Skip to content
2000
image of Phytosomes: Advancing Herbal Medicine Through Innovative Integration

Abstract

Phytosomes are innovative lipid-viable complexes that combine phospholipids with standardized plant extracts or phytoconstituents to enhance absorption and bioavailability. This research underscores the historical importance of medicinal plants in traditional healing, especially in developing countries, highlighting the global impact of this study. The study explores the complex processes behind phytosome technology, detailing their structure, formation, and biological attributes. Phytosomes offer significant benefits, such as improved bioavailability and absorption rates, which can enhance therapeutic effectiveness. The research also touches on cutting-edge methods for phytosome formulation and evaluation, indicating ongoing advancements in this field. This comprehensive overview serves as a crucial resource, integrating insights into phytosomes and their potential to improve the delivery and efficacy of herbal remedies. Phytosomes represent a modern frontier in herbal medicine, bridging traditional practices with contemporary scientific innovation. By encapsulating plant-derived compounds within phospholipid bilayers, researchers are paving the way for more effective natural therapies. The focus on bioavailability addresses a critical challenge in herbal medicine, where the body's ability to absorb active compounds often limits therapeutic outcomes. The historical context adds depth, emphasizing the enduring relevance of plants in global health practices. Additionally, mentioning novel formulation techniques and evaluation methods suggests a dynamic field rich with possibilities. Phytosomes have the potential to revolutionize herbal medicine, offering a glimpse into a promising approach that could enhance the effectiveness of natural remedies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347309250320061045
2025-04-16
2025-09-05
Loading full text...

Full text loading...

References

  1. Jagtap S.G. Kajale V.V. Abhyankar M.M. Kulkarni A.S. Ghante M.R. Formulation and evaluation of phytosomes of hydroalcoholic extract of adiantum capillus-veneris for antimicrobial activity. Pharmacognosy Res. 2023 15 3 468 477 10.5530/pres.15.3.048
    [Google Scholar]
  2. Djekic L. Krajišnik D. Mićic Z. Čalija B. Formulation and physicochemical characterization of hydrogels with 18β-glycyrrhetinic acid/phospholipid complex phytosomes. J. Drug Deliv. Sci. Technol. 2016 35 81 90 10.1016/j.jddst.2016.06.008
    [Google Scholar]
  3. Semalty A. Semalty M. Rawat M.S.M. Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The Phytosome® strategy to improve the bioavailability of phytochemicals. Fitoterapia 2010 81 5 306 314 10.1016/j.fitote.2009.11.001 19919847
    [Google Scholar]
  4. Kusumawati I. Yusuf H. Phospholipid complex as a carrier of Kaempferia galanga rhizome extract to improve its analgesic activity. Int. J. Pharm. Pharm. Sci. 2011 3 44 46
    [Google Scholar]
  5. Chandur V.K. Shabaraya R. Formulation and characterization of topical lycopene phytosomes for improved permeation. Europ. J. Pharma. Medi. Res. 2022 9 12 352 357
    [Google Scholar]
  6. Dewan N. Dasgupta D. Pandit S. Ahmed P. Review on-Herbosomes, A new arena for drug delivery. J. Pharmacogn. Phytochem. 2016 5 104 108
    [Google Scholar]
