Skip to content
2000
Volume 31, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Nanomedicine offers immense potential in the field of Central Nervous System (CNS) disorder treatment, encompassing conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke.

Methods

Through the utilization of nanotechnology-driven drug delivery systems, the efficacy of drugs can be amplified, their toxicity minimized, and their bioavailability increased, enabling them to effectively reach the intended site within the CNS. This review aims to examine the therapeutic possibilities that nanomedicine presents in addressing these debilitating disorders. This exploration entails an analysis of diverse nanotechnology-based approaches for CNS drug delivery, including polymeric nanoparticles, liposomes, dendrimers, and carbon nanotubes. Moreover, notable advancements in nanotechnology-based therapeutics for CNS disorders are highlighted, such as the application of nanoparticles for delivering curcumin in Alzheimer's disease, liposomes for delivering L-DOPA in Parkinson's disease, and dendrimers for delivering interferon-beta in multiple sclerosis.

Results

Additionally, the potential of nanotechnology-based approaches in the treatment of epilepsy and stroke is discussed. The review concludes by addressing the challenges faced and emphasizes the significant potential of clinical trials in enhancing drug delivery and future prospects in the development of nanotechnology-based therapeutics for CNS disorders.

Conclusion

Overall, the therapeutic potential of nanomedicine in CNS disorder treatment is vast, instilling optimism for the creation of safe and effective therapies for these devastating conditions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128362577250227081919
2025-03-20
2025-10-23
Loading full text...

Full text loading...

