405210.1093/molehr/gaz066 31869409
    [Google Scholar]
  121. PrasathkumarM. SadhasivamS. Chitosan/Hyaluronic acid/] Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how.Int. J. Biol. Macromol.202118665668510.1016/j.ijbiomac.2021.07.067 34271047
    [Google Scholar]
  122. SzóstekAZ SadowskaA Piotrowska-TomalaKK BotelhoM FradinhoMJ RebordãoMR The effect of coumestrol on progesterone and prostaglandin production in the mare: In vitro and in vivo studies.Biol Reproduction20169536910.1095/biolreprod.116.138958
    [Google Scholar]
  123. ZhangN. GuoP. ZhaoY. Pharmacological mechanisms of puerarin in the treatment of Parkinson’s disease: An overview.Biomed. Pharmacother.202417711710110.1016/j.biopha.2024.117101 39002442
    [Google Scholar]
  124. WuW-T ZouB LiW-D ZhuW-F Pharmaceutics research advances in oral administration of puerarin.China J Chinese materia medica2019441941344141 31872690
    [Google Scholar]
  125. LiX SunS Experimental research on the protective effect of puerarin to Parkinson disease.Nao yu Shenjing Jibing Zazhi2002107
    [Google Scholar]
  126. KimS.B. YoonI.S. KimK.S. In vitro and in vivo evaluation of the effect of puerarin on hepatic cytochrome p450-mediated drug metabolism.Planta Med.201480756156710.1055/s‑0034‑1368350 24710899
    [Google Scholar]
  127. WuM. GaoZ. ZhaoG. Puerarin accelerates neural regeneration after sciatic nerve injury.Neural Regen. Res.20149658959310.4103/1673‑5374.130097 25206860
    [Google Scholar]
  128. YuanY. WeiZ. LiuZ. LiW. CaoJ. ZhangX. Pharmacological effects and mechanisms of polyphenols in Radix Puerariae on liver protection and anti-diabetes.Polyphenols2022414254
    [Google Scholar]
  129. ChengY.F. ZhuG.Q. WangM. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP+-elicited apoptosis.Neurosci. Res.2009631525810.1016/j.neures.2008.10.009 19022306
    [Google Scholar]
  130. SongJ.X. SzeS.C.W. NgT.B. Anti-Parkinsonian drug discovery from herbal medicines: What have we got from neurotoxic models?J. Ethnopharmacol.2012139369871110.1016/j.jep.2011.12.030 22212501
    [Google Scholar]
  131. ZhangL. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine.Drug Deliv.201926186086910.1080/10717544.2019.1660732 31524010
    [Google Scholar]
  132. WangD. BuT. LiY. HeY. YangF. ZouL. Pharmacological activity, pharmacokinetics, and clinical research progress of puerarin.Antioxidants20221111212110.3390/antiox11112121 36358493
    [Google Scholar]
  133. ZhouH. LiX. ShangY. ChenK. Radical scavenging activity of puerarin: A theoretical study.Antioxidants201981259010.3390/antiox8120590 31779233
    [Google Scholar]
  134. HwangY.P. JeongH.G. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1.Toxicol. Appl. Pharmacol.2008233337138110.1016/j.taap.2008.09.006 18845176
    [Google Scholar]
  135. WangD. LiuY. HanJ. Puerarin suppresses invasion and vascularization of endometriosis tissue stimulated by 17β-estradiol.PLoS One201169e2501110.1371/journal.pone.0025011 21949833
    [Google Scholar]
  136. Alvarado-DíazC.P. NúñezM.T. DevotoL. González-RamosR. Iron overload–modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis.Fertil. Steril.2015103243944710.1016/j.fertnstert.2014.10.046 25500022
    [Google Scholar]
  137. YuJ. ZhaoL. ZhangD. The effects and possible mechanisms of puerarin to treat endometriosis model rats.Evid. Based Complement. Alternat. Med.20152015111110.1155/2015/269138 25815028
    [Google Scholar]
  138. KuršvietienėL. StanevičienėI. MongirdienėA. BernatonienėJ. Multiplicity of effects and health benefits of resveratrol.Medicina (Kaunas)201652314815510.1016/j.medici.2016.03.003 27496184