  7. Jain N. Gupta B.P. Thakur N. Jain R. Banweer J. Jain D.K. Jain S. Phytosome: A novel drug delivery system for herbal medicine. Int. J. Pharm. Sci. Drug Res. 2010 2 224 228
    [Google Scholar]
  8. Maiti K. Mukherjee K. Gantait A. Saha B.P. Mukherjee P.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007 330 1-2 155 163 10.1016/j.ijpharm.2006.09.025 17112692
    [Google Scholar]
  9. Yanyu X. Yunmei S. Zhipeng C. Qineng P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm. 2006 307 1 77 82 10.1016/j.ijpharm.2005.10.001 16300915
    [Google Scholar]
  10. Sindhumol P. Thomas M. Mohanachandran P. Phytosomes: A novel dosage form for enhancement of bioavailability of botanicals and neutraceuticals. Int. J. Pharm. Pharm. Sci. 2010 2 10 14
    [Google Scholar]
  11. Bhaskar G. Arshia S. Priyadarshini S. Formulation and evaluation of topical polyherbal antiacne gels containing Garcinia mangostana and Aloe vera. Pharmacogn. Mag. 2009 5 19 93 99
    [Google Scholar]
  12. Acharya N. Parihar G. Acharya S. Phytosomes as a novel approach to drug delivery system. Sma. Dru. Deliv. Syst. 2011 2 1 144 160
    [Google Scholar]
  13. van Meer G. de Kroon A.I.P.M. Lipid map of the mammalian cell. J. Cell Sci. 2011 124 1 5 8 10.1242/jcs.071233 21172818
    [Google Scholar]
  14. Singh A. Saharan V.A. Singh M. Bhandari A. Phytosome: Drug delivery system for polyphenolic phytoconstituents. Iran. J. Pharma. Sci. 2011 7 4 1 6
    [Google Scholar]
  15. Kumari P. Singh N. Cheriyan B. Phytosome: A noval approach for phytomedicine. Int. J. Institut. Pharm. Life Sci. 2011 1 101 10.32474/MAPPS.2023.01.000101
    [Google Scholar]
  16. Khan J. Alexander A. Ajazuddin Saraf S. Saraf S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control. Release 2013 168 1 50 60 10.1016/j.jconrel.2013.02.025 23474031
    [Google Scholar]
  17. Ghanbarzadeh B. Babazadeh A. Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016 15 126 135 10.1016/j.fbio.2016.07.006
    [Google Scholar]
  18. Citernesi U. Sciacchitano M. Phospholipid/active ingredient complexes. Cosmet. Toiletr. 1995 110 57 68
    [Google Scholar]
  19. Patel J. Patel R. Khambholja K. Patel N. An overview of phytosomes as an advanced herbal drug delivery system. Asian J. Pharm. Sci. 2009 4 363 371
    [Google Scholar]
  20. Kidd P.M. Phosphatidylcholine, a superior protectant against liver damage. Altern. Med. Rev. 1996 1 258 274
    [Google Scholar]
  21. Amin T. Bhat S.V. A review on phytosome technology as a novel approach to improve the bioavailability of nutraceuticals. Int. J. Adv. Res. Technol 2012 1 1 5
    [Google Scholar]
  22. Sanjay Saha S.S. Anupam Sarma A.S. Pranjal Saikia P.S. Tapash Chakrabarty T.C. Phytosome: A brief overview. J. Pharma. Res. 2013 15 2 54 10.18579/jpcrkc/2016/15/2/94471
    [Google Scholar]
  23. Franceschi F. Giori A. Phospholipid complexes of olive fruits or leaves extracts having improved bioavailability. Patent WO2007118631A1, 2007
    [Google Scholar]
  24. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  25. Priyadarshini S. Bora S. Kulhari H. Lipid-based nanocarriers for the delivery of phytoconstituents, nanotechnology based delivery of phytoconstituents and cosmeceuticals. Singapore Springer 2024 125 167 10.1007/978‑981‑99‑5314‑1_5
    [Google Scholar]
  26. Kapoor D.U. Gaur M. Parihar A. Prajapati B.G. Singh S. Patel R.J. Phosphatidylcholine (PCL) fortified nano-phytopharmaceuticals for improvement of therapeutic efficacy. EXCLI J. 2023 22 880 903 38317861
