Skip to content
2000
Volume 31, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Pancreatic cancer (PC) remains a formidable challenge in cancer, which requires innovative approaches to identify novel therapeutic strategies. , a traditional herbal remedy known for its analgesic and antiemetic properties, has been reported to exhibit anticancer effects.

Methods

We employed network pharmacology to elucidate the bioactive ingredients of and their potential targets in the context of early-onset pancreatic cancer. By integrating data from public databases, we identified genes associated with PC and developed a protein-protein interaction (PPI) network. Topological analysis of the PPI network facilitated the identification of core targets, which were subsequently subjected to molecular docking with corresponding bioactive ingredients of . The computational approach aimed to unveil the pharmacological mechanisms of basic putative crucial proteins and associated pathways implicated in early-onset PC. Pathway and GO analysis highlighted the significant involvement of in pathways such as cAMP signaling, cytokine-cytokine receptor interaction, rheumatoid arthritis, interleukin signaling, bladder cancer, IL-17, IL-24 signaling, cytokine-mediated signaling, chemokine, and calcium-mediated signaling.

Results

Further exploration focused on a hub protein module derived from PPIs, with molecular docking emphasizing strong binding interactions between and ERBB2, a protein strongly implicated in PC management compared to other identified hub proteins (STAT1, ERBB2, CXCL10, INS, RACK1, FOS, HLA-DRB1, POMC, PRKAA1). Additionally, the pharmacokinetic analysis of indicated its efficacy as a therapeutic agent with minimal adverse effects. Rutaecarpine, identified as the main bioactive ingredient, emerged as a potential inhibitor of PC growth through the suppression of ERBB2.

Conclusion

These outcomes provide novel insights into the prevention and treatment of PC, presenting as a promising candidate for further experimental validation and clinical exploration. The identified discovery has the potential to reduce the drug resistance of by engaging with a new target in a specific manner, thus improving therapeutic effectiveness.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128356225250305081937
2025-03-26
2025-10-22
Loading full text...

Full text loading...

