Skip to content
2000
Volume 31, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Due to increasing antibiotic resistance, researchers are investigating the medicinal potential of nanoparticles, particularly their antibacterial and antiviral properties. Among other things, this concern mandates the journey for novel and more potent antibacterial drugs. The crucial role of nanoparticles in the treatment of various microbial diseases has been demonstrated in several research studies.

Aim & Objective

This study focuses on the role of Selenium nanoparticles (SeNPs) against infectious diseases, with an emphasis on exploring their probable mechanisms of action.

Methodology

Nanoparticles have been exploited as delivery mechanisms and broad-spectrum inhibitors in viral and microbial studies. Their significant therapeutic potential stems from their high surface area to volume ratio, which enables diverse applications. Various materials have been employed in the synthesis of nanoparticles, each tailored to meet specific therapeutic requirements. The unique combination of biological relevance, environmental friendliness, and versatile applications makes SeNPs a promising alternative to other nanoparticles in various fields.

Results

The therapeutic potential of nanoparticles, especially Selenium nanoparticles (SeNPs), is significant and warrants further exploration. They have shown promise as delivery agents and potent materials for combating infectious diseases, making them a valuable asset in the fight against antibiotic resistance.

Conclusion

Selenium nanoparticles (SeNPs) are potential biological prospects because of their biocompatibility, bioavailability, and low toxicity. Size, shape, and synthesis affect SeNP uses in biological systems. SeNPs are chemopreventive, anti-inflammatory, and antioxidant medicines that may cure fungal, bacterial, and parasite infections, cancer, and diabetes. They have better absorption, bioavailability, and antibacterial action than micron-size particles. Their large surface area facilitates biological contact and bioactive chemical functionalization. Functionalized SeNPs are less cytotoxic than other seleniums. They prevent DNA oxidation, detoxify heavy metals, and inhibit hydroxyl radicals. In conclusion, selenium nanoparticles have considerable promise for medication delivery, antimicrobials, and cancer and diabetes treatment. They are attractive nanomedicine prospects due to their low toxicity, biocompatibility, and high bioavailability.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128346637250401090138
2025-04-25
2025-10-22
Loading full text...

Full text loading...

References

  1. CohenM.L. Changing patterns of infectious disease.Nature2000406679776276710.1038/35021206 10963605
    [Google Scholar]
  2. SharmaP.C. SharmaD. SharmaA. Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure-property relationship.Mater. Today Chem.20201810034910.1016/j.mtchem.2020.100349
    [Google Scholar]
  3. NwokoroU.U. UgwaO. ChinemeremO.D. ObiI.F. NgoziM.O. AgunwaC. Water, sanitation and hygiene risk factors associated with diarrhoea morbidity in a rural community of Enugu, South East Nigeria.Pan Afr. Med. J.20203711510.11604/pamj.2020.37.115.17735 33425148
    [Google Scholar]
  4. PhadkeS. MacherlaS. ScheuermannR.H. Database and analytical resources for viral research community.Encycl Virol202114114115210.1016/B978‑0‑12‑809633‑8.20995‑3
    [Google Scholar]
  5. LvM. LuoX. EstillJ. Coronavirus disease (COVID-19): A scoping review.Euro Surveill.20202515200012510.2807/1560‑7917.ES.2020.25.15.2000125 32317050
    [Google Scholar]
  6. GoyalR. GautamR.K. ChopraH. Comparative highlights on MERS-CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV.EXCLI J.20222112451272 36483910
    [Google Scholar]
  7. FerryT. KolendaC. LaurentF. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection.Nat. Commun.2022131423910.1038/s41467‑022‑31837‑9 35869081
    [Google Scholar]
  8. MunitaJ.M. AriasC.A. Mechanisms of antibiotic resistance.Microbiol. Spectr.20162248151110.1128/microbiolspec.VMBF‑0016‑2015 27227291
    [Google Scholar]
  9. GoelA Garima AggarwalN Skin and soft tissue infections: Current advancement in epidemiology, pathogenesis and management.J. Pure Appl. Microbiol.20231718911110.22207/JPAM.17.1.50
    [Google Scholar]
  10. KollefM.H. BassettiM. FrancoisB. The intensive care medicine research agenda on multidrug-resistant bacteria, antibiotics, and stewardship.Intensive Care Med.20174391187119710.1007/s00134‑017‑4682‑7 28160023
    [Google Scholar]
  11. ChughR.M. MittalP. MpN. Fungal mushrooms: A natural compound with therapeutic applications.Front. Pharmacol.20221392538710.3389/fphar.2022.925387 35910346
    [Google Scholar]
  12. ChopraH. MishraA.K. BaigA.A. MohantaT.K. MohantaY.K. BaekK.H. Narrative review: Bioactive potential of various mushrooms as the treasure of versatile therapeutic natural product.J. Fungi20217972810.3390/jof7090728 34575766