References

  1. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  2. LimaA.A. MridhaM.F. DasS.C. KabirM.M. IslamM.R. WatanobeY. A comprehensive survey on the detection, classification, and challenges of neurological disorders.Biology202211346910.3390/biology1103046935336842
    [Google Scholar]
  3. DorsettM. LiangS.Y. Diagnosis and treatment of central nervous system infections in the emergency department.Emerg. Med. Clin. North Am.201634491794210.1016/j.emc.2016.06.01327741995
    [Google Scholar]
  4. WardC.D. PhillipsM. SmithA. MoranM. Multidisciplinary approaches in progressive neurological disease: Can we do better?J. Neurol. Neurosurg. Psychiatry200374Suppl. 4iv8-1210.1136/jnnp.74.suppl_4.iv814645460
    [Google Scholar]
  5. PinheiroR.G.R. CoutinhoA.J. PinheiroM. NevesA.R. Nanoparticles for targeted brain drug delivery: What do we know?Int. J. Mol. Sci.202122211165410.3390/ijms22211165434769082
    [Google Scholar]
  6. ZhangF. LinY.A. KannanS. KannanR.M. Targeting specific cells in the brain with nanomedicines for CNS therapies.J. Control. Release201624021222610.1016/j.jconrel.2015.12.01326686078
    [Google Scholar]
  7. YoungPN EstarellasM. CoomansE. Imaging biomarkers in neurodegeneration: Current and future practices.Alz Res Therapy2020121-710.1186/s13195‑020‑00612‑7
    [Google Scholar]
  8. SawickiK. CzajkaM. Matysiak-KucharekM. FalB. DropB. Męczyńska-WielgoszS. SikorskaK. KruszewskiM. Kapka-SkrzypczakL. Toxicity of metallic nanoparticles in the central nervous system.Nanotechnol. Rev.20198117520010.1515/ntrev‑2019‑0017
    [Google Scholar]
  9. MazdehM. RahiminejadM.E. Nili-AhmadabadiA. RanjbarA. Neurological disorders and oxidative toxic stress: A role of metal nanoparticles.Jundishapur J. Nat. Pharm. Prod.2016111e2762810.17795/jjnpp‑27628
    [Google Scholar]
  10. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  11. ChakrabortyA. MohapatraS.S. BarikS. RoyI. GuptaB. BiswasA. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: A systematic review.Biosci. Rep.2023432BSR2022032410.1042/BSR2022032436630532
    [Google Scholar]
  12. CaoY. ZhangR. The application of nanotechnology in treatment of Alzheimer’s disease.Front. Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.104298636466349
    [Google Scholar]
  13. Mir Najib UllahS.N. AfzalO. AltamimiA.S.A. AtherH. SultanaS. AlmalkiW.H. BhartiP. SahooA. DwivediK. KhanG. SultanaS. AlzahraniA. RahmanM. Nanomedicine in the management of alzheimer’s disease: State-of-the-art.Biomedicines2023116175210.3390/biomedicines1106175237371847
    [Google Scholar]
  14. TanifumE.A. GhaghadaK. VollertC. HeadE. EriksenJ.L. AnnapragadaA. A novel liposomal nanoparticle for the imaging of amyloid plaque by magnetic resonance imaging.J. Alzheimers Dis.201652273174510.3233/JAD‑15112427031484
    [Google Scholar]
  15. ChaparroC.I.P. SimõesB.T. BorgesJ.P. CastanhoM.A.R.B. SoaresP.I.P. NevesV. A promising approach: Magnetic nanosystems for alzheimer’s disease theranostics.Pharmaceutics2023159231610.3390/pharmaceutics1509231637765284
    [Google Scholar]
  16. ZengJ. WuJ. LiM. WangP. A novel magnetic nanoparticle for early detection of amyloid plaques in alzheimer’s disease.Arch. Med. Res.201849428228510.1016/j.arcmed.2018.09.00530266531
    [Google Scholar]
  17. WuW. HeQ. JiangC. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies.Nanoscale Res. Lett.200831139741510.1007/s11671‑008‑9174‑921749733
    [Google Scholar]
  18. ChengK.K. ChanP.S. FanS. KwanS.M. YeungK.L. WángY.X.J. ChowA.H.L. WuE.X. BaumL. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI).Biomaterials20154415517210.1016/j.biomaterials.2014.12.00525617135
    [Google Scholar]
  19. Maldonado-CamargoL. UnniM. RinaldiC. Magnetic characterization of iron oxide nanoparticles for biomedical applications.Methods Mol. Biol.20171570477110.1007/978‑1‑4939‑6840‑4_428238129
    [Google Scholar]
  20. García-PardoJ. NovioF. NadorF. CavaliereI. Suárez-GarcíaS. Lope-PiedrafitaS. CandiotaA.P. Romero-GimenezJ. Rodríguez-GalvánB. BovéJ. VilaM. LorenzoJ. Ruiz-MolinaD. Bioinspired theranostic coordination polymer nanoparticles for intranasal dopamine replacement in Parkinson’s disease.ACS Nano20211558592860910.1021/acsnano.1c0045333885286
    [Google Scholar]