References

  1. RawlaP. SunkaraT. GaduputiV. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors.World J. Oncol.2019101102710.14740/wjon1166 30834048
    [Google Scholar]
  2. RebeccaL. Cancer statistics, 2022.CA Cancer J. Clin.2022721pp. 733
    [Google Scholar]
  3. WangW.D. GuoY.Y. YangZ.L. SuG.L. SunZ.J. Sniping cancer stem cells with nanomaterials.ACS Nano20231723232622329810.1021/acsnano.3c07828 38010076
    [Google Scholar]
  4. FerlayJ. PartenskyC. BrayF. More deaths from pancreatic cancer than breast cancer in the EU by 2017.Acta Oncol.2016559-101158116010.1080/0284186X.2016.1197419 27551890
    [Google Scholar]
  5. OwensD.K. DavidsonK.W. KristA.H. Screening for pancreatic cancer: Us preventive services task force reaffirmation recommendation statement.JAMA2019322543844410.1001/jama.2019.10232 31386141
    [Google Scholar]
  6. ThomasF. Preoperative chemotherapy, radiotherapy and surgical decision-making in patients with borderline resectable and locally advanced pancreatic cancer.Nat. Rev. Gastroenterol. Hepatol.2024212101124
    [Google Scholar]
  7. ParkW. ChawlaA. O’ReillyE.M. Pancreatic Cancer.JAMA2021326985186210.1001/jama.2021.13027 34547082
    [Google Scholar]
  8. SunQ. HongZ. ZhangC. WangL. HanZ. MaD. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends.Signal Transduct. Target. Ther.20238132010.1038/s41392‑023‑01522‑4 37635168
    [Google Scholar]
  9. LiuJ. LuoX. GuoR. JingW. LuH. Cell metabolomics reveals berberine-inhibited pancreatic cancer cell viability and metastasis by regulating citrate metabolism.J. Proteome Res.20201993825383610.1021/acs.jproteome.0c00394 32692565
    [Google Scholar]
  10. LiuC. QinH. LiuH. Tissue metabolomics identified new biomarkers for the diagnosis and prognosis prediction of pancreatic cancer.Front. Oncol.20221299105110.3389/fonc.2022.991051 36119530
    [Google Scholar]
  11. RehmanU. AbourehabM.A.S. AlexanderA. KesharwaniP. Polymeric micelles assisted combinatorial therapy: Is it new hope for pancreatic cancer?Eur. Polym. J.202318411178410.1016/j.eurpolymj.2022.111784
    [Google Scholar]
  12. BenskyD. ClaveyS. StõgerE. Materia medica.Chin. Herb. Med.200436
    [Google Scholar]
  13. ChenZ.J. YuY.H. JinJ. WangY.F. ZhuY.X. ZhangZ.Z. Observation on effect of aromatherapy combined with point masssge on relieving depression for patients after stroke.Nursing and Rehabilitation2016155403406
    [Google Scholar]
  14. GaoY. GongY. LuJ. HaoH. ShiX. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: Mechanism and strategy.Front. Immunol.202415137772210.3389/fimmu.2024.1377722 38550587
    [Google Scholar]
  15. TanQ. ZhangJ. Evodiamine and its role in chronic diseases.Adv. Exp. Med. Biol.201692931532810.1007/978‑3‑319‑41342‑6_14
    [Google Scholar]
  16. XuM. ZhaoY. GongM. Dehydroevodiamine ameliorates neurological dysfunction after traumatic brain injury in mice via regulating the SIRT1/FOXO3a/Bim pathway.Phytomedicine202412515532110.1016/j.phymed.2023.155321 38237514
    [Google Scholar]
  17. Moreno-HernandezY Olivo-VidalZE Sánchez-ChinoXM Betanzos-ReyesA Salvatierra-IzabaB Cecropia obtusifolia: Phytopharmacology and its potential use in the treatment of diseases.Adv Tradit Med.2024242211
    [Google Scholar]
  18. TeoM.Y. RathkopfD.E. KantoffP. Treatment of advanced prostate cancer.Annu. Rev. Med.201970147949910.1146/annurev‑med‑051517‑011947 30691365
    [Google Scholar]
  19. Bae Jae Ryul, Park Wook Ha, Suh Dong Hoon, No Jae Hong, Kim Yong Beom, Kim Kidong. Role of limonin in anticancer effects of Evodia rutaecarpa on ovarian cancer cells.BMC Complement. Med. Ther.202020194
    [Google Scholar]
  20. OulasA. MinadakisG. ZachariouM. SokratousK. BourdakouM.M. SpyrouG.M. Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches.Brief. Bioinform.201920380682410.1093/bib/bbx151 29186305
    [Google Scholar]
  21. JiangJ. HuC. Evodiamine: A novel anti-cancer alkaloid from Evodia rutaecarpa.Molecules20091451852185910.3390/molecules14051852 19471205
    [Google Scholar]
  22. SchmiegelW. SchmielauJ. Henne-BrunsD. Cytokine-mediated enhancement of epidermal growth factor receptor expression provides an immunological approach to the therapy of pancreatic cancer.Proc. Natl. Acad. Sci. USA19979423126221262610.1073/pnas.94.23.12622 9356499
    [Google Scholar]
  23. MasamuneA. ShimosegawaT. Signal transduction in pancreatic stellate cells.J. Gastroenterol.200944424926010.1007/s00535‑009‑0013‑2 19271115
    [Google Scholar]
  24. FurukawaT. Impacts of activation of the mitogen-activated protein kinase pathway in pancreatic cancer.Front. Oncol.201552310.3389/fonc.2015.00023 25699241
    [Google Scholar]