    [Google Scholar]
  13. MustafaF. ChopraH. BaigA.A. Edible mushrooms as novel myco-therapeutics: effects on lipid level, obesity, and BMI.J. Fungi20228221110.3390/jof8020211 35205965
    [Google Scholar]
  14. ChopraH. GoyalR. AgarwalN. MishraD. GautamR.K. Edible Mushroom assisted synthesis and applications of metal nanoparticles: A comprehensive review.J Int Sci Technol2023111427
    [Google Scholar]
  15. WenS.R. YangZ.H. DongT.X. Deep fungal infections among general hospital inpatients in Southwestern China: A 5-year retrospective study.Front. Public Health20221084243410.3389/fpubh.2022.842434 35419337
    [Google Scholar]
  16. DantasK.C. MauadT. de AndréC.D.S. BierrenbachA.L. SaldivaP.H.N. A single-centre, retrospective study of the incidence of invasive fungal infections during 85 years of autopsy service in Brazil.Sci. Rep.2021111394310.1038/s41598‑021‑83587‑1 33597620
    [Google Scholar]
  17. BloomD.E. CadaretteD. Infectious disease threats in the twenty-first century: Strengthening the global response.Front. Immunol.20191054910.3389/fimmu.2019.00549 30984169
    [Google Scholar]
  18. ChopraH. DeyP.S. DasD. Curcumin nanoparticles as promising therapeutic agents for drug targets.Molecules2616499810.3390/molecules26164998
    [Google Scholar]
  19. KanithiM. KumariL. YalakaturiK. Nanoparticle polymers influence on cardiac health: good or bad for cardiac physiology?Curr. Probl. Cardiol.202449110214510.1016/j.cpcardiol.2023.102145 37852559
    [Google Scholar]
  20. BhattacharyaT. SoaresG.A.B. ChopraH. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma15030804 35160749
    [Google Scholar]
  21. ChopraH. BibiS. SinghI. Green metallic nanoparticles: biosynthesis to applications.Front. Bioeng. Biotechnol.20221087474210.3389/fbioe.2022.874742 35464722
    [Google Scholar]
  22. ChopraH. BibiS. MishraA.K. Nanomaterials: A promising therapeutic approach for cardiovascular diseases.J. Nanomater.202220221415572910.1155/2022/4155729
    [Google Scholar]
  23. QuijiaC.R. AlvesR.C. Hanck-SilvaG. Galvão FremR.C. ArroyosG. ChorilliM. Metal-organic frameworks for diagnosis and therapy of infectious diseases.Crit. Rev. Microbiol.202148216119610.1080/1040841X.2021.1950120
    [Google Scholar]
  24. SheikhalipourM. EsmaielpourB. BehnamianM. Chitosan-selenium nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon.Nanomaterials202111368410.3390/nano11030684 33803416
    [Google Scholar]
  25. BishtN. PhalswalP. KhannaP.K. Selenium nanoparticles: A review on synthesis and biomedical applications.Mater. Adv.2022331415143110.1039/D1MA00639H
    [Google Scholar]
  26. FerroC. FlorindoH.F. SantosH.A. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics.Adv. Healthc. Mater.20211016210059810.1002/adhm.202100598 34121366
    [Google Scholar]
  27. RamamurthyC. SampathK.S. ArunkumarP. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells.Bioprocess Biosyst. Eng.20133681131113910.1007/s00449‑012‑0867‑1 23446776
    [Google Scholar]
  28. Abdel-MoneimA.M.E. El-SaadonyM.T. ShehataA.M. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi.Saudi J. Biol. Sci.20222921197120910.1016/j.sjbs.2021.09.046 35197787
    [Google Scholar]
  29. HusainS. SardarM. FatmaT. Screening of cyanobacterial extracts for synthesis of silver nanoparticles.World J. Microbiol. Biotechnol.20153181279128310.1007/s11274‑015‑1869‑3 25971548
    [Google Scholar]
  30. HusainS VermaSK Hemlata Antibacterial efficacy of facile cyanobacterial silver nanoparticles inferred by antioxidant mechanism.Mater. Sci. Eng. C202112211188810.1016/j.msec.2021.111888 33641896
    [Google Scholar]
  31. HusainS. VermaS.K. YasinD. Hemlata A RizviM.M. FatmaT. Facile green bio-fabricated silver nanoparticles from Microchaete infer dose-dependent antioxidant and anti-proliferative activity to mediate cellular apoptosis.Bioorg. Chem.202110710453510.1016/j.bioorg.2020.104535 33341280
    [Google Scholar]
  32. FengX. JiangK. ZengH. LinH. A facile approach to solid-state white emissive carbon dots and their application in UV-excitable and single-component-based white LEDs.Nanomaterials20199572510.3390/nano9050725 31083426
    [Google Scholar]
  33. ZhangS. JiaZ. LiuT. WeiG. SuZ. Electrospinning nanoparticles-based materials interfaces for sensor applications.Sensors20191918397710.3390/s19183977 31540104
    [Google Scholar]
  34. VahdatiM. Tohidi MoghadamT. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties.Sci. Rep.202010151010.1038/s41598‑019‑57333‑7 31949299
    [Google Scholar]
  35. ShahabadiN. ZendehcheshmS. KhademiF. Selenium nanoparticles: Synthesis, in vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins.Biotechnol. Rep. (Amst.)202130e0061510.1016/j.btre.2021.e00615 33948440
    [Google Scholar]
  36. YuB. YouP. SongM. ZhouY. YuF. ZhengW. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability.New J. Chem.20164021118112310.1039/C5NJ02519B
    [Google Scholar]
