Skip to content
2000
image of miRNA in Diagnosis and Therapeutics of Tuberculosis: Importance in Latent and Brain Associated Pathologies

Abstract

MicroRNAs (miRNAs) are the regulators of gene expression and several cellular processes related to the immune system. miRNAs during tuberculosis (TB) infection are considered regulatory factors for the host immune system. has a great ability to survive and multiply in phagocytic cells, which makes it difficult to treat. It can replicate through various cellular pathways. To establish the infection in the host cell, changes in the miRNA expression and increases survival capacity with high infectivity. miRNAs are widely used as biomarkers and therapeutic agents for tuberculosis. During 
 infection, altered miRNA expressions can cause the progression of the disease and discriminate between latent and active TB infection. Due to their active involvement in disease progression, miRNAs may be utilized as potential biomarkers. Furthermore, the involvement of miRNA in autophagy and apoptosis modulation against highlights its potential for host-directed therapy. In this review article, we attempt to summarize the expression and role of various miRNAs in TB as immune modulators, differential activators between different phases of TB, including neuronal dysfunction in the brain, as therapeutic targets and diagnostic tools against TB.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128362931250619113617
2025-07-11
2025-09-09
Loading full text...

Full text loading...

References

  1. Bhaskaran M. Mohan M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Vet. Pathol. 2014 51 4 759 774 24045890
    [Google Scholar]
  2. Hammond S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015 87 3 14 25979468
    [Google Scholar]
  3. Achkar N.P. Cambiagno D.A. Manavella P.A. miRNA biogenesis: A dynamic pathway. Trends Plant Sci. 2016 21 12 1034 1044 27793495
    [Google Scholar]
  4. Cai Y. Yu X. Hu S. Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinf 2009 7 4 147 154 20172487
    [Google Scholar]
  5. Lu T.X. Rothenberg M.E. MicroRNA. J. Allergy Clin. Immunol. 2018 141 4 1202 1207 29074454
    [Google Scholar]
  6. Sabir N. Hussain T. Shah S.Z.A. Peramo A. Zhao D. Zhou X. miRNAs in tuberculosis: New avenues for diagnosis and host-directed therapy. Front. Microbiol. 2018 9 602 29651283
    [Google Scholar]
  7. Daniel E.A. Sathiyamani B. Thiruvengadam K. Vivekanandan S. Vembuli H. Hanna L.E. MicroRNAs as diagnostic biomarkers for tuberculosis: A systematic review and meta- analysis. Front. Immunol. 2022 13 954396 36238288
    [Google Scholar]
  8. Abd-El-Fattah A.A. Sadik N.A. Shaker O.G. Aboulftouh M.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys. 2013 67 3 875 884 23559272
    [Google Scholar]
  9. Mishra S. Yadav T. Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol. 2016 98 12 23 26481951
    [Google Scholar]
  10. Kalkusova K. Taborska P. Stakheev D. Smrz D. The role of miR-155 in antitumor immunity. Cancers 2022 14 21 5414 36358832
    [Google Scholar]
  11. Sprenkle N.T. Serezani C.H. Pua H.H. MicroRNAs in macrophages: Regulators of activation and function. J. Immunol. 2023 210 4 359 368 36724439
    [Google Scholar]
  12. National tuberculosis elimination program annual report. 2021 Available from: https://tbcindia.gov.in/showfile.php?lid=3587
  13. Thomas B.E. Adinarayanan S. Manogaran C. Swaminathan S. Pulmonary tuberculosis among tribals in India: A systematic review & meta-analysis. Indian J. Med. Res. 2015 141 5 614 623 26139779