  25. ArltA. MüerkösterS.S. SchäferH. Targeting apoptosis pathways in pancreatic cancer.Cancer Lett.2013332234635810.1016/j.canlet.2010.10.015 21078544
    [Google Scholar]
  26. BabaeiF. AbdzadehS. BakhshandehN. Molecular mechanisms of apoptosis induction in KG1a leukemia cells by the Ginkgo biloba extract (EGb).Advances in Traditional Medicine2024113
    [Google Scholar]
  27. SongC. ChenX. MaJ. Construction of a pancreatic cancer nerve invasion system using brain and pancreatic cancer organoids.J. Tissue Eng.2023142041731422114711310.1177/20417314221147113 36636100
    [Google Scholar]
  28. RomeroJ.M. GrünwaldB. JangG.H. A four-chemokine signature is associated with a t-cell-inflamed phenotype in primary and metastatic pancreatic cancer.Clin. Cancer Res.20202681997201010.1158/1078‑0432.CCR‑19‑2803 31964786
    [Google Scholar]
  29. HedinK.E. Chemokines: New, key players in the pathobiology of pancreatic cancer.Int. J. Gastrointest. Cancer2002311-3233010.1385/IJGC:31:1‑3:23 12622412
    [Google Scholar]
  30. HartupeeC. NagaloB.M. ChabuC.Y. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target.Front. Immunol.202415128745910.3389/fimmu.2024.1287459 38361931
    [Google Scholar]
  31. WenteM.N. KeaneM.P. BurdickM.D. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis.Cancer Lett.2006241222122710.1016/j.canlet.2005.10.041 16458421
    [Google Scholar]
  32. RoshaniR. McCarthyF. HagemannT. Inflammatory cytokines in human pancreatic cancer.Cancer Lett.2014345215716310.1016/j.canlet.2013.07.014 23879960
    [Google Scholar]
  33. KanehisaM. GotoS. SatoY. FurumichiM. TanabeM. KEGG for integration and interpretation of large-scale molecular data sets.Nucleic Acids Res.201240D1D109D11410.1093/nar/gkr988 22080510
    [Google Scholar]
  34. YuC. RuanY. YuL. Predicting postoperative prognosis of pancreatic cancer using a ct-based radio-clinical model: Exploring biological functions.J. Gastrointest. Surg.202428445846610.1016/j.gassur.2024.02.005
    [Google Scholar]
  35. ZhangH. LiuY. LiuJ. cAMP-PKA/EPAC signaling and cancer: The interplay in tumor microenvironment.J. Hematol. Oncol.2024171510.1186/s13045‑024‑01524‑x 38233872
    [Google Scholar]
  36. BoucherM.J. DuchesneC. LainéJ. MorissetJ. RivardN. cAMP protection of pancreatic cancer cells against apoptosis induced by ERK inhibition.Biochem. Biophys. Res. Commun.2001285220721610.1006/bbrc.2001.5147 11444827
    [Google Scholar]
  37. Ebrahimi SadrabadiA. BereimipourA. JaliliA. GholipurmalekabadiM. FarhadihosseinabadiB. SeifalianA.M. The risk of pancreatic adenocarcinoma following SARS-CoV family infection.Sci. Rep.20211111294810.1038/s41598‑021‑92068‑4 34155232
    [Google Scholar]
  38. MatsuoY. OchiN. SawaiH. CXCL8/IL‐8 and CXCL12/SDF‐1α co‐operatively promote invasiveness and angiogenesis in pancreatic cancer.Int. J. Cancer2009124485386110.1002/ijc.24040 19035451
    [Google Scholar]
  39. LiZ. ShaoC. LiuX. Oncogenic ERBB2 aberrations and KRAS mutations cooperate to promote pancreatic ductal adenocarcinoma progression.Carcinogenesis20204114455 31046123
    [Google Scholar]
  40. RamírezS. Gómez-ValadésA.G. SchneebergerM. Mitochondrial dynamics mediated by mitofusin 1 is required for pomc neuron glucose-sensing and insulin release control.Cell Metab.201725613901399.e610.1016/j.cmet.2017.05.010 28591639
    [Google Scholar]
  41. RezagholizadehF. TajikF. TalebiM. Unraveling the potential of CD8, CD68, and VISTA as diagnostic and prognostic markers in patients with pancreatic ductal adenocarcinoma.Front. Immunol.202415128336410.3389/fimmu.2024.1283364 38357542
    [Google Scholar]
  42. LaiX.L. HuangY.H. LiY.S. Differential expression profiling of microRNAs in para-carcinoma, carcinoma and relapse human pancreatic cancer.Clin. Transl. Oncol.201517539840810.1007/s12094‑014‑1249‑8 25387567
    [Google Scholar]
  43. JingS. TianJ. ZhangY. ChenX. ZhengS. Identification of a new pseudogenes/lncRNAs-hsa-miR-26b-5p-COL12A1 competing endogenous RNA network associated with prognosis of pancreatic cancer using bioinformatics analysis.Aging20201219191071912810.18632/aging.103709 33027767
    [Google Scholar]
  44. HuZ. SongF. HuY. LiaoT. Systematic analysis of the expression and prognostic significance of p4ha1 in pancreatic cancer and construction of a lncrna-mirna-p4ha1 regulatory axis.BioMed Res. Int.20202020113010.1155/2020/8877334 33415167
    [Google Scholar]
  45. WangY. WangH. ZhangC. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy.BMC Infect. Dis.202020115510.1186/s12879‑020‑4853‑y 32075600
    [Google Scholar]