  37. PouriS. MotamediH. HonaryS. KazeminezhadI. Biological synthesis of selenium nanoparticles and evaluation of their bioavailability.Braz. Arch. Biol. Technol.20186001716045210.1590/1678‑4324‑2017160452
    [Google Scholar]
  38. Bagheri-JosheghaniS. BakhshiB. Investigation of the antibacterial and antibiofilm activity of selenium nanoparticles against Vibrio cholerae as a potent therapeutics.Can. J. Infect. Dis. Med. Microbiol.2022202211010.1155/2022/3432235 35368520
    [Google Scholar]
  39. AlwhibiM.S. SolimanD.A. AwadM.A. RizwanaH. MarraikiN.A. Biosynthesis of silver nanoparticles using fenugreek seed extract and evaluation of their antifungal and antibacterial activities.J. Comput. Theor. Nanosci.20181541255126010.1166/jctn.2018.7301
    [Google Scholar]
  40. AnuK. DevanesanS. PrasanthR. AlSalhiM.S. AjithkumarS. SingaraveluG. Biogenesis of selenium nanoparticles and their anti-leukemia activity.J. King Saud Univ. Sci.20203242520252610.1016/j.jksus.2020.04.018
    [Google Scholar]
  41. VyasJ. RanaS. Antioxidant activity and biogenic synthesis of selenium nanoparticles using the leaf extract of Aloe Vera.Int. J. Curr. Pharm. Res.20179414710.22159/ijcpr.2017v9i4.20981
    [Google Scholar]
  42. HashemA.H. SalemS.S. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity.Biotechnol. J.2022172210043210.1002/biot.202100432 34747563
    [Google Scholar]
  43. SarkarR.D. LahkarP. KalitaM.C. Glycosmis pentaphylla (Retz.) DC leaf extract mediated synthesis of selenium nanoparticle and investigation of its antibacterial activity against urinary tract pathogens.Bioresour. Technol. Rep.20221710089410.1016/j.biteb.2021.100894
    [Google Scholar]
  44. MeenambigaiK. KokilaR. ChandhirasekarK. Green synthesis of selenium nanoparticles mediated by Nilgirianthus ciliates leaf extracts for antimicrobial activity on foodborne pathogenic microbes and pesticidal activity against Aedes aegypti with molecular docking.Biol. Trace Elem. Res.202220062948296210.1007/s12011‑021‑02868‑y 34431069
    [Google Scholar]
  45. Al-SaggafM.S. Nanoconjugation between fungal nanochitosan and biosynthesized selenium nanoparticles with Hibiscus sabdariffa extract for effectual control of multidrug-resistant bacteria.J. Nanomater.202220221758303210.1155/2022/7583032
    [Google Scholar]
  46. YazhiniprabhaM. VaseeharanB. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties.Mater. Sci. Eng. C201910310976310.1016/j.msec.2019.109763 31349432
    [Google Scholar]
  47. IkramM. JavedB. RajaN.I. MashwaniZ.R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects.Int. J. Nanomedicine20211624926810.2147/IJN.S295053 33469285
    [Google Scholar]
  48. PiacenzaE. PresentatoA. HeyneB. TurnerR.J. Tunable photoluminescence properties of selenium nanoparticles: biogenic versus chemogenic synthesis.Nanophotonics20209113615362810.1515/nanoph‑2020‑0239
    [Google Scholar]
  49. AfzalB. YasinD. HusainS. Screening of cyanobacterial strains for the selenium nanoparticles synthesis and their anti-oxidant activity.Biocatal. Agric. Biotechnol.20192110130710.1016/j.bcab.2019.101307
    [Google Scholar]
  50. Husain S, Afreen S, Hemlata , Yasin D, Afzal B, Fatma T. Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability.J. Microbiol. Methods2019162778210.1016/j.mimet.2019.05.011 31132377
    [Google Scholar]
  51. TitusD. James Jebaseelan SamuelE. RoopanS.M. Nanoparticle characterization techniques. In: Green Synthesis, Characterization and Applications of Nanoparticles.Elsevier201930331910.1016/B978‑0‑08‑102579‑6.00012‑5
    [Google Scholar]
  52. CampbellJ. BurkittS. DongN. ZavaletaC. Nanoparticle characterization techniques. In: Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications Micro and Nano Technologies.Elsevier202012914410.1016/B978‑0‑12‑816662‑8.00009‑6
    [Google Scholar]
  53. AnuK. SingaraveluG. MuruganK. BenelliG. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on Vero cells.J. Cluster Sci.201728155156310.1007/s10876‑016‑1123‑7
    [Google Scholar]
  54. GuntiL. DassR.S. KalagaturN.K. Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility.Front. Microbiol.20191093110.3389/fmicb.2019.00931 31114564
    [Google Scholar]
  55. HassanienR. Abed-ElmageedA.A.I. HuseinD.Z. Eco-friendly approach to synthesize selenium nanoparticles: Photocatalytic degradation of sunset yellow azo dye and anticancer activity.ChemistrySelect20194319018902610.1002/slct.201901267
    [Google Scholar]
  56. AlagesanV. VenugopalS. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities.Bionanoscience20199110511610.1007/s12668‑018‑0566‑8
    [Google Scholar]
  57. HuT. LiH. LiJ. Absorption and bio-transformation of selenium nanoparticles by wheat seedlings (Triticum aestivum L.).Front Plant Sci2018959710.3389/fpls.2018.00597 29868060
    [Google Scholar]
  58. Garza-GarcíaJ.J.O. Hernández-DíazJ.A. León-MoralesJ.M. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties.J. Nanobiotechnology202321125210.1186/s12951‑023‑02027‑6 37537575
