Skip to content
2000
Volume 31, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective

To develop new Anderson-type polyoxometalates (POMs) with high efficiency and low cytotoxicity, and investigate the effects and mechanisms against lung (A549), cervical (Hela), and breast cancer (MCF7) cell lines.

Methods

Cytotoxicity assessments on Hela, A549, and MCF-7 tumor cells were tested by MTT assay. Antitumor activities of B1 (vanadium-centered, methyl-modified) and B7 (vanadium-centered, hydroxyl-modified) were detected by apoptosis, scratch, and colony formation assay. The antitumor molecular mechanisms were explored by Western blotting.

Results

This study synthesized and evaluated twelve Anderson-type compounds which were centered with vanadium, chromium, iron, cobalt, nickel, and copper heteroatoms, modified with methyl and hydroxyl at the side chains. Cytotoxicity assessments revealed that compounds B1 and B7 exhibited superior efficacy, with IC values of approximately 7 μmol/L of three cell lines. B1 and B7 inhibited proliferation and migration in these cell lines and induced apoptosis in MCF7 and A549 cells. Mechanistic investigations indicated that B1 induces apoptosis in MCF7 cells by inhibiting the AKT signaling pathway and downregulating the expression of apoptosis-related proteins Bcl-2 and Caspase-9.

Conclusion

Novel Anderson-type POMs B1 (vanadium-centered, methyl-modified) and B7 (vanadium-centered, hydroxyl-modified) exhibited superior efficacy against tumor cells and induced apoptosis PI3K/AKT pathway, which provides new theoretical avenues for developing POM-mediated antitumor chemotherapeutic medications.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128367617250323075703
2025-04-22
2025-09-24
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  3. KaurR. BhardwajA. GuptaS. Cancer treatment therapies: Traditional to modern approaches to combat cancers.Mol. Biol. Rep.202350119663967610.1007/s11033‑023‑08809‑3 37828275
    [Google Scholar]
  4. SonkinD. ThomasA. TeicherB.A. Cancer treatments: Past, present, and future.Cancer Genet.2024286-287182410.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  5. MathanS.V. RajputM. SinghR.P. Chemotherapy and radiation therapy for cancer.In: Understanding Cancer. Jain B, Pandey S, Eds.Academic Press202221723610.1016/B978‑0‑323‑99883‑3.00003‑2
    [Google Scholar]
  6. ZhangZ. LiuX. ChenD. YuJ. Radiotherapy combined with immunotherapy: The dawn of cancer treatment.Signal Transduct. Target. Ther.20227125810.1038/s41392‑022‑01102‑y 35906199
    [Google Scholar]
  7. BurguinA. DiorioC. DurocherF. Breast cancer treatments: Updates and new challenges.J. Pers. Med.202111880810.3390/jpm11080808 34442452
    [Google Scholar]
  8. YangZ. MaY. ZhaoH. YuanY. KimB.Y.S. Nanotechnology platforms for cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020122e159010.1002/wnan.1590 31696664
    [Google Scholar]
  9. AnandU. DeyA. ChandelA.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  10. BracciL. SchiavoniG. SistiguA. BelardelliF. Immune-based mechanisms of cytotoxic chemotherapy: Implications for the design of novel and rationale-based combined treatments against cancer.Cell Death Differ.2014211152510.1038/cdd.2013.67 23787994
    [Google Scholar]
  11. ThirumaranR. PrendergastG.C. GilmanP.B. Cytotoxic chemotherapy in clinical treatment of cancer.In: Cancer Immunotherapy. Prendergast GC, Jaffee EM, Eds.Academic Press200710111610.1016/B978‑012372551‑6/50071‑7
    [Google Scholar]
  12. HuX. YuL. BianY. Paclitaxel-loaded tumor cell-derived microparticles improve radiotherapy efficacy in triple-negative breast cancer by enhancing cell killing and stimulating immunity.Int. J. Pharm.202363212256010.1016/j.ijpharm.2022.122560 36586632
    [Google Scholar]
  13. Al-malkyH.S. Al HarthiS.E. OsmanA.M.M. Major obstacles to doxorubicin therapy: Cardiotoxicity and drug resistance.J. Oncol. Pharm. Pract.202026243444410.1177/1078155219877931 31594518
    [Google Scholar]