    [Google Scholar]
  139. QasemR.J. The estrogenic activity of resveratrol: A comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption.Crit. Rev. Toxicol.202050543946210.1080/10408444.2020.1762538 32744480
    [Google Scholar]
  140. KobylkaP. KucinskaM. KujawskiJ. LazewskiD. WierzchowskiM. MuriasM. Resveratrol analogues as selective estrogen signaling pathway modulators: Structure-activity relationship.Molecules20222720697310.3390/molecules27206973 36296565
    [Google Scholar]
  141. van DuursenM.B.M. Modulation of estrogen synthesis and metabolism by phytoestrogens in vitro and the implications for women’s health.Toxicol. Res. (Camb.)20176677279410.1039/c7tx00184c 30090542
    [Google Scholar]
  142. GehmB.D. McAndrewsJ.M. ChienP.Y. JamesonJ.L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor.Proc. Natl. Acad. Sci. USA19979425141381414310.1073/pnas.94.25.14138 9391166
    [Google Scholar]
  143. MgbonyebiO.P. RussoJ. RussoI.H. Antiproliferative effect of synthetic resveratrol on human breast epithelial cells.Int. J. Oncol.199812486586910.3892/ijo.12.4.865 9499448
    [Google Scholar]
  144. LevensonA.S. GehmB.D. PearceS.T. Resveratrol acts as an estrogen receptor (ER) agonist in breast cancer cells stably transfected with ER α.Int. J. Cancer2003104558759610.1002/ijc.10992 12594813
    [Google Scholar]
  145. JiangT. ChenY. GuX. Review of the potential therapeutic effects and molecular mechanisms of resveratrol on endometriosis.Int. J. Womens Health20231574176310.2147/IJWH.S404660 37200624
    [Google Scholar]
  146. KhodarahmianM. AmidiF. MoiniA. A randomized exploratory trial to assess the effects of resveratrol on VEGF and TNF-α 2 expression in endometriosis women.J. Reprod. Immunol.202114310324810.1016/j.jri.2020.103248 33387724
    [Google Scholar]
  147. MannaS.K. MukhopadhyayA. AggarwalB.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation.J. Immunol.2000164126509651910.4049/jimmunol.164.12.6509 10843709
    [Google Scholar]
  148. EstrovZ. ShishodiaS. FaderlS. Resveratrol blocks interleukin-1β-induced activation of the nuclear transcription factor NF-κB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells.Blood2003102398799510.1182/blood‑2002‑11‑3550 12689943
    [Google Scholar]
  149. DullA.M. MogaM.A. DimienescuO.G. SechelG. BurteaV. AnastasiuC.V. Therapeutic Approaches of resveratrol on endometriosis via anti-inflammatory and anti-angiogenic pathways.Molecules201924466710.3390/molecules24040667 30781885
    [Google Scholar]
  150. YuanL. ZhouM. HuangD. Resveratrol inhibits the invasion and metastasis of colon cancer through reversal of epithelial mesenchymal transition via the AKT/GSK 3β/Snail signaling pathway.Mol. Med. Rep.20192032783279510.3892/mmr.2019.10528 31524255
    [Google Scholar]
  151. KasiotisK.M. PratsinisH. KletsasD. HaroutounianS.A. Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties.Food Chem. Toxicol.20136111212010.1016/j.fct.2013.03.038 23567244
    [Google Scholar]
  152. Rodríguez-EnríquezS. Pacheco-VelázquezS.C. Marín-HernándezÁ. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress.Toxicol. Appl. Pharmacol.2019370657710.1016/j.taap.2019.03.008 30878505
    [Google Scholar]
  153. FuX. LiM. TangC. HuangZ. NajafiM. Targeting of cancer cell death mechanisms by resveratrol: A review.Apoptosis20212611-1256157310.1007/s10495‑021‑01689‑7 34561763
    [Google Scholar]
  154. ZhaoW. ZhaoT. ChenY. AhokasR.A. SunY. Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats.Mol. Cell. Biochem.20083171-2435010.1007/s11010‑008‑9803‑8 18581202