    [Google Scholar]
  59. El-BatalA.I. MosallamF.M. GhorabM.M. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells.Int. J. Biol. Macromol.20201561584159910.1016/j.ijbiomac.2019.11.210 31790741
    [Google Scholar]
  60. El-SayyadG.S. El-BastawisyH.S. GobaraM. El-BatalA.I. Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens.Biol. Trace Elem. Res.2020195132334210.1007/s12011‑019‑01842‑z 31396853
    [Google Scholar]
  61. SarkarJ. DeyP. SahaS. AcharyaK. Mycosynthesis of selenium nanoparticles.Micro Nano Lett.20116859960210.1049/mnl.2011.0227
    [Google Scholar]
  62. HusseinH.G. El-SayedE.S.R. YounisN.A. HamdyA.E.H.A. EasaS.M. Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities.AMB Express20221216810.1186/s13568‑022‑01408‑8 35674975
    [Google Scholar]
  63. KoraA.J. RastogiL. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.J. Environ. Manage.201618123123610.1016/j.jenvman.2016.06.029 27353373
    [Google Scholar]
  64. EstevamEC GriffinS NasimMJ Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise?J Hazard Mater2017324Pt A223010.1016/j.jhazmat.2016.02.00126897703
    [Google Scholar]
  65. WangX. LiuG. ZhouJ. WangJ. JinR. LvH. Quinone-mediated reduction of selenite and tellurite by Escherichia coli.Bioresour. Technol.201110233268327110.1016/j.biortech.2010.11.078 21145234
    [Google Scholar]
  66. XuC. GuoY. QiaoL. MaL. ChengY. RomanA. Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by Enterotoxigenic Escherichia coli K88.Front. Microbiol.20189112910.3389/fmicb.2018.01129 29967593
    [Google Scholar]
  67. WangF. DuM. KaiL. Exopolymer-functionalized nanoselenium from Bacillus subtilis SR41: Characterization, monosaccharide analysis and free radical scavenging ability.Polymers20221417352310.3390/polym14173523 36080599
    [Google Scholar]
  68. QiuW.Y. WangY.Y. WangM. YanJ.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles.Colloids Surf. B Biointerfaces201817069270010.1016/j.colsurfb.2018.07.003 29986266
    [Google Scholar]
  69. ZengD. ZhaoJ. LukK.H. CheungS.T. WongK.H. ChenT. Potentiation of in vivo anticancer efficacy of selenium nanoparticles by mushroom polysaccharides surface decoration.J. Agric. Food Chem.201967102865287610.1021/acs.jafc.9b00193 30785270
    [Google Scholar]
  70. YuH. HeX. GuX. Carbon-coated selenium nanoparticles for photothermal therapy in choriocarcinoma cells.RSC Advances202414164064910.1039/D3RA07085A 38173625
    [Google Scholar]
  71. ArchanaDeshmukh R. Recent trends in nanotechnological approach in targeting selenium nanoparticles for the treatment of colorectal cancer.Nanosci. Nanotechnol. Asia2024151e2210681234221610.2174/0122106812342216241120051723
    [Google Scholar]
  72. BlinovA. NagdalianA. SerovA. Selenium nanoparticles stabilized with Tween 80: Synthesis, characterization, and application in fortified milk and fermented dairy products.Colloids Surf. A Physicochem. Eng. Asp.202570613582210.1016/j.colsurfa.2024.135822
    [Google Scholar]
  73. JamimaJ. VeeramaniP. KanagarajuP. KumananK. Synthesis and characterization of selenium nano particles by high energy ball milling (HEBM).Dr C Balachandran20204944551
    [Google Scholar]
  74. Haro-PoniatowskiE. Escobar-AlarcónL. Hernández-PozosJ.L. Mendoza-LunaL.G. GuarinC.A. Synthesis and characterization of selenium nanoparticles obtained by femtosecond pulsed laser ablation in liquid media.Appl. Phys., A Mater. Sci. Process.2022128982710.1007/s00339‑022‑05956‑5
    [Google Scholar]
  75. KietV.A. Thi Bich NgocT. Thi Thanh NgocT. Therapeutic potential of electron beam and gamma irradiation synthesized selenium nanoparticles for health care.Mater. Res. Express2023101212500510.1088/2053‑1591/ad135a
    [Google Scholar]
  76. IndrayantoG. PutraG.S. SuhudF. Validation of in-vitro bioassay methods: Application in herbal drug research.Profiles Drug Subst. Excip. Relat. Methodol.20214627330710.1016/bs.podrm.2020.07.005 33461699
    [Google Scholar]
  77. BakerJ. AjaniJ. ScottéF. Docetaxel-related side effects and their management.Eur. J. Oncol. Nurs.2009131495910.1016/j.ejon.2008.10.003 19201649
    [Google Scholar]
  78. Tugba ArtunF. KaragozA. OzcanG. In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and Vero cell lines.J BUON2016213720725 27569095
    [Google Scholar]
  79. TruongL.B. Medina-CruzD. MostafaviE. RabieeN. Selenium nanomaterials to combat antimicrobial resistance.Molecules20212612361110.3390/molecules26123611 34204666
    [Google Scholar]
  80. VentolaC.L. The antibiotic resistance crisis: Part 1: Causes and threats.P&T2015404277283 25859123
    [Google Scholar]
  81. MadurayK. ParboosingR. Metal nanoparticles: A promising treatment for viral and arboviral infections.Biol. Trace Elem. Res.202119983159317610.1007/s12011‑020‑02414‑2 33029761
    [Google Scholar]
  82. XuY. ZhangT. CheJ. YiJ. WeiL. LiH. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens.Biofouling202339215717010.1080/08927014.2023.2199932 37038871