  14. Danışman-KalındemirtaşF. Kariperİ.A. HepokurC. Erdem-KurucaS. Selective cytotoxicity of paclitaxel bonded silver nanoparticle on different cancer cells.J. Drug Deliv. Sci. Technol.20216110226510.1016/j.jddst.2020.102265
    [Google Scholar]
  15. SritharanS. SivalingamN. A comprehensive review on time-tested anticancer drug doxorubicin.Life Sci.202127811952710.1016/j.lfs.2021.119527 33887349
    [Google Scholar]
  16. ShaikR. MalikM.S. BasavarajuS. Cellular and molecular aspects of drug resistance in cancers.Daru2024331410.1007/s40199‑024‑00545‑8 39652186
    [Google Scholar]
  17. AbdelmaksoudN.M. AbulsoudA.I. DoghishA.S. AbdelghanyT.M. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models.Biochim. Biophys. Acta Rev. Cancer20231878618899310.1016/j.bbcan.2023.188993 37813202
    [Google Scholar]
  18. GumerovaNI RompelA Synthesis, structures and applications of electron-rich polyoxometalates.Nat Rev Chem201822011210.1038/s41570‑018‑0112
    [Google Scholar]
  19. HornM.R. SinghA. AlomariS. Polyoxometalates (POMs): From electroactive clusters to energy materials.Energy Environ. Sci.2021141652170010.1039/D0EE03407J
    [Google Scholar]
  20. ČolovićM.B. LackovićM. LalatovićJ. MougharbelA.S. KortzU. KrstićD.Z. Polyoxometalates in biomedicine: Update and overview.Curr. Med. Chem.202027336237910.2174/0929867326666190827153532 31453779
    [Google Scholar]
  21. BudychM.J.W. StaszakK. BajekA. The future of polyoxymetalates for biological and chemical apllications.Coord. Chem. Rev.202349321530610.1016/j.ccr.2023.215306
    [Google Scholar]
  22. MurmuG. PanigrahiT.H. SahaS. Recent advances in the development of polyoxometalates and their composites for the degradation of toxic chemical dyes.Prog. Solid State Chem.20247610048910.1016/j.progsolidstchem.2024.100489
    [Google Scholar]
  23. CarvalhoF. AurelianoM. Polyoxometalates impact as anticancer agents.Int. J. Mol. Sci.2023245504310.3390/ijms24055043 36902473
    [Google Scholar]
  24. ChengY. QinK.J. ZangD.J. Polyoxometalates based nanocomposites for bioapplications.Rare Met.202342113570360010.1007/s12598‑023‑02379‑w
    [Google Scholar]
  25. ChengM. XiaoZ. YuL. LinX. WangY. WuP. Direct syntheses of nanocages and frameworks based on anderson-type polyoxometalates via one-pot reactions.Inorg. Chem.20195818119881199210.1021/acs.inorgchem.9b01313 31478371
    [Google Scholar]
  26. BlazevicA. RompelA. The Anderson–Evans polyoxometalate: From inorganic building blocks via hybrid organic–inorganic structures to tomorrows “Bio-POM”.Coord. Chem. Rev.2016307426410.1016/j.ccr.2015.07.001
    [Google Scholar]
  27. WangX. WeiS. ZhaoC. Promising application of polyoxometalates in the treatment of cancer, infectious diseases and Alzheimer’s disease.Eur. J. Biochem.2022274-540541910.1007/s00775‑022‑01942‑7 35713714
    [Google Scholar]
  28. GaoY. ChoudhariM. SuchG.K. RitchieC. Polyoxometalates as chemically and structurally versatile components in self-assembled materials.Chem. Sci.2022132510252710.1039/D1SC05879G
    [Google Scholar]
  29. ZhangH. ZhaoW-L. LiH. Latest progress of covalently modified polyoxometalates-based molecular assemblies and advanced materials.Polyoxometalates202212914001110.26599/POM.2022.9140011
    [Google Scholar]
  30. CherevanA.S. NandanS.P. RogerI. LiuR. StrebC. EderD. Polyoxometalates on functional substrates: Concepts, synergies, and future perspectives.Adv. Sci. (Weinh.)202078190351110.1002/advs.201903511 32328431
    [Google Scholar]
  31. NowickaD. VadraN. Wieczorek-SzwedaE. PatroniakV. GorczyńskiA. Overview of wells-dawson polyoxometalates: From structure and functionalization to application.Coord. Chem. Rev.202451921609110.1016/j.ccr.2024.216091
    [Google Scholar]
  32. Van RompuyL.S. Parac-VogtT.N. Interactions between polyoxometalates and biological systems: From drug design to artificial enzymes.Curr. Opin. Biotechnol.201958929910.1016/j.copbio.2018.11.013 30529815
    [Google Scholar]
  33. WuP. WangY. HuangB. XiaoZ. Anderson-type polyoxometalates: From structures to functions.Nanoscale202113157119713310.1039/D1NR00397F 33889922
    [Google Scholar]