    [Google Scholar]
  27. Tiwari P. Yadav K. Shukla R.P. Gautam S. Marwaha D. Sharma M. Mishra P.R. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J. Control. Release 2023 363 290 348 10.1016/j.jconrel.2023.09.016 37714434
    [Google Scholar]
  28. Al-Shuhaib M.B.S. AlShuhaib J.M. Assessing therapeutic value and side effects of key botanical compounds for optimized medical treatments. Chem. Biodiver. 2024 1 e202401754 10.1002/cbdv.202401754
    [Google Scholar]
  29. Stone J. Mitrofanis J. Johnstone D.M. Robinson S.R. Twelve protections evolved for the brain, and their roles in extending its functional life. Front. Neuroanat. 2023 17 1280275 10.3389/fnana.2023.1280275 38020212
    [Google Scholar]
  30. Chaudhary K. Rajora A. Phytosomes: A critical tool for delivery of herbal drugs for cancer. Phytochem. Rev. 2024 1 31 10.1007/s11101‑024‑09947‑7
    [Google Scholar]
  31. Caiati C. Stanca A. Lepera M.E. Free radicals and obesity-related chronic inflammation contrasted by antioxidants: A new perspective in coronary artery disease. Metabolites 2023 13 6 712 10.3390/metabo13060712 37367870
    [Google Scholar]
  32. Patil J. Pawde D.M. Bhattacharya S. Srivastava S. Phospholipid complex formulation technology for improved drug delivery in oncological settings: A comprehensive review. AAPS PharmSciTech 2024 25 5 91 10.1208/s12249‑024‑02813‑x 38664316
    [Google Scholar]
  33. Jabeen N. Sohail M. Mahmood A. Ahmed Shah S. Mohammad Qalawlus A.H. Khaliq T. Nanocrystals loaded collagen/alginate-based injectable hydrogels: A promising biomaterial for bioavailability improvement of hydrophobic drugs. J. Drug Deliv. Sci. Technol. 2024 91 105291 10.1016/j.jddst.2023.105291
    [Google Scholar]
  34. Pandya B.D. Saluja A.K. A review on phytosomes: A potential nanocarrier for emerging drug delivery of phytoconstituents.Eur J Pharm Med Res 2023 10 11 415 21 10.58803/jlar.v1i1.8
    [Google Scholar]
  35. Gurav S.S. Naturosomal delivery: An alternative to enhance the solubility and bioavailability of nutritional bioactives. SSRN 2017 4 1 17 10.2139/ssrn.4740017
    [Google Scholar]
  36. Lu M. Qiu Q. Luo X. Liu X. Sun J. Wang C. Lin X. Deng Y. Song Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019 14 3 265 274 10.1016/j.ajps.2018.05.011 32104457
    [Google Scholar]
  37. Human C. Aucamp M. de Beer D. van der Rijst M. Joubert E. Food‐grade phytosome vesicles for nanoencapsulation of labile C ‐glucosylated xanthones and dihydrochalcones present in a plant extract matrix—Effect of process conditions and stability assessment. Food Sci. Nutr. 2023 11 12 8093 8111 10.1002/fsn3.3730 38107118
    [Google Scholar]
  38. Ullah N. Haseeb A. Tuzen M. Application of recently used green solvents in sample preparation techniques: A comprehensive review of existing trends, challenges, and future opportunities. Crit. Rev. Anal. Chem. 2023 54 8 2714 2733 10.1080/10408347.2023.2197495 37067946
    [Google Scholar]
  39. Kanda H. Mei L. Yamamoto T. Wang T. Zhu L. Preparation of β-carotene nanoparticles using supercritical CO2 anti-solvent precipitation by injection of liquefied gas feed solution. J. CO2 Utilizat. 2024 83 102831 10.1016/j.jcou.2024.102831
    [Google Scholar]
  40. Shi J. Kang X. Mao L. Jiang Y. Zhao S. Liu Y. Zhai B. Jin H. Guo L. Supercritical CO2-applied equipment for chemical synthesis and transformation: Current status and perspectives. Chem. Eng. J. 2023 459 141608 10.1016/j.cej.2023.141608