    [Google Scholar]
  83. Pon MatheswariP. Jenit SharmilaG. MuruganC. Green synthesis of selenium nanoparticles using Delonix regia and Nerium oleander flower extract and evaluation of their antioxidant and antibacterial activities.Nano-Metal Chem2022545848810.1080/24701556.2021.2025099
    [Google Scholar]
  84. SahooB. Leena PanigrahiL. JenaS. JhaS. ArakhaM. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death.RSC Advances20231317114061141410.1039/D2RA07827A 37063733
    [Google Scholar]
  85. ZhangH. LiZ. DaiC. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX.Environ. Res.202119411063010.1016/j.envres.2020.110630 33345899
    [Google Scholar]
  86. ZhaoG. WuX. ChenP. ZhangL. YangC.S. ZhangJ. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects.Free Radic. Biol. Med.2018126556610.1016/j.freeradbiomed.2018.07.017 30056082
    [Google Scholar]
  87. LiY. LiX. ZhengW. FanC. ZhangY. ChenT. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways.J. Mater. Chem. B Mater. Biol. Med.20131466365637210.1039/c3tb21168a 32261335
    [Google Scholar]
  88. RaoS. LinY. DuY. Designing multifunctionalized selenium nanoparticles to reverse oxidative stress-induced spinal cord injury by attenuating ROS overproduction and mitochondria dysfunction.J. Mater. Chem. B Mater. Biol. Med.20197162648265610.1039/C8TB02520G 32254998
    [Google Scholar]
  89. SkalickovaS. MilosavljevicV. CihalovaK. HorkyP. RichteraL. AdamV. Selenium nanoparticles as a nutritional supplement.Nutrition201733839010.1016/j.nut.2016.05.001 27356860
    [Google Scholar]
  90. YuanQ. XiaoR. AfolabiM. BommaM. XiaoZ. Evaluation of antibacterial activity of selenium nanoparticles against food-borne pathogens.Microorganisms2023116151910.3390/microorganisms11061519 37375021
    [Google Scholar]
  91. AoB. DuQ. LiuD. ShiX. TuJ. XiaX. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry.Front. Microbiol.202314122983810.3389/fmicb.2023.1229838 37520346
    [Google Scholar]
  92. LinklaterD.P. BaulinV.A. Le GuévelX. Antibacterial action of nanoparticles by lethal stretching of bacterial cell membranes.Adv. Mater.20203252200567910.1002/adma.202005679 33179362
    [Google Scholar]
  93. MakabentaJ.M.V. NabawyA. LiC.H. Schmidt-MalanS. PatelR. RotelloV.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections.Nat. Rev. Microbiol.2021191233610.1038/s41579‑020‑0420‑1 32814862
    [Google Scholar]
  94. SunY. ShiY. JiaH. DingH. YueT. YuanY. Biosynthesis of selenium nanoparticles of Monascus purpureus and their inhibition to Alicyclobacillus acidoterrestris.Food Control202113010836610.1016/j.foodcont.2021.108366
    [Google Scholar]
  95. Abdel-GaberR. Al-ShaebiE.M. Al QuraishyS. Biosynthesized selenium nanoparticles from neem leaves extract exhibit antioxidant and renal responses during eimeria papillata infection.Pharmacogn. Mag.202409731296241303542
    [Google Scholar]
  96. SouzaL.M.S. DiboM. SarmientoJ.J.P. Biosynthesis of selenium nanoparticles using combinations of plant extracts and their antibacterial activity.Curr Res Green Sustain Chem2022510030310.1016/j.crgsc.2022.100303
    [Google Scholar]
  97. AdamB. BaillieG.S. DouglasL.J. Mixed species biofilms of Candida albicans and Staphylococcus epidermidis.J. Med. Microbiol.200251434434910.1099/0022‑1317‑51‑4‑344 11926741
    [Google Scholar]
  98. ChatterjeeN. WalkerG.C. Mechanisms of DNA damage, repair, and mutagenesis.Environ. Mol. Mutagen.201758523526310.1002/em.22087 28485537
    [Google Scholar]
  99. FerreiraV.H. SoleraJ.T. HuQ. Homotypic and heterotypic immune responses to Omicron variant in immunocompromised patients in diverse clinical settings.Nat. Commun.2022131448910.1038/s41467‑022‑32235‑x 35927279
    [Google Scholar]
  100. LiuJ. FuM. WangM. WanD. WeiY. WeiX. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress.J. Hematol. Oncol.20221512810.1186/s13045‑022‑01247‑x 35303904
    [Google Scholar]
  101. MahdaviM. MavandadnejadF. YazdiM.H. Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model.J. Infect. Public Health201710110210910.1016/j.jiph.2016.02.006 27026241
    [Google Scholar]
  102. LiY. XuT. LinZ. Inhibition of enterovirus A71 by selenium nanoparticles interferes with JNK signaling pathways.ACS Omega2019446720672510.1021/acsomega.8b03502
    [Google Scholar]
  103. MartinetJ.P. FertéH. FaillouxA.B. SchaffnerF. DepaquitJ. Mosquitoes of North-Western Europe as potential vectors of arboviruses: A review.Viruses20191111105910.3390/v11111059 31739553
    [Google Scholar]
  104. SarkarJ. DasS. AichS. BhattacharyyaP. AcharyaK. Antiviral potential of nanoparticles for the treatment of Coronavirus infections.J. Trace Elem. Med. Biol.20227212697710.1016/j.jtemb.2022.126977 35397331
    [Google Scholar]
  105. BouvierN.M. PaleseP. The biology of influenza viruses.Vaccine200826Suppl. 4D49D5310.1016/j.vaccine.2008.07.039 19230160
    [Google Scholar]