    [Google Scholar]
  155. ArablouT. AryaeianN. KhodaverdiS. The effects of resveratrol on the expression of VEGF, TGF-β, and MMP-9 in endometrial stromal cells of women with endometriosis.Sci. Rep.2021111605410.1038/s41598‑021‑85512‑y 33723310
    [Google Scholar]
  156. Gołąbek-GrendaA. KaczmarekM. JuzwaW. OlejnikA. Natural resveratrol analogs differentially target endometriotic cells into apoptosis pathways.Sci. Rep.20231311146810.1038/s41598‑023‑38692‑8 37454164
    [Google Scholar]
  157. KhazaeiM.R. RashidiZ. ChobsazF. NiromandE. KhazaeiM. Inhibitory effect of resveratrol on the growth and angiogenesis of human endometrial tissue in an In Vitro three-dimensional model of endometriosis.Reprod. Biol.202020448449010.1016/j.repbio.2020.07.012 32896495
    [Google Scholar]
  158. RezkN.A. LashinM.B. SabbahN.A. MiRNA 34-a regulate SIRT-1 and Foxo-1 expression in endometriosis.Noncoding RNA Res.202161354110.1016/j.ncrna.2021.02.002 33718673
    [Google Scholar]
  159. GonfloniS. IannizzottoV. MaianiE. BellusciG. CicconeS. DiederichM. P53 and Sirt1: Routes of metabolism and genome stability.Biochem. Pharmacol.201492114915610.1016/j.bcp.2014.08.034 25218422
    [Google Scholar]
  160. TaoY. ZhangQ. HuangW. ZhuH. ZhangD. LuoW. The peritoneal leptin, MCP-1 and TNF-α in the pathogenesis of endometriosis-associated infertility.Am. J. Reprod. Immunol.201165440340610.1111/j.1600‑0897.2010.00920.x 20825374
    [Google Scholar]
  161. Kolahdouz-MohammadiR. ShidfarF. KhodaverdiS. Resveratrol treatment reduces expression of MCP‐1, IL‐6, IL‐8 and RANTES in endometriotic stromal cells.J. Cell. Mol. Med.20212521116112710.1111/jcmm.16178 33325132
    [Google Scholar]
  162. Kolahdouz-MohammadiR. DelbandiA.A. KhodaverdiS. ArefiS. ArablouT. ShidfarF. The effects of resveratrol treatment on Bcl-2 and bax gene expression in endometriotic compared with non-endometriotic stromal cells.Iran. J. Public Health20204981546155410.18502/ijph.v49i8.3900 33083332
    [Google Scholar]
  163. ChaichianS. NikfarB. Arbabi BidgoliS. MoazzamiB. The role of Quercetin for the treatment of endometriosis and endometrial cancer: A comprehensive review.Curr. Med. Chem.2025321748610.2174/0109298673269733230921092509 37861023
    [Google Scholar]
  164. HollmanP.C.H. KatanM.B. Absorption, metabolism and health effects of dietary flavonoids in man.Biomed. Pharmacother.199751830531010.1016/S0753‑3322(97)88045‑6 9436520
    [Google Scholar]
  165. BentzA.B. A Review of quercetin: chemistry, antioxident properties, and bioavailability.PhD Thesis, Appalachian State University2017
    [Google Scholar]
  166. MarianiC. BracaA. VitaliniS. De TommasiN. VisioliF. FicoG. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae).Phytochemistry20086951220122610.1016/j.phytochem.2007.12.009 18226822
    [Google Scholar]
  167. DelenkoJ. XueX. ChatterjeeP.K. Quercetin enhances decidualization through AKT-ERK-p53 signaling and supports a role for senescence in endometriosis.Reprod. Biol. Endocrinol.202422110010.1186/s12958‑024‑01265‑z 39118090
    [Google Scholar]
  168. FuK. WangZ. CaoR. Berberine attenuates the inflammatory response by activating the Keap1/Nrf2 signaling pathway in bovine endometrial epithelial cells.Int. Immunopharmacol.20219610773810.1016/j.intimp.2021.107738 33984720
    [Google Scholar]
  169. SarnaL.K. WuN. HwangS.Y. SiowY.L. O K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. This article is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease.Can. J. Physiol. Pharmacol.201088336937810.1139/Y09‑136 20393601
    [Google Scholar]