    [Google Scholar]
  14. Global tuberculosis Report 2024. 2024 Available from: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024
  15. Singh S. Zahiruddin Q.S. Lakhanpal S. Wealth-based inequalities in tuberculosis prevalence among households having children and young adults in India: Insights from Indian demographic and health surveys (2015-2021). BMC Infect. Dis. 2025 25 1 21 39755594
    [Google Scholar]
  16. Bhat J. Sharma R.K. Yadav R. Persistent high prevalence of pulmonary tuberculosis in a resource-limited setting: Threat to India’s TB free campaign. Trans. R. Soc. Trop. Med. Hyg. 2022 116 6 564 570 34891175
    [Google Scholar]
  17. Haas M.K. Belknap R.W. Diagnostic tests for latent tuberculosis infection. Clin. Chest Med. 2019 40 4 829 837 31731987
    [Google Scholar]
  18. Zellweger J.P. Sotgiu G. Corradi M. Durando P. The diagnosis of latent tuberculosis infection (LTBI): Currently available tests, future developments, and perspectives to eliminate tuberculosis (TB). Med. Lav. 2020 111 3 170 183 10.23749/mdl.v111i3.9983 32624559
    [Google Scholar]
  19. Jeurling S. Cappelli L.C. Treatment of immune checkpoint inhibitor-induced inflammatory arthritis. Curr. Opin. Rheumatol. 2020 32 3 315 320 10.1097/BOR.0000000000000701 32168068
    [Google Scholar]
  20. Gong W. Wu X. Differential diagnosis of latent tuberculosis infection and active tuberculosis: A key to a successful tuberculosis control strategy. Front. Microbiol. 2021 12 745592 10.3389/fmicb.2021.745592 34745048
    [Google Scholar]
  21. Ahmad F. Rani A. Alam A. Macrophage: A cell with many faces and functions in tuberculosis. Front. Immunol. 2022 13 747799 10.3389/fimmu.2022.747799 35603185
    [Google Scholar]
  22. Sampath P. Periyasamy K.M. Ranganathan U.D. Bethunaickan R. Monocyte and macrophage miRNA: Potent biomarker and target for host-directed therapy for tuberculosis. Front. Immunol. 2021 12 667206 10.3389/fimmu.2021.667206 34248945
    [Google Scholar]
  23. Khanna A. Saha R. Ahmad N. National TB elimination programme - What has changed. Indian J. Med. Microbiol. 2023 42 103 107 10.1016/j.ijmmb.2022.10.008 36402676
    [Google Scholar]
  24. Bernardo B.C. Ooi J.Y.Y. Lin R.C.Y. McMullen J.R. miRNA therapeutics: A new class of drugs with potential therapeutic applications in the heart. Future Med. Chem. 2015 7 13 1771 1792 10.4155/fmc.15.107 26399457
    [Google Scholar]
  25. Alipoor S.D. Adcock I.M. Tabarsi P. Folkerts G. Mortaz E. MiRNAs in tuberculosis: Their decisive role in the fate of TB. Eur. J. Pharmacol. 2020 886 173529 10.1016/j.ejphar.2020.173529 32919937
    [Google Scholar]
  26. Otterdal K. Janardhanan J. Astrup E. Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus. J. Infect. 2014 69 5 462 469 10.1016/j.jinf.2014.06.018 24995849
    [Google Scholar]
  27. Sinigaglia A. Peta E. Riccetti S. Venkateswaran S. Manganelli R. Barzon L. Tuberculosis-associated MicroRNAs: From pathogenesis to disease biomarkers. Cells 2020 9 10 2160 10.3390/cells9102160 32987746
    [Google Scholar]
  28. Wang L. Xiong Y. Fu B. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front. Immunol. 2022 13 1027472 10.3389/fimmu.2022.1027472 36389769
    [Google Scholar]
  29. Pietrykowska H. Sierocka I. Zielezinski A. Biogenesis, conservation, and function of miRNA in liverworts. J. Exp. Bot. 2022 73 13 4528 4545 10.1093/jxb/erac098 35275209
    [Google Scholar]
  30. Saliminejad K. Khorshid H.R.K. Fard S.S. Ghaffari S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019 234 5 5451 5465 10.1002/jcp.27486 30471116
    [Google Scholar]