  106. LiY. LinZ. GuoM. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus.Int. J. Nanomedicine2017125733574310.2147/IJN.S140939 28848350
    [Google Scholar]
  107. LiY. LinZ. GuoM. Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways.Int. J. Nanomedicine2018132005201610.2147/IJN.S155994 29662313
    [Google Scholar]
  108. WangC. ChenH. ChenD. The inhibition of H1N1 influenza virus-induced apoptosis by surface decoration of selenium nanoparticles with β-Thujaplicin through reactive oxygen species-mediated AKT and p53 signaling pathways.ACS Omega2020547306333064210.1021/acsomega.0c04624 33283112
    [Google Scholar]
  109. SuJ. LaiJ. LiJ. Selenium nanoparticles control H1N1 virus by inhibiting inflammatory response and cell apoptosis.Molecules20232815592010.3390/molecules28155920 37570890
    [Google Scholar]
  110. ZhongJ. XiaY. HuaL. Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model.Artif. Cells Nanomed. Biotechnol.20194713485349110.1080/21691401.2019.1640716 31422717
    [Google Scholar]
  111. LinZ. LiY. XuT. Inhibition of enterovirus 71 by selenium nanoparticles loaded with siRNA through Bax signaling pathways.ACS Omega20205211249510.1021/acsomega.0c01382
    [Google Scholar]
  112. ChengZ. ZhiX. SunG. Sodium selenite suppresses hepatitis B virus transcription and replication in human hepatoma cell lines.J. Med. Virol.201688465366310.1002/jmv.24366 26331371
    [Google Scholar]
  113. MedhiR. SrinoiP. NgoN. TranH.V. LeeT.R. Nanoparticle-based strategies to combat COVID-19.ACS Appl. Nano Mater.2020398557858010.1021/acsanm.0c01978 37556239
    [Google Scholar]
  114. MathéL. Van DijckP. Recent insights into Candida albicans biofilm resistance mechanisms.Curr. Genet.201359425126410.1007/s00294‑013‑0400‑3 23974350
    [Google Scholar]
  115. NileS.H. ThombreD. ShelarA. Antifungal properties of biogenic selenium nanoparticles functionalized with nystatin for the inhibition of Candida albicans biofilm formation.Molecules2023284183610.3390/molecules28041836 36838823
    [Google Scholar]
  116. ShakibaieM. Salari MohazabN. Ayatollahi MousaviS.A. Antifungal activity of selenium nanoparticles synthesized by Bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans.Jundishapur J. Microbiol.201589e2638110.5812/jjm.26381 26495111
    [Google Scholar]
  117. JoshiS. De BrittoS. JogaiahS. ItoS. Mycogenic selenium nanoparticles as potential new generation broad-spectrum antifungal molecules.Biomolecules20199941910.3390/biom9090419 31466286
    [Google Scholar]
  118. RekhaR. VaseeharanB. VijayakumarS. Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors – Insights on their toxicity and internalization.J. Trace Elem. Med. Biol.20195119120310.1016/j.jtemb.2018.10.017 30466931
    [Google Scholar]
  119. SowndaryaP. RamkumarG. ShivakumarM.S. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors.Artif. Cells Nanomed. Biotechnol.20174581490149510.1080/21691401.2016.1252383 27832715
    [Google Scholar]
  120. SundararajanB. Ranjitha KumariB.D. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L.J. Trace Elem. Med. Biol.20174318719610.1016/j.jtemb.2017.03.008 28341392
    [Google Scholar]
  121. FilipovićN. UšjakD. MilenkovićM.T. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure.Front. Bioeng. Biotechnol.2021862462110.3389/fbioe.2020.624621 33569376
    [Google Scholar]
  122. Escobar-RamírezM.C. Castañeda-OvandoA. Pérez-EscalanteE. Antimicrobial activity of Se-nanoparticles from bacterial biotransformation.Fermentation20217313010.3390/fermentation7030130
    [Google Scholar]
  123. WebsterT.J. Tran Selenium nanoparticles inhibit Staphylococcus aureus growth.Int. J. Nanomedicine201161553155810.2147/IJN.S21729 21845045
    [Google Scholar]
  124. OliveiraR FerreiraF Magnetic nanoparticles and rapamycin encapsulated into polymeric nanocarriers.J Biomed Nanotechnol20128319320110.1166/jbn.2012.1384
    [Google Scholar]
  125. SonkusreP. CameotraS. Biogenic selenium nanoparticles inhibit Staphylococcus aureus adherence on different surfaces.Colloids Surf. B Biointerfaces2015136105110.1016/j.colsurfb.2015.10.052
    [Google Scholar]
  126. YangL. LiuC. ZhaoW. Impaired autophagy in intestinal epithelial cells alters gut microbiota and host immune responses.Appl. Environ. Microbiol.20188418e00880e1810.1128/AEM.00880‑18 30006408
    [Google Scholar]
  127. TranP.A. PalmerJ.A. BockN. ReynoldsE.C. WebsterT.J. DevaA. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis: In vitro and in vivo studies.Int. J. Nanomedicine2023144613462410.2147/IJN.S197737 31308651
    [Google Scholar]
  128. ChandramohanS. SundarK. MuthukumaranA. Hollow selenium nanoparticles from potato extract and investigation of its biological properties and developmental toxicity in zebrafish embryos.IET Nanobiotechnol.201913327528110.1049/iet‑nbt.2018.5228 31053690
    [Google Scholar]
  129. LiuJ. MengJ. CaoL. LiY. DengP. PanP. Synthesis and investigations of ciprofloxacin-loaded engineered selenium lipid nanocarriers for effective drug delivery system for preventing lung infections.J. Photochem. Photobiol. B201919711151010.1016/j.jphotobiol.2019.05.007