    [Google Scholar]
  41. Jadhav K. Kole E. Singh R. Rout S.K. Verma R.K. Chatterjee A. Mujumdar A. Naik J. A critical review on developments in drying technologies for enhanced stability and bioavailability of pharmaceuticals. Dry. Technol. 2024 42 9 1 27 10.1080/07373937.2024.2357181
    [Google Scholar]
  42. Wulandari S. Choi J. Kurniawan R.G. Sugiarto J.R. Myint A.A. Kwak S.K. Kim J. Synthesis of highly stable encapsulated astaxanthin/β-cyclodextrin microparticles using supercritical CO2 as an antisolvent. J. CO2 Utili. 2023 75 102575 10.1016/j.jcou.2023.102575
    [Google Scholar]
  43. Koloka O. Koulama M. Hela D. Albanis T. Konstantinou I. Determination of multiclass pharmaceutical residues in milk using modified QuEChERS and liquid-chromatography-hybrid linear Ion Trap/Orbitrap mass spectrometry: Comparison of clean-up approaches and validation studies. Molecules 2023 28 16 6130 10.3390/molecules28166130 37630381
    [Google Scholar]
  44. Reddy S.R.S. Sharma A.K. Characterization, properties and formulation of Phytosomes. Int. J. Multidisc. Tren. 2022 4 2 229 234
    [Google Scholar]
  45. Nishizawa Y. Inui T. Uchihashi T. Suzuki D. Determination of the inhomogeneous deswelling of thermoresponsive poly(N-isopropyl methacrylamide) microgels by combining dynamic light scattering, high-speed atomic force microscopy, and electrophoresis. Polym. J. 2024 5 1 8 10.1038/s41428‑024‑00988‑5
    [Google Scholar]
  46. Modak A. Bhakat S.P. Kar B. Roy S. Innovative approaches in drug delivery: Exploring nanosuspension as phytosome. Int. J. Pharma. Res. Applica. 2024 9 3 1286 1298 10.35629/4494‑090312861298
    [Google Scholar]
  47. Mane K. Baokar S. Bhujbal A. Pharande S. Patil G. Patil R. Jain P. Pandey A. Phyto-phospholipid complexes (phytosomes): A novel approach to improve the bioavailability of active constituents. Int. J. Adv. Sci. Res. 2020 11 68 78
    [Google Scholar]
  48. Kong F. Sun J. Hu Y. Huo W. Li D. Zhang W. Liver-targeting composite nanocarrier delivery system based on chitosan nanoparticles and phospholipid complexes. Assay Drug Dev. Technol. 2023 21 8 357 368 10.1089/adt.2023.051 38096118
    [Google Scholar]
  49. Lyu X. Botte G.G. Investigation of factors that inhibit furfural production using metal chloride catalysts. Chem. Eng. J. 2021 403 126271 10.1016/j.cej.2020.126271
    [Google Scholar]
  50. Chi C. Zhang C. Liu Y. Nie H. Zhou J. Ding Y. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. Eur. J. Pharm. Sci. 2020 144 105212 10.1016/j.ejps.2020.105212 31923602
    [Google Scholar]
  51. Chauhan D. Yadav P.K. Sultana N. Agarwal A. Verma S. Chourasia M.K. Gayen J.R. Advancements in nanotechnology for the delivery of phytochemicals. J. Integr. Med. 2024 22 4 385 398 10.1016/j.joim.2024.04.005 38693014
    [Google Scholar]
  52. Damyanovich A.Z. Avery L. Staples J.R. Marshall K.W. 1H NMR metabolic profiling of synovial fluid from patients with anterior cruciate ligament tears and hemarthrosis. Osteoarthritis Cartilage 2023 31 8 1066 1077 10.1016/j.joca.2023.03.016 37146959
    [Google Scholar]
  53. Dewi M. Muhaimin M. Joni I. Hermanto F. Chaerunisaa A. Fabrication of phytosome with enhanced activity of Sonneratia alba: Formulation modeling and in vivo antimalarial study. Int. J. Nanomedicine 2024 19 9411 9435 10.2147/IJN.S467811 39282578
    [Google Scholar]