  21. NiuS. ZhangL-K. ZhangL. ZhuangS. ZhanX. ChenW. DuS. YinL. YouR. LiC. GuanY. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-Synuclein RNAi plasmid in a Parkinson’s disease model.Theranostics20177234435610.7150/thno.16562
    [Google Scholar]
  22. van VlietE.F. KnolM.J. SchiffelersR.M. CaiazzoM. FensM.H.A.M. Levodopa-loaded nanoparticles for the treatment of Parkinson’s disease.J. Control. Release202336021222410.1016/j.jconrel.2023.06.02637343725
    [Google Scholar]
  23. SharmaS. LohanS. MurthyR.S.R. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery.Drug Dev. Ind. Pharm.201440786987810.3109/03639045.2013.78905123600649
    [Google Scholar]
  24. XuC. QuX. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications.NPG Asia Mater.201463e9010.1038/am.2013.88
    [Google Scholar]
  25. GunawanC. LordM.S. LovellE. WongR.J. JungM.S. OscarD. MannR. AmalR. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity.ACS Omega2019459473947910.1021/acsomega.9b0052131460038
    [Google Scholar]
  26. YildirimerL. ThanhNT LoizidouM. SeifalianAM Toxicology and clinical potential of nanoparticles.Nano Today20116658560710.1016/j.nantod.2011.10.001
    [Google Scholar]
  27. LeeS.B. KimH.L. JeongH.J. LimS.T. SohnM.H. KimD.W. Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body.Angew. Chem. Int. Ed.20135240105491055210.1002/anie.20130402623956036
    [Google Scholar]
  28. ChingA.S.C. KuhnastB. DamontA. RoedaD. TavitianB. DolléF. Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases.Insights Imaging20123111111910.1007/s13244‑011‑0128‑x22696004
    [Google Scholar]
  29. BentolilaL.A. MichaletX. PinaudF.F. TsayJ.M. DooseS. LiJ.J. SundaresanG. WuA.M. GambhirS.S. WeissS. Quantum dots for molecular imaging and cancer medicine.Discov. Med.200552621321820704913
    [Google Scholar]
  30. GaoX. DaveS.R. Quantum dots for cancer molecular imaging.Adv. Exp. Med. Biol.2007620577310.1007/978‑0‑387‑76713‑0_518217335
    [Google Scholar]
  31. LeeK.H. Quantum dots: A quantum jump for molecular imaging?J. Nucl. Med.20074891408141010.2967/jnumed.107.04206917785725
    [Google Scholar]
  32. AlabrahimO.A.A. AzzazyH.M.E.S. Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson’s disease.Nanoscale Adv.20224245233524410.1039/D2NA00524G36540116
    [Google Scholar]
  33. MogharbelB.F. CardosoM.A. IriodaA.C. StrickerP.E.F. SlompoR.C. AppelJ.M. de OliveiraN.B. PerussoloM.C. SaçakiC.S. da RosaN.N. DziedzicD.S.M. TraveletC. HalilaS. BorsaliR. de CarvalhoK.A.T. Biodegradable nanoparticles loaded with levodopa and curcumin for treatment of Parkinson’s disease.Molecules2022279281110.3390/molecules2709281135566173
    [Google Scholar]
  34. NazS. BeachJ. HeckertB. TummalaT. PashchenkoO. BanerjeeT. SantraS. Cerium oxide nanoparticles: A ‘radical’ approach to neurodegenerative disease treatment.Nanomedicine201712554555310.2217/nnm‑2016‑039928181459
    [Google Scholar]
  35. GreeneC. HanleyN. ReschkeC.R. ReddyA. MäeM.A. ConnollyR. BehanC. O’KeeffeE. BolgerI. HudsonN. DelaneyC. FarrellM.A. O’BrienD.F. CryanJ. BrettF.M. BeausangA. BetsholtzC. HenshallD.C. DohertyC.P. CampbellM. Microvascular stabilization via blood-brain barrier regulation prevents seizure activity.Nat. Commun.2022131200310.1038/s41467‑022‑29657‑y35422069
    [Google Scholar]
  36. JubeteE. LoaizaO.A. OchotecoE. PomposoJ.A. GrandeH. RodríguezJ. Nanotechnology: A tool for improved performance on electrochemical Screen-Printed (Bio)sensors.J. Sens.20092009184257510.1155/2009/842575
    [Google Scholar]
  37. GaurM. MisraC. YadavA.B. SwaroopS. MaolmhuaidhF.Ó. BechelanyM. BarhoumA. Biomedical applications of carbon nanomaterials: Fullerenes, quantum dots, nanotubes, nanofibers, and graphene.Materials20211420597810.3390/ma1420597834683568
    [Google Scholar]
  38. WahajuddinA.S. AroraS. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers.Int. J. Nanomedicine201273445347110.2147/IJN.S3032022848170
    [Google Scholar]
  39. SchembergJ. AbbassiA.E. LindenbauerA. ChenL.Y. GrodrianA. NakosX. ApteG. KhanN. KraupnerA. NguyenT.H. GastrockG. Synthesis of biocompatible superparamagnetic iron oxide nanoparticles (SPION) under different microfluidic regimes.ACS Appl. Mater. Interfaces20221442480114802810.1021/acsami.2c1315636223272
    [Google Scholar]
  40. SinghN. JenkinsG.J.S. AsadiR. DoakS.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION).Nano Rev.201011535810.3402/nano.v1i0.535822110864