  31. Tafrihi M. Hasheminasab E. MiRNAs: Biology, biogenesis, their web-based tools, and databases. MicroRNA 2019 8 1 4 27 30147022
    [Google Scholar]
  32. Vishnoi A. Rani S. MiRNA biogenesis and regulation of diseases: An overview. Methods Mol. Biol. 2017 1509 1 10 27826912
    [Google Scholar]
  33. Awuh J.A. Flo T.H. Molecular basis of mycobacterial survival in macrophages. Cell. Mol. Life Sci. 2017 74 9 1625 1648 10.1007/s00018‑016‑2422‑8 27866220
    [Google Scholar]
  34. Jee B. Understanding the early host immune response against Mycobacterium tuberculosis. Cent. Eur. J. Immunol. 2020 45 1 99 103 10.5114/ceji.2020.94711 32425687
    [Google Scholar]
  35. Queval C.J. Brosch R. Simeone R. The macrophage: A disputed fortress in the battle against Mycobacterium tuberculosis. Front. Microbiol. 2017 8 2284 10.3389/fmicb.2017.02284 29218036
    [Google Scholar]
  36. Astrup E. Janardhanan J. Otterdal K. Cytokine network in scrub typhus: High levels of interleukin-8 are associated with disease severity and mortality. PLoS Negl. Trop. Dis. 2014 8 2 e2648 10.1371/journal.pntd.0002648 24516677
    [Google Scholar]
  37. Li Q. Li J. Tian J. IL-17 and IFN-γ production in peripheral blood following BCG vaccination and Mycobacterium tuberculosis infection in human. Eur. Rev. Med. Pharmacol. Sci. 2012 16 14 2029 2036 23242733
    [Google Scholar]
  38. Abdalla A.E. Ejaz H. Mahjoob M.O. Intelligent mechanisms of macrophage apoptosis subversion by Mycobacterium. Pathogens 2020 9 3 218 10.3390/pathogens9030218 32188164
    [Google Scholar]
  39. Kundu M. Basu J. The role of microRNAs and long non-coding RNAs in the regulation of the immune response to Mycobacterium tuberculosis infection. Front. Immunol. 2021 12 687962 10.3389/fimmu.2021.687962 34248974
    [Google Scholar]
  40. Li Y. Zhou D. Ren Y. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy 2019 15 3 478 492 10.1080/15548627.2018.1522467 30208760
    [Google Scholar]
  41. Shariq M. Quadir N. Alam A. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy 2023 19 1 3 23 10.1080/15548627.2021.2021495 35000542
    [Google Scholar]
  42. Zhao Y. Wang Z. Zhang W. Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors 2019 45 6 844 856 10.1002/biof.1555 31418958
    [Google Scholar]
  43. Zhu H. Wu H. Liu X. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 2009 5 6 816 823 10.4161/auto.9064 19535919
    [Google Scholar]
  44. Sayed D. He M. Hong C. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J. Biol. Chem. 2010 285 26 20281 20290 10.1074/jbc.M110.109207 20404348
    [Google Scholar]
  45. Lin X. Guan H. Huang Z. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J. Diabetes Res. 2014 2014 1 7 10.1155/2014/258695 24829923
    [Google Scholar]
  46. Grieco G.E. Cataldo D. Ceccarelli E. Serum levels of miR-148a and miR-21-5p are increased in type 1 diabetic patients and correlated with markers of bone strength and metabolism. Noncoding RNA 2018 4 4 37 10.3390/ncrna4040037 30486455
    [Google Scholar]
  47. Sheedy F.J. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front. Immunol. 2015 6 19 10.3389/fimmu.2015.00019 25688245
    [Google Scholar]
  48. Zhao Z. Hao J. Li X. Chen Y. Qi X. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis -infected macrophages. FEBS Lett. 2019 593 12 1326 1335 10.1002/1873‑3468.13438 31090056
    [Google Scholar]
  49. Angria N Massi MN Bukhari A Expression of miRNA-29a-3p and IFN-γ as biomarkers in active and latent pulmonary tuberculosis. Ann Med Surg 2022 83 104786 10.1016/j.amsu.2022.104786.