  54. Sakure K. Patel A. Pradhan M. Badwaik H. Recent trends and future prospects of phytosomes: A concise review. Indian J. Pharm. Sci. 2024 86 3 772 790 10.36468/pharmaceutical‑sciences.1334
    [Google Scholar]
  55. Hanif H. Abdollahi V. Javani Jouni F. Nikoukar M. Rahimi Esboei B. Shams E. vazini H. Quercetin nano phytosome: As a novel anti-leishmania and anti-malarial natural product. J. Parasit. Dis. 2023 47 2 257 264 10.1007/s12639‑022‑01561‑8 36685738
    [Google Scholar]
  56. Yuan D. Guo Y. Pu F. Yang C. Xiao X. Du H. He J. Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024 430 137115 10.1016/j.foodchem.2023.137115 37566979
    [Google Scholar]
  57. Deleanu M. Toma L. Sanda G.M. Barbălată T. Niculescu L.Ş. Sima A.V. Deleanu C. Săcărescu L. Suciu A. Alexandru G. Crişan I. Popescu M. Stancu C.S. Formulation of phytosomes with extracts of ginger rhizomes and rosehips with improved bioavailability, antioxidant and anti-inflammatory effects in vivo. Pharmaceutics 2023 15 4 1066 10.3390/pharmaceutics15041066 37111552
    [Google Scholar]
  58. Revankar R.R. Desai A.V. Chougule N.B. Development and characterization of phytosome as a novel carrier by Qbd approach. Int. J. Pharm. Sci. 2024 2 2 14 28 10.5281/zenodo.10603207
    [Google Scholar]
  59. Taleuzzaman M. Sartaj A. Kumar Gupta D. Gilani S.J. Mirza M.A. Phytosomal gel of Manjistha extract (MJE) formulated and optimized with central composite design of quality by design (QbD). J. Dispers. Sci. Technol. 2023 44 2 236 244 10.1080/01932691.2021.1942036
    [Google Scholar]
  60. Bahloul B. Castillo-Henríquez L. Jenhani L. Aroua N. Ftouh M. Kalboussi N. Vega-Baudrit J. Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J. Drug Deliv. Sci. Technol. 2023 82 104377 10.1016/j.jddst.2023.104377
    [Google Scholar]
  61. Riva A. Petrangolini G. Allegrini P. Perna S. Giacosa A. Peroni G. Faliva M.A. Naso M. Rondanelli M. Artichoke and bergamot phytosome alliance: A randomized double blind clinical trial in mild hypercholesterolemia. Nutrients 2022 14 1 108 10.3390/nu14010108 35010984
    [Google Scholar]
  62. Mirjalili M. Sahebkar A. Hassanizadeh S. Kiani Z. Soleimani D. Amini S. Alikiaii B. Moallem S.A. Askari G. Abbasi S. Bagherniya M. The effectiveness of phytosomal curcumin on clinical and laboratory parameters of patients with multiple trauma admitted to the intensive care unit: A double-blind randomized placebo-controlled trial. BMC Complement. Med. Ther. 2024 24 1 335 10.1186/s12906‑024‑04639‑3 39289667
    [Google Scholar]
  63. Samaiya P. Sagar R. Pandey S. Jain G. Sah A. Chapter 11 - Nanodelivery of Polyphenols as Nutraceuticals for CNS Disorders, Polyphenols: Food. Nutraceutical, and Nanotherapeutic Applications Hoboken, New Jersey John Wiley & Sons, Inc. 2023 225 247 10.1002/9781394188864.ch11
    [Google Scholar]
  64. Mall J. Naseem N. Haider M.F. Rahman M.A. Khan S. Siddiqui S.N. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications. Intell. Pharm. Beijing KeAi Chinese Roots Global Impact 2024 1 56 10.1016/j.ipha.2024.09.005
    [Google Scholar]
  65. Kothapalli P. Vasanthan M. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: A comprehensive review. Ther. Deliv. 2024 15 2 135 155 10.4155/tde‑2023‑0116 38214118
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347309250320061045
Loading
/content/journals/cpd/10.2174/0113816128347309250320061045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test