  46. GnanamonyM. DemirkhanyanL. GeL. SojitraP. BapanaS. JosephA. Norton, and Christopher S Gondi. Circular dumbbell mir-34a-3p and-5p suppresses pancreatic tumor cell-induced angiogenesis and activates macrophages.Oncol. Lett.202121111 33240407
    [Google Scholar]
  47. CervenkovaL. PalekR. MoulisovaV. Protein expression and localization of ABC transporters in pancreatic adenocarcinoma: Prognostic role of ABCC8.Pancreatology202323897898710.1016/j.pan.2023.10.008 37839922
    [Google Scholar]
  48. LiuJ.X. LiA. ZhouL.Y. Significance of combined preoperative serum Alb and dNLR for diagnosis of pancreatic cancer.Future Oncol.201814322923910.2217/fon‑2017‑0339 29338337
    [Google Scholar]
  49. ChenG. HuM. QuX. WangK. QuY. MicroRNA 584 directly targets CCND1 and inhibits cell proliferation and invasion in pancreatic cancer.Mol. Med. Rep.2019191719726 30431107
    [Google Scholar]
  50. ManoochehriM. WuY. GieseN.A. SST gene hypermethylation acts as a pan‐cancer marker for pancreatic ductal adenocarcinoma and multiple other tumors: Toward its use for blood‐based diagnosis.Mol. Oncol.20201461252126710.1002/1878‑0261.12684 32243066
    [Google Scholar]
  51. PolvaniS. TarocchiM. TempestiS. GalliA. Nuclear receptors and pathogenesis of pancreatic cancer.World J. Gastroenterol.20142034120621208110.3748/wjg.v20.i34.12062 25232244
    [Google Scholar]
  52. AllenM.J. ZhangA. BaviP. Molecular characterisation of pancreatic ductal adenocarcinoma with NTRK fusions and review of the literature.J. Clin. Pathol.202376315816510.1136/jclinpath‑2021‑207781 34583947
    [Google Scholar]
  53. AmitM. Na’araS. FridmanE. RET, a targetable driver of pancreatic adenocarcinoma.Int. J. Cancer2019144123014302210.1002/ijc.32040 30515799
    [Google Scholar]
  54. SongZ. FengC. LuY. LinY. DongC. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer.Gene2018642435010.1016/j.gene.2017.11.014 29128633
    [Google Scholar]
  55. YangM. SunT. WangL. Functional variants in cell death pathway genes and risk of pancreatic cancer.Clin. Cancer Res.200814103230323610.1158/1078‑0432.CCR‑08‑0177 18483392
    [Google Scholar]
  56. JiN.N. CaoS. SongX.L. Glutamatergic neurons in the paraventricular nucleus of the hypothalamus participate in the regulation of visceral pain induced by pancreatic cancer in mice.Hepatobiliary Surg. Nutr.202413225827210.21037/hbsn‑23‑442 38617474
    [Google Scholar]
  57. YouL. RenX. DuY. c-Fos/ERK promotes the progression from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma.Oncol. Rep.20163663413342010.3892/or.2016.5169 27748943
    [Google Scholar]
  58. KunzmannA.T. MurrayL.J. CardwellC.R. McShaneC.M. McMenaminÚ.C. CantwellM.M. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: A systematic review.Cancer Epidemiol. Biomarkers Prev.20132291490149710.1158/1055‑9965.EPI‑13‑0263 23810915
    [Google Scholar]
  59. ZhangP. KangB. XieG. Genomic sequencing and editing revealed the GRM8 signaling pathway as potential therapeutic targets of squamous cell lung cancer.Cancer Lett.2019442536710.1016/j.canlet.2018.10.035 30391781
    [Google Scholar]
  60. SongY. BabaT. LiY.Y. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization.Biochem. Biophys. Res. Commun.2015458234134610.1016/j.bbrc.2015.01.112 25646691
    [Google Scholar]
  61. YeW. LagergrenJ. WeiderpassE. NyrénO. AdamiH-O. EkbomA. Alcohol abuse and the risk of pancreatic cancer.Gut200251223623910.1136/gut.51.2.236 12117886
    [Google Scholar]
  62. PereiraD. WildenbergB. OliveiraP. MadeiraN. Manic syndrome as the presenting feature of pancreatic cancer.Br. J. Psychiatry202244111111210.1590/1516‑4446‑2021‑2384 35170675
    [Google Scholar]
  63. ParkerG. BrotchieH. Pancreatic cancer and depression: A narrative review.J. Nerv. Ment. Dis.2017205648749010.1097/NMD.0000000000000593 28557883
    [Google Scholar]
  64. FarrowB. AlboD. BergerD.H. The role of the tumor microenvironment in the progression of pancreatic cancer.J. Surg. Res.2008149231932810.1016/j.jss.2007.12.757 18639248
    [Google Scholar]
  65. FudalejM. CichowskaI. Badowska-KozakiewiczA. DeptałaA. The prevalence and impact of overweight and hypertension among patients with pancreatic cancer.Oncol Clin Pract202411310.5603/ocp.98619
    [Google Scholar]
  66. RahmanA. NaheedN.H. RakaS.C. QaisN. MomenA.Z.M.R. Ligand-based virtual screening, consensus molecular docking, multi-target analysis and comprehensive ADMET profiling and MD stimulation to find out noteworthy tyrosine kinase inhibitor with better efficacy and accuracy.Adv Tradit Med202020464566110.1007/s13596‑019‑00406‑9
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128356225250305081937
Loading
/content/journals/cpd/10.2174/0113816128356225250305081937
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test