  170. KimS. KimY. KimJ.E. ChoK.H. ChungJ.H. Berberine inhibits TPA-induced MMP-9 and IL-6 expression in normal human keratinocytes.Phytomedicine200815534034710.1016/j.phymed.2007.09.011 17951041
    [Google Scholar]
  171. KuoC.L. ChiC.W. LiuT.Y. The anti-inflammatory potential of berberine in vitro and in vivo.Cancer Lett.2004203212713710.1016/j.canlet.2003.09.002 14732220
    [Google Scholar]
  172. DongS.F. HongY. LiuM. Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats.Eur. J. Pharmacol.20116602-336837410.1016/j.ejphar.2011.03.024 21458442
    [Google Scholar]
  173. TangL.Q. WeiW. ChenL.M. LiuS. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats.J. Ethnopharmacol.2006108110911510.1016/j.jep.2006.04.019 16759828
    [Google Scholar]
  174. FilliM.S. IbrahimA.A. KesseS. Synthetic berberine derivatives as potential new drugs.Braz. J. Pharm. Sci.202258e1883510.1590/s2175‑97902020000318835
    [Google Scholar]
  175. WarowickaA. QasemB. Dera-SzymanowskaA. Effect of protoberberine-rich fraction of Chelidonium majus L. on endometriosis regression.Pharmaceutics202113793110.3390/pharmaceutics13070931 34201532
    [Google Scholar]
  176. Sharifi-RadJ. RayessY.E. RizkA.A. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.01021 33041781
    [Google Scholar]
  177. BishtK. WagnerK.H. BulmerA.C. Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds.Toxicology201027818810010.1016/j.tox.2009.11.008 19903510
    [Google Scholar]
  178. GudarziR. ShabaniF. Mohammad-Alizadeh-CharandabiS. NaghshinehE. ShasebE. MirghafourvandM. Effect of curcumin on painful symptoms of endometriosis: A triple‐blind randomized controlled trial.Phytother. Res.202438114715510.1002/ptr.8030 37818734
    [Google Scholar]
  179. DingJ. MeiS. ChengW. NiZ. YuC. Curcumin treats endometriosis in mice by the HIF signaling pathway.Am. J. Transl. Res.202214421842198 35559378
    [Google Scholar]
  180. HekimoğluG. KocS. DaştanA.I. Ameliorative effects of apigenin on a rat model of endometriosis.Eur. Respir. J.20239217818510.18621/eurj.1209679
    [Google Scholar]
  181. ParkS. LimW. BazerF.W. SongG. Apigenin induces ROS‐dependent apoptosis and ER stress in human endometriosis cells.J. Cell. Physiol.201823343055306510.1002/jcp.26054 28617956
    [Google Scholar]
  182. WooJ.H. JangD.S. ChoiJ.H. Luteolin promotes apoptosis of endometriotic cells and inhibits the alternative activation of endometriosis-associated macrophages.Biomol. Ther. (Seoul)202129667868410.4062/biomolther.2021.045 34011694
    [Google Scholar]
  183. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/138955709787001712 19149659
    [Google Scholar]
  184. ParkS. LimW. YouS. SongG. Ameliorative effects of luteolin against endometriosis progression in vitro and in vivo.J. Nutr. Biochem.20196716117210.1016/j.jnutbio.2019.02.006 30925413
    [Google Scholar]
  185. ShahM. DaveB. BhagatS. RaoH. KhadelaA. ParikhN. A comprehensive review comparing conventional versus traditional remedies in the treatment of endometriosis with futuristic insights.Future J. Pharm. Sci.20241013510.1186/s43094‑024‑00609‑1
    [Google Scholar]
  186. PeiroténÁ. BravoD. LandeteJ.M. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health.Crit. Rev. Food Sci. Nutr.202060111922193710.1080/10408398.2019.1622505 31161778
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128364775250326161410
Loading
/content/journals/cpd/10.2174/0113816128364775250326161410
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Endometriosis; estrogen; infertility; inflammation; pelvic pain; phytoestrogen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test