    [Google Scholar]
  41. SinghA.V. KhareM. GadeW.N. ZamboniP. Theranostic implications of nanotechnology in multiple sclerosis: A future perspective.Autoimmune Dis.2012201211210.1155/2012/16083023346386
    [Google Scholar]
  42. GuravN. MhatreS. Nanoscience in multiple sclerosis.Bombay Technologist2019661162410.36664/bt/2019/v66i1/148997
    [Google Scholar]
  43. BonillaL. EsteruelasG. EttchetoM. EspinaM. GarcíaM.L. CaminsA. SoutoE.B. CanoA. Sánchez-LópezE. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges.Epilepsia Open20227S1Suppl. 1S121S13210.1002/epi4.1256734862851
    [Google Scholar]
  44. AnsariM.T. AliO.A.M.A. ShaikhM.F. HasnainM.S. SamiF. KhanA. Nanotechnological advances in the treatment of epilepsy.CNS Neurol. Disord. Drug Targets20222110994100310.2174/187152732166621122116210434939554
    [Google Scholar]
  45. WongH.L. Fighting epilepsy with nanomedicines—Is this the right weapon?Pharmaceutics2021132302
    [Google Scholar]
  46. CormodeD.P. NahaP.C. FayadZ.A. Nanoparticle contrast agents for computed tomography: A focus on micelles.Contrast Media Mol. Imaging201491375210.1002/cmmi.155124470293
    [Google Scholar]
  47. JiangZ. ZhangM. LiP. WangY. FuQ. Nanomaterial-based CT contrast agents and their applications in image-guided therapy.Theranostics202313248350910.7150/thno.7962536632234
    [Google Scholar]
  48. LinX. LiN. TangH. Recent advances in nanomaterials for diagnosis, treatments, and neurorestoration in ischemic stroke.Front. Cell. Neurosci.20221688519010.3389/fncel.2022.88519035836741
    [Google Scholar]
  49. LiuR. ZhuG.J. QingP. Study on the treatment of ischemic stroke based on poly(lactic-co-glycolic acid) (PLGA) nanotechnology.Mater. Sci. Forum20211027586310.4028/www.scientific.net/MSF.1027.58
    [Google Scholar]
  50. LandowskiL.M. NiegoB. SutherlandB.A. HagemeyerC.E. HowellsD.W. Applications of nanotechnology in the diagnosis and therapy of stroke.Semin. Thromb. Hemost.202046559260510.1055/s‑0039‑339956831858516
    [Google Scholar]
  51. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  52. AbbasiE. AvalS.F. AkbarzadehA. MilaniM. NasrabadiH.T. JooS.W. HanifehpourY. Nejati-KoshkiK. Pashaei-AslR. Dendrimers: Synthesis, applications, and properties.Nanoscale Res. Lett.20149124710.1186/1556‑276X‑9‑24724994950
    [Google Scholar]
  53. JiangC. ZhouY. ChenR. YangM. ZhouH. TangZ. ShiH. QinD. Nanomaterial-based drug delivery systems for ischemic stroke.Pharmaceutics20231512266910.3390/pharmaceutics1512266938140010
    [Google Scholar]
  54. SongG. ZhaoM. ChenH. LenahanC. ZhouX. OuY. HeY. The role of nanomaterials in stroke treatment: Targeting oxidative stress.Oxid. Med. Cell. Longev.202120211885748610.1155/2021/885748633815664
    [Google Scholar]
  55. TamV.H. SosaC. LiuR. YaoN. PriestleyR.D. Nanomedicine as a non-invasive strategy for drug delivery across the blood brain barrier.Int. J. Pharm.20165151-233134210.1016/j.ijpharm.2016.10.03127769885
    [Google Scholar]
  56. LvW. LiuY. LiS. LvL. LuH. XinH. Advances of nano drug delivery system for the theranostics of ischemic stroke.J. Nanobiotechnology202220124810.1186/s12951‑022‑01450‑535641956
    [Google Scholar]
  57. MazzatentaA. GiuglianoM. CampidelliS. GambazziL. BusinaroL. MarkramH. PratoM. BalleriniL. Interfacing neurons with carbon nanotubes: Electrical signal transfer and synaptic stimulation in cultured brain circuits.J. Neurosci.200727266931693610.1523/JNEUROSCI.1051‑07.200717596441
    [Google Scholar]
  58. ToljanK. AshokA. LabhasetwarV. HussainM.S. Nanotechnology in stroke: New trails with smaller scales.Biomedicines202311378010.3390/biomedicines1103078036979759
    [Google Scholar]
  59. Aguilar-ToaláJ.E. Quintanar-GuerreroD. LiceagaA.M. Zambrano-ZaragozaM.L. Encapsulation of bioactive peptides: A strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications.RSC Advances202212116449645810.1039/D1RA08590E35424621
    [Google Scholar]
  60. VajdaF.J.E. O’BrienT.J. GrahamJ.E. HitchcockA.A. LanderC.M. EadieM.J. The outcome of altering antiepileptic drug therapy before pregnancy.Epilepsy Behav.202011110726310.1016/j.yebeh.2020.10726332759062
    [Google Scholar]