    [Google Scholar]
  50. Wagh V. Urhekar A. Modi D. Levels of microRNA miR-16 and miR-155 are altered in serum of patients with tuberculosis and associate with responses to therapy. Tuberculosis (Edinb.) 2017 102 24 30 10.1016/j.tube.2016.10.007 28061948
    [Google Scholar]
  51. Kathirvel M. Saranya S. Mahadevan S. Expression levels of candidate circulating microRNAs in pediatric tuberculosis. Pathog. Glob. Health 2020 114 5 262 270 10.1080/20477724.2020.1761140 32401176
    [Google Scholar]
  52. Corral-Fernández N.E. Cortes-García J.D. Bruno R.S. Analysis of transcription factors, microRNAs and cytokines involved in T lymphocyte differentiation in patients with tuberculosis after directly observed treatment short-course. Tuberculosis (Edinb.) 2017 105 1 8 10.1016/j.tube.2017.03.007 28610780
    [Google Scholar]
  53. Yareta J. Galarza M. Capristano S. Differential expression of circulating micro-RNAs in patients with active and latent tuberculosis. Rev. Peru. Med. Exp. Salud Publica 2020 37 1 51 56 10.17843/rpmesp.2020.371.4468 32520192
    [Google Scholar]
  54. Zhang C. Xi X. Wang Q. The association between serum miR-155 and natural killer cells from tuberculosis patients. Int. J. Clin. Exp. Med. 2015 8 6 9168 9172 26309574
    [Google Scholar]
  55. Seddiki N. Brezar V. Ruffin N. Lévy Y. Swaminathan S. Role of miR-155 in the regulation of lymphocyte immune function and disease. Immunology 2014 142 1 32 38 10.1111/imm.12227 24303979
    [Google Scholar]
  56. Yu L. Fu H. Zhang H. The diagnostic value of combined detection of microRNA-155, TNF-α and IL-37 for active pulmonary tuberculosis in the elderly. Am. J. Transl. Res. 2022 14 12 9018 9024 36628207
    [Google Scholar]
  57. Aggerbeck H. Ruhwald M. Hoff S.T. C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: A phase 3 trial. PLoS One 2018 13 9 e0204554 10.1371/journal.pone.0204554 30248152
    [Google Scholar]
  58. Araujo Z. Fernández de Larrea C. López D. ESAT-6 and Ag85A synthetic peptides as candidates for an immunodiagnostic test in children with a clinical suspicion of tuberculosis. Dis. Markers 2021 2021 6673250 34306256
    [Google Scholar]
  59. Luo Y. Tang G. Lin Q. Combination of mean spot sizes of ESAT-6 spot-forming cells and modified tuberculosis-specific antigen/phytohemagglutinin ratio of T-SPOT.TB assay in distinguishing between active tuberculosis and latent tuberculosis infection. J. Infect. 2020 81 1 81 89 32360883
    [Google Scholar]
  60. Ha S.H. Choi H. Park J.Y. Mycobacterium tuberculosis-Secreted protein, ESAT-6, inhibits lipopolysaccharide-induced MMP-9 expression and inflammation through NF-κB and MAPK signaling in RAW 264.7 macrophage cells. Inflammation 2020 43 1 54 65 31720987
    [Google Scholar]
  61. Buha I Škodrić-Trifunović V Anđelković M Association between active pulmonary tuberculosis and miRNA-146a: A preliminary study from Serbia. J. Infect. Dev. Ctries. 2022 16 8 1317 1322 36099375
    [Google Scholar]
  62. Feng J. Bian Q. He X. Zhang H. He J. A LncRNA-miRNA-mRNA ceRNA regulatory network based tuberculosis prediction model. Microb. Pathog. 2021 158 105069 34175436
    [Google Scholar]
  63. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem. 2016 31 1 177 183 10.1016/j.ijbiomac.2011.12.033
    [Google Scholar]
  64. Li P. Ma Y. Wang Y. Identification of miR-1293 potential target gene: TIMP-1. Mol. Cell. Biochem. 2013 384 1-2 1 6 23943285
    [Google Scholar]
  65. Abreu R. Giri P. Quinn F. Host-pathogen interaction as a novel target for host-directed therapies in tuberculosis. Front. Immunol. 2020 11 1553 32849525