    [Google Scholar]
  130. NairM.S. UpadhyayA. FancherS. Inhibition and inactivation of Escherichia coli O157:H7 biofilms by Selenium.J. Food Prot.201881619693310.1016/j.jphotobiol.2019.05.007
    [Google Scholar]
  131. ElerakyN.E. AllamA. HassanS.B. OmarM.M. Nanomedicine fight against antibacterial resistance: An overview of the recent pharmaceutical innovations.Pharmaceutics202012214210.3390/pharmaceutics12020142 32046289
    [Google Scholar]
  132. HuangT. HoldenJ.A. HeathD.E. O’Brien-SimpsonN.M. O’ConnorA.J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size.Nanoscale20191131149371495110.1039/C9NR04424H 31363721
    [Google Scholar]
  133. KooH. AllanR.N. HowlinR.P. StoodleyP. Hall-StoodleyL. Targeting microbial biofilms: Current and prospective therapeutic strategies.Nat. Rev. Microbiol.2017151274075510.1038/nrmicro.2017.99 28944770
    [Google Scholar]
  134. BayD.C. StremickC.A. SlipskiC.J. TurnerR.J. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds.Res. Microbiol.2017168320822110.1016/j.resmic.2016.11.003 27884783
    [Google Scholar]
  135. EstevezH. PalaciosA. GilD. Antimycobacterial effect of selenium nanoparticles on Mycobacterium tuberculosis.Front. Microbiol.20201180010.3389/fmicb.2020.00800 32425916
    [Google Scholar]
  136. PiJ. ShenL. YangE. Macrophage-targeted isoniazid–selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of Tuberculosis bacilli.Angew. Chem. Int. Ed.20205983226323410.1002/anie.201912122 31756258
    [Google Scholar]
  137. MahmoudvandH. Fasihi HarandiM. ShakibaieM. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts.Int. J. Surg.201412539940310.1016/j.ijsu.2014.03.017 24686032
    [Google Scholar]
  138. SoflaeiS. DalimiA. AbdoliA. Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum.Comp. Clin. Pathol.2014231152010.1007/s00580‑012‑1561‑z
    [Google Scholar]
  139. AlkhudhayriA. Al-ShaebiE.M. QasemA.A. Antioxidant and anti-apoptotic effects of selenium nanoparticles against murine eimeriosis.An. Acad. Bras. Cienc.2020922e2019110710.1590/0001‑3765202020191107
    [Google Scholar]
  140. UdalovaZ.V. FolmanisG.E. KhasanovF.K. ZinovievaS.V. Selenium nanoparticles—an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949.Dokl. Biochem. Biophys.2018482126426710.1134/S1607672918050095 30397889
    [Google Scholar]
  141. MohammedS.A. AliA.A. Effect of selenium nanoparticles against protoscoleces of Echinococcus granulosusIn vitro and hydatid cysts in mice.Iraqi J. Vet. Sci.202236Suppl. I19520210.33899/ijvs.2022.135838.2535
    [Google Scholar]
  142. ShakibaieM. EzzatkhahF. GabalE. BadparvaE. JahanbakhshS. MahmoudvandH. Prophylactic effects of biogenic selenium nanoparticles on acute toxoplasmosis: An in vivo study.Ann. Med. Surg. (Lond.)202054858810.1016/j.amsu.2020.04.010 32405413
    [Google Scholar]
  143. KeyhaniA. ShakibaieM. MahmoudvandH. Prophylactic activity of biogenic selenium nanoparticles against chronic Toxoplasma gondii infection.Recent Patents Anti-Infect. Drug Disc.2020151758410.2174/22124071MTA3vMDgB1 32496989
    [Google Scholar]
  144. YuB. LiX. ZhengW. FengY. WongY.S. ChenT. pH-responsive cancer-targeted selenium nanoparticles: A transformable drug carrier with enhanced theranostic effects.J. Mater. Chem. B Mater. Biol. Med.20142335409541810.1039/C4TB00399C 32261761
    [Google Scholar]
  145. SpyridopoulouK. TryfonopoulouE. AindelisG. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitroand in vivo.Nanoscale Adv.2021392516252810.1039/D0NA00984A 36134160
    [Google Scholar]
  146. SpyridopoulouK. AindelisG. PappaA. ChlichliaK. Anticancer activity of biogenic selenium nanoparticles: Apoptotic and immunogenic cell death markers in colon cancer cells.Cancers20211321533510.3390/cancers13215335 34771499
    [Google Scholar]
  147. MenonS. KsS.D. SanthiyaR. RajeshkumarS. VenkatK.S. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism.Colloids Surf. B Biointerfaces201817028029210.1016/j.colsurfb.2018.06.006 29936381
    [Google Scholar]
  148. KalkavanH. GreenD.R. MOMP, cell suicide as a BCL-2 family business.Cell Death Differ.2018251465510.1038/cdd.2017.179 29053143
    [Google Scholar]
  149. GalluzziL. VitaleI. AaronsonS.A. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  150. AnY. ZhaoJ. Functionalized selenium nanotherapeutics synergizes with zoledronic acid to suppress prostate cancer cell growth through induction of mitochondria-mediated apoptosis and cell cycle S phase arrest.Front. Oncol.20211168578410.3389/fonc.2021.685784 34168998
    [Google Scholar]
  151. ZhuL. MiP. YuZ.L. Dual-modified selenium nanoparticles for the synergistic treatment of breast cancer.Mater. Today Chem.20254310245110.1016/j.mtchem.2024.102451
    [Google Scholar]
  152. MavandadnejadF. YazdiM.H. HassanzadehS.M. Biosynthesis of SeNPs by Mycobacterium bovis and their enhancing effect on the immune response against HBs antigens: An in vivo study.IET Nanobiotechnol.2018121576310.1049/iet‑nbt.2017.0006