  61. MaterónE.M. MiyazakiC.M. CarrO. JoshiN. PiccianiP.H.S. DalmaschioC.J. DavisF. ShimizuF.M. Magnetic nanoparticles in biomedical applications: A review.Appl. Surf. Sci2021610016310.1016/j.apsadv.2021.100163
    [Google Scholar]
  62. QinC. YangS. ChuY.H. ZhangH. PangX.W. ChenL. ZhouL.Q. ChenM. TianD.S. WangW. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227121510.1038/s41392‑022‑01064‑135794095
    [Google Scholar]
  63. PatelT. ZhouJ. PiepmeierJ.M. SaltzmanW.M. Polymeric nanoparticles for drug delivery to the central nervous system.Adv. Drug Deliv. Rev.201264770170510.1016/j.addr.2011.12.00622210134
    [Google Scholar]
  64. KhawliL.A. PrabhuS. Drug delivery across the blood-brain barrier.Mol. Pharm.20131051471147210.1021/mp400170b23641922
    [Google Scholar]
  65. AbdelkawiA. SlimA. ZinouneZ. PathakY. Surface modification of metallic nanoparticles for targeting drugs.Coatings2023139166010.3390/coatings13091660
    [Google Scholar]
  66. LiZ. ShanX. ChenZ. GaoN. ZengW. ZengX. MeiL. Applications of surface modification technologies in nanomedicine for deep tumor penetration.Adv. Sci. (Weinh.)202181200258910.1002/advs.20200258933437580
    [Google Scholar]
  67. LiX. WangL. FanY. FengQ. CuiF. Biocompatibility and toxicity of nanoparticles and nanotubes.J. Nanomater.20122012154838910.1155/2012/548389
    [Google Scholar]
  68. HerdianaY. WathoniN. ShamsuddinS. MuchtaridiM. Drug release study of the chitosan-based nanoparticles.Heliyon202281e0867410.1016/j.heliyon.2021.e0867435028457
    [Google Scholar]
  69. ColbyA.H. LiuR. DoyleR.P. MertingA. ZhangH. SavageN. ChuN.Q. HollisterB.A. McCullochW. BurdetteJ.E. PearceC.J. LiuK. OberliesN.H. ColsonY.L. GrinstaffM.W. Pilot-scale production of expansile nanoparticles: Practical methods for clinical scale-up.J. Control. Release202133714415410.1016/j.jconrel.2021.07.01234280414
    [Google Scholar]
  70. FengJ. MarkwalterC.E. TianC. ArmstrongM. Prud’hommeR.K. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale.J. Transl. Med.201917120010.1186/s12967‑019‑1945‑931200738
    [Google Scholar]
  71. AljabaliA.A. ObeidM.A. BashatwahR.M. Serrano-ArocaÁ. MishraV. MishraY. El-TananiM. Hromić-JahjefendićA. KapoorD.N. GoyalR. NaikooG.A. TambuwalaM.M. Nanomaterials and their impact on the immune system.Int. J. Mol. Sci.2023243200810.3390/ijms2403200836768330
    [Google Scholar]
  72. MuhammadQ. JangY. KangS.H. MoonJ. KimW.J. ParkH. Modulation of immune responses with nanoparticles and reduction of their immunotoxicity.Biomater. Sci.2020861490150110.1039/C9BM01643K31994542
    [Google Scholar]
  73. BrancaJ.V. PaciniA. CarrinoD. Targeting cannabidiol to specific areas of the brain: An ultrasound-based strategy.Neural Regen. Res.202015122247224810.4103/1673‑5374.28499232594040
    [Google Scholar]
  74. GuoS. YiC.X. Cell type-targeting nanoparticles in treating central nervous system diseases: Challenges and hopes.Nanotechnol. Rev.20231212023015810.1515/ntrev‑2023‑0158
    [Google Scholar]
  75. WastiS. LeeI.H. KimS. LeeJ.H. KimH. Ethical and legal challenges in nanomedical innovations: A scoping review.Front. Genet.202314116339210.3389/fgene.2023.116339237252668
    [Google Scholar]
  76. ZhangJ. ZhangY. WangJ. XiaY. ZhangJ. ChenL. Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies.Signal Transduct. Target. Ther.20249121110.1038/s41392‑024‑01911‑339174535
    [Google Scholar]
  77. McFarthingK. BuffS. RafaloffG. FiskeB. MursaleenL. FuestR. WyseR.K. StottS.R.W. Parkinson’s disease drug therapies in the clinical trial pipeline: 2023 update.J. Parkinsons Dis.202313442743910.3233/JPD‑23990137302040
    [Google Scholar]
  78. ZhangY. SalterA. WallströmE. CutterG. StüveO. Evolution of clinical trials in multiple sclerosis.Ther. Adv. Neurol. Disord.201912175628641982654710.1177/175628641982654730833985
    [Google Scholar]
  79. SchmidtD. FriedmanD. DichterM.A. Anti-epileptogenic clinical trial designs in epilepsy: Issues and options.Neurotherapeutics201411240141110.1007/s13311‑013‑0252‑z24420312
    [Google Scholar]
  80. AhnC. AhnD. Randomized clinical trials in stroke research.J. Investig. Med.201058227728110.2310/JIM.0b013e3181c9b2d420009954
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128362577250227081919
Loading
/content/journals/cpd/10.2174/0113816128362577250227081919
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test