  34. WeiZ. WangJ. YuH. HanS. WeiY. Recent advances of Anderson-Type polyoxometalates as catalysts largely for oxidative transformations of organic molecules.Molecules20222716521210.3390/molecules27165212
    [Google Scholar]
  35. CetindereS. AlidagiH.A. AnjassM. Two novel Anderson-type polyoxometalate based MnIII complexes constructed from pyrene derivatives: Synthesis, photophysical, and electrochemical properties.Inorg. Chim. Acta202354512128010.1016/j.ica.2022.121280
    [Google Scholar]
  36. ZhangJ. HuangY. LiG. WeiY. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications.Coord. Chem. Rev.201937839541410.1016/j.ccr.2017.10.025
    [Google Scholar]
  37. ZhuangQ. SunZ. LinC-G. QiB. SongY-F. Latest progress in asymmetrically functionalized Anderson-type polyoxometalates.Inorg. Chem. Front.2023101695171110.1039/D2QI02690B
    [Google Scholar]
  38. LiA-J. HuangS-L. YangG-Y. Anderson-type polyoxometalates for catalytic applications.Dalton Trans.202352181331813610.1039/D3DT03274D
    [Google Scholar]
  39. YaoC. ZhaoZ. TanT. Lindqvist-type polyoxometalates act as anti-breast cancer drugs via mitophagy-induced apoptosis.Curr. Med. Sci.202444480981910.1007/s11596‑024‑2910‑2 39096476
    [Google Scholar]
  40. PessoaJ.C. EtcheverryS. GambinoD. Vanadium compounds in medicine.Coord. Chem. Rev.2015301-302244810.1016/j.ccr.2014.12.002 32226091
    [Google Scholar]
  41. MiaoJ. FanX. ShaoY. Wheel-shaped polyoxometalates as nanozymes for autophagy-augmented and phototherapy-involved cancer nanotherapy.J. Pharm. Anal.2024141210101810.1016/j.jpha.2024.101018 39831052
    [Google Scholar]
  42. LiX.H. ChenW.L. WeiM. Polyoxometalates nanoparticles improve anti-tumor activity by maximal cellular uptake.Inorg. Chim. Acta201948610411210.1016/j.ica.2018.10.046
    [Google Scholar]
  43. WuL. LiangJ. Polyoxometalates and their complexes toward biological application.In: Supramolecular Chemistry of Biomimetic Systems. Li J, Ed.Springer Singapore201731135410.1007/978‑981‑10‑6059‑5_13
    [Google Scholar]
  44. QuX. ShiD. FuY. ChuD. YangY. LiuY. Enhanced antitumor activity of polyoxometalates loaded solid lipid nanoparticles.Inorg. Chem. Commun.202112410841110.1016/j.inoche.2020.108411
    [Google Scholar]
  45. TagliaviniV. HonischC. SerratìS. Enhancing the biological activity of polyoxometalate–peptide nano-fibrils by spacer design.RSC Advances20211194952495710.1039/D0RA10218K 35424453
    [Google Scholar]
  46. CroceM. ContiS. MaakeC. PatzkeG.R. Nanocomposites of polyoxometalates and chitosan-based polymers as tuneable anticancer agents.Eur. J. Inorg. Chem.2025201934835610.1002/ejic.201800268
    [Google Scholar]
  47. WeiT. ZhangM. WuP. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage.Nano Energy20173420521410.1016/j.nanoen.2017.02.028
    [Google Scholar]
  48. ZhaoD. LiuQ. LüH. SuT. ZhaoJ. LenC. Photocatalytic oxidative desulfurization with Anderson-type polyoxometalates nanoclusters doped carbon nitride.Colloids Surf. A Physicochem. Eng. Asp.202069913467710.1016/j.colsurfa.2024.134677
    [Google Scholar]
  49. GuoL. HeL. ZhuangQ. Recent advances in confining polyoxometalates and the applications.Small20251924e220731510.1002/smll.202207315
    [Google Scholar]
  50. DongZ. TanR. CaoJ. Discovery of polyoxometalate-based HDAC inhibitors with profound anticancer activity in vitro and in vivo.Eur. J. Med. Chem.20114662477248410.1016/j.ejmech.2011.03.036 21481498
    [Google Scholar]
  51. QuX. XuK. ZhaoC. Genotoxicity and acute and subchronic toxicity studies of a bioactive polyoxometalate in Wistar rats.BMC Pharmacol. Toxicol.20171812610.1186/s40360‑017‑0133‑x 28381296
    [Google Scholar]
  52. DinčićM. ČolovićM.B. Sarić MatutinovićM. In vivo toxicity evaluation of two polyoxotungstates with potential antidiabetic activity using Wistar rats as a model system.RSC Advances20201052846285510.1039/C9RA09790B 35496114
    [Google Scholar]
  53. FanX. PangW. FengH. Light-guided tumor diagnosis and therapeutics: From nanoclusters to polyoxometalates.Chin. Chem. Lett.20223362783279810.1016/j.cclet.2021.12.057
    [Google Scholar]