    [Google Scholar]
  153. GeX. LiangZ. LiK. Selenium nanoparticles enhance mucosal immunity against Mycobacterium bovis infection.Int. Immunopharmacol.202413711238410.1016/j.intimp.2024.112384 38878484
    [Google Scholar]
  154. ChenD.S. Hepatitis B vaccination: The key towards elimination and eradication of hepatitis B.J. Hepatol.200950480581610.1016/j.jhep.2009.01.002 19231008
    [Google Scholar]
  155. El-SayedH. MoradM.Y. SonbolH. Myco-synthesized selenium nanoparticles as wound healing and antibacterial agent: An in vitro and in vivo investigation.Microorganisms2023119234110.3390/microorganisms11092341 37764185
    [Google Scholar]
  156. SalemS.S. Bio-fabrication of selenium nanoparticles using Baker’s yeast extract and its antimicrobial efficacy on food borne pathogens.Appl. Biochem. Biotechnol.202219451898191010.1007/s12010‑022‑03809‑8 34994951
    [Google Scholar]
  157. SantosT.S. SantosI.D.D. Pereira-FilhoR.N. Histological evidence of wound healing improvement in rats treated with oral administration of hydroalcoholic extract of Vitis labrusca.Curr. Issues Mol. Biol.202143133535210.3390/cimb43010028 34208147
    [Google Scholar]
  158. KamelR. El-batanonyR. SalamaA. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats.Int. J. Pharm.201957011866710.1016/j.ijpharm.2019.118667 31494238
    [Google Scholar]
  159. FangM. ZhangH. WangY. ZhangH. ZhangD. XuP. Biomimetic selenium nanosystems for infectious wound healing.Engineered Regeneration20234215216010.1016/j.engreg.2023.01.004
    [Google Scholar]
  160. KumarN. KrishnaniK.K. SinghN.P. Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish.Environ. Sci. Pollut. Res. Int.20182598914892710.1007/s11356‑017‑1165‑x 29332272
    [Google Scholar]
  161. HadrupN. LoeschnerK. MandrupK. Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats.Drug Chem. Toxicol.2019421768310.1080/01480545.2018.1491589 30032689
    [Google Scholar]
  162. LesnichayaM. ShendrikR. TitovE. SukhovB. Synthesis and comparative assessment of antiradical activity, toxicity, and biodistribution of κ‐carrageenan‐capped selenium nanoparticles of different size: in vivo and in vitro study.IET Nanobiotechnol.202014651952610.1049/iet‑nbt.2020.0023 32755962
    [Google Scholar]
  163. LoeschnerK. HadrupN. HansenM. Absorption, distribution, metabolism and excretion of selenium following oral administration of nlmal selenium nanoparticles or selenite in rats.Metallomics20146233033710.1039/c3mt00309d 24413471
    [Google Scholar]
  164. UrbankovaL. SkalickovaS. PribilovaM. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats.Toxics2021922810.3390/toxics9020028 33546233
    [Google Scholar]
  165. KhubulavaS. ChichiveishviliN. ShavshishviliN. Effect of high dose of selenium nanoparticles on alimentary tract in rodents.J. Nanomed. Nanotechnol.201910531210.35248/2157‑7439.19.10.531
    [Google Scholar]
  166. SteinbrennerH. Al-QuraishyS. DkhilM.A. WunderlichF. SiesH. Dietary selenium in adjuvant therapy of viral and bacterial infections.Adv. Nutr.201561738210.3945/an.114.007575 25593145
    [Google Scholar]
  167. LinW. ZhangJ. XuJ.F. PiJ. The advancing of selenium nanoparticles against infectious diseases.Front. Pharmacol.20211268228410.3389/fphar.2021.682284 34393776
    [Google Scholar]
  168. SoniK. DesaleS. BasuT.B. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation.J. Control. Release2016240109126 26571000
    [Google Scholar]
  169. GuillinO. VindryC. OhlmannT. ChavatteL. Selenium, selenoproteins and viral infection.Nutrients2019119210110.3390/nu11092101 31487871
    [Google Scholar]
  170. VarlamovaE.G. GoltyaevM.V. Mal’tsevaV.N. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines.Int. J. Mol. Sci.20212215779810.3390/ijms22157798 34360564
    [Google Scholar]
  171. LashaniE. MoghimiH. TurnerR.J. AmoozegarM.A. Characterization and biological activity of selenium nanoparticles biosynthesized by Yarrowia lipolytica.Microb. Biotechnol.20241710e7001310.1111/1751‑7915.70013 39364622
    [Google Scholar]
  172. SampathS. SunderamV. ManjushaM. DlaminiZ. LawranceA.V. Selenium nanoparticles: A comprehensive examination of synthesis techniques and their diverse applications in medical research and toxicology studies.Molecules202429480110.3390/molecules29040801 38398553
    [Google Scholar]
  173. RyabovaY.V. SutunkovaM.P. MinigalievaI.A. ShabardinaL.V. FilippiniT. TsatsakisA. Toxicological effects of selenium nanoparticles in laboratory animals: A review.J. Appl. Toxicol.202444141610.1002/jat.4499 37312419
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128346637250401090138
Loading
/content/journals/cpd/10.2174/0113816128346637250401090138
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bacteria; fungus; infectious disease; nanotechnology; SeNPs; virus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test