    [Google Scholar]
  66. Abuhammad A. Cholesterol metabolism: A potential therapeutic target in Mycobacteria. Br. J. Pharmacol. 2017 174 14 2194 2208 28002883
    [Google Scholar]
  67. Dong W. Nie X. Zhu H. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc. Natl. Acad. Sci. USA 2021 118 16 e2019305118 33853942
    [Google Scholar]
  68. Long N.P. Anh N.K. Yen N.T.H. Comprehensive lipid and lipid-related gene investigations of host immune responses to characterize metabolism-centric biomarkers for pulmonary tuberculosis. Sci. Rep. 2022 12 1 13395 35927287
    [Google Scholar]
  69. Shen B. Yang Z. Han S. Bta-miR-124a affects lipid metabolism by regulating PECR Gene. BioMed Res. Int. 2019 2019 2596914 31467878
    [Google Scholar]
  70. Acharya B. Acharya A. Gautam S. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020 47 5 4065 4075 10.1007/s11033‑020‑05413‑7 32248381
    [Google Scholar]
  71. Bautista-Sánchez D. Arriaga-Canon C. Pedroza-Torres A. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol. Ther. Nucleic Acids 2020 20 409 420 10.1016/j.omtn.2020.03.003 32244168
    [Google Scholar]
  72. Hayes C. Chayama K. MicroRNAs as biomarkers for liver disease and hepatocellular carcinoma. Int. J. Mol. Sci. 2016 17 3 280 10.3390/ijms17030280 26927063
    [Google Scholar]
  73. Zheng M.L. Zhou N.K. Luo C.H. MiRNA-155 and miRNA-132 as potential diagnostic biomarkers for pulmonary tuberculosis: A preliminary study. Microb. Pathog. 2016 100 78 83 10.1016/j.micpath.2016.09.005 27616444
    [Google Scholar]
  74. Alipoor S.D. Tabarsi P. Varahram M. Serum exosomal miRNAs are associated with active pulmonary tuberculosis. Dis. Markers 2019 2019 1 9 10.1155/2019/1907426 30886653
    [Google Scholar]
  75. Zhang X. Guo J. Fan S. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One 2013 8 12 e81076 10.1371/journal.pone.0081076 24349033
    [Google Scholar]
  76. Cao D. Wang J. Ji Z. Profiling the mRNA and miRNA in peripheral blood mononuclear cells in subjects with active tuberculosis. Infect. Drug Resist. 2020 13 4223 4234 10.2147/IDR.S278705 33262617
    [Google Scholar]
  77. Chakrabarty S. Kumar A. Raviprasad K. Mallya S. Satyamoorthy K. Chawla K. Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis. Tuberculosis (Edinb.) 2019 116 37 43 31153517
    [Google Scholar]
  78. He B. Zhao Z. Cai Q. miRNA-based biomarkers, therapies, and resistance in Cancer. Int. J. Biol. Sci. 2020 16 14 2628 2647 10.7150/ijbs.47203 32792861
    [Google Scholar]
  79. Yang T. Ge B. miRNAs in immune responses to Mycobacterium tuberculosis infection. Cancer Lett. 2018 431 22 30 29803788
    [Google Scholar]
  80. Singh A.K. Ghosh M. Kumar V. Aggarwal S. Patil S.A. Interplay between miRNAs and Mycobacterium tuberculosis: Diagnostic and therapeutic implications. Drug Discov. Today 2021 26 5 1245 1255 33497829
    [Google Scholar]
  81. Trivedi A. Singh N. Bhat S.A. Gupta P. Kumar A. Redox biology of tuberculosis pathogenesis. Adv. Microb. Physiol. 2012 60 263 324 22633061
    [Google Scholar]
  82. Yasui K. Immunity against Mycobacterium tuberculosis and the risk of biologic anti-TNF-α reagents. Pediatr. Rheumatol. Online J. 2014 12 45 25317081
    [Google Scholar]
  83. Tahamtan A. Teymoori-Rad M. Nakstad B. Salimi V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front. Immunol. 2018 9 1377 29988529
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128362931250619113617
Loading
/content/journals/cpd/10.2174/0113816128362931250619113617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test