  54. BijelicA. AurelianoM. RompelA. The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives.Chem. Commun. (Camb.)201854101153116910.1039/C7CC07549A 29355262
    [Google Scholar]
  55. XuX. GuoY. LiB. Polyoxometalates emerging as multifunctional powerhouses in the battle against cancer.Coord. Chem. Rev.202552221621010.1016/j.ccr.2024.216210
    [Google Scholar]
  56. ZorzanoA. PalacínM. MartiL. García-VicenteS. Arylalkylamine vanadium salts as new anti-diabetic compounds.J. Inorg. Biochem.2009103455956610.1016/j.jinorgbio.2009.01.015 19246098
    [Google Scholar]
  57. CarpénéC. Garcia-VicenteS. SerranoM. Insulin-mimetic compound hexaquis (benzylammonium) decavanadate is antilipolytic in human fat cells.World J. Diabetes20178414315310.4239/wjd.v8.i4.143 28465791
    [Google Scholar]
  58. ChenQ. YangL. ZhengC. Mo polyoxometalate nanoclusters capable of inhibiting the aggregation of Aβ-peptide associated with Alzheimer’s disease.Nanoscale20146126886689710.1039/C3NR05906E 24834443
    [Google Scholar]
  59. LiuY. TianS. LiuS. WangE. In vitro inhibitory effect of polyoxometalates on human tumor cells.Trans. Met. Chem. (Weinh.)200530111311710.1007/s11243‑004‑3825‑1
    [Google Scholar]
  60. WangX. LiuJ. LiJ. Synthesis and antitumor activity] of cyclopentadienyltitanium substituted polyoxotungstate [CoW11O39(CpTi)]7−(Cp=η5-C5H5).J. Inorg. Biochem.200394327928410.1016/S0162‑0134(02)00631‑1 12628708
    [Google Scholar]
  61. XiaR.Y. ZhangR.R. JiangZ. SunY.J. LiuJ. ChenF.H. K9(C4H4FN2O2)2Nd(PW11O39)2·25H2O induces apoptosis in human lung cancer A549 cells.Oncol. Lett.20171331348135210.3892/ol.2016.5543 28454260
    [Google Scholar]
  62. ChenL. ZhaoZ. DiarimalalaR.O. Tris-functionalized polyoxotungstovanadate-mediated antitumor efficacy involves multiple cell death pathways.Chem. Biodivers.2024214e20230189810.1002/cbdv.202301898 38369765
    [Google Scholar]
  63. MaharatiA. MoghbeliM. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells.Cell Commun. Signal.202321120110.1186/s12964‑023‑01225‑x 37580737
    [Google Scholar]
  64. PaskehM.D.A. GhadyaniF. HashemiM. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and challenges.Pharmacol. Res.202318710655310.1016/j.phrs.2022.106553 36400343
    [Google Scholar]
  65. BijelicA. AurelianoM. RompelA. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer.Angew. Chem. Int. Ed. Engl.20255810298010.1002/anie.201803868
    [Google Scholar]
  66. JomovaK. MakovaM. AlomarS.Y. Essential metals in health and disease.Chem. Biol. Interact.202236711017310.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  67. TreviñoS. DíazA. Sánchez-LaraE. Sanchez-GaytanB.L. Perez-AguilarJ.M. González-VergaraE. Vanadium in biological action: Chemical, pharmacological aspects, and metabolic implications in diabetes mellitus.Biol. Trace Elem. Res.20191881689810.1007/s12011‑018‑1540‑6 30350272
    [Google Scholar]
  68. YanJ. WanP. ChoksiS. LiuZ.G. Necroptosis and tumor progression.Trends Cancer202281212710.1016/j.trecan.2021.09.003 34627742
    [Google Scholar]
  69. OgataA. YanagieH. IshikawaE. Antitumour effect of polyoxomolybdates: Induction of apoptotic cell death and autophagy in in vitro and in vivo models.Br. J. Cancer200898239940910.1038/sj.bjc.6604133 18087283
    [Google Scholar]
  70. LiuJ. HongM. LiY. ChenD. WuY. HuY. Programmed cell death tunes tumor immunity.Front. Immunol.20221384734510.3389/fimmu.2022.847345 35432318
    [Google Scholar]
  71. KashyapD. GargV.K. GoelN. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis.In: Advances in Protein Chemistry and Structural Biology. Donev R, Ed.Academic Press2021Vol. 1257312010.1016/bs.apcsb.2021.01.003
    [Google Scholar]
  72. LiuT. WuZ. HeY. XiaoY. XiaC. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy.Eur. J. Med. Chem.202020111244610.1016/j.ejmech.2020.112446 32563811
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128367617250323075703
Loading
/content/journals/cpd/10.2174/0113816128367617250323075703
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Antitumor; apoptosis; bioactivity; chemotherapy; drug design; polyoxometalate
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test