Skip to content
2000
Volume 31, Issue 36
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome, affecting about a quarter of the world's population. As the prevalence of obesity and metabolic syndrome rises, NAFLD is projected to become the leading cause of cirrhosis in the coming years. NAFLD is a complex disease whose pathophysiology mainly focuses on metabolic dysfunction and intestinal microecological dysregulation. Shifts between free fatty acid (FFA) metabolism and cell damage could be of major interest in finding new therapeutic targets. However, current public understanding of these diseases remains limited. Based on bibliometrics and extensive studies, this study explored the mechanisms by which FFAs regulate the occurrence of NAFLD. This review not only focuses on the role of the vicious cycle derived from FFA metabolic disorders, ecological disorders, and liver damage immunity concerning diabetes mellitus type 2 and NAFLD but also discusses the mechanisms involved in them.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128350055250224055446
2025-04-21
2025-11-03
Loading full text...

Full text loading...

References

  1. CotterT.G. RinellaM. Nonalcoholic fatty liver disease 2020: The state of the disease.Gastroenterology202015871851186410.1053/j.gastro.2020.01.052 32061595
    [Google Scholar]
  2. YounossiZ. TackeF. ArreseM. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.Hepatology20196962672268210.1002/hep.30251 30179269
    [Google Scholar]
  3. BuzzettiE. PinzaniM. TsochatzisE.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).Metabolism20166581038104810.1016/j.metabol.2015.12.012 26823198
    [Google Scholar]
  4. MenéndezC.A. VerdeA.R. AlarcónL.M. AccordinoS.R. AppignanesiG.A. Influence of docosahexaenoic acid on the interfacial behavior of cholesterol-containing lipid membranes: Interactions with small amphiphiles and hydration properties.Biophys. Chem.202330110708110.1016/j.bpc.2023.107081 37542837
    [Google Scholar]
  5. WangS. ShengF. ZouL. XiaoJ. LiP. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism.J. Adv. Res.20213410912210.1016/j.jare.2021.06.001 35024184
    [Google Scholar]
  6. NakamuraM. LiuT. HusainS. Glycogen synthase kinase-3α promotes fatty acid uptake and lipotoxic cardiomyopathy.Cell Metab.2019295111934.e1210.1016/j.cmet.2019.01.005 30745182
    [Google Scholar]
  7. IbrahimA. YucelN. KimB. AranyZ. Local mitochondrial ATP production regulates endothelial fatty acid uptake and transport.Cell Metab.202032230919.e710.1016/j.cmet.2020.05.018 32521232
    [Google Scholar]
  8. TripathiA. DebeliusJ. BrennerD.A. The gut-liver axis and the intersection with the microbiome.Nat. Rev. Gastroenterol. Hepatol.201815739741110.1038/s41575‑018‑0011‑z 29748586
    [Google Scholar]
  9. LallementJ. RahoI. MerlenG. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20231868815933310.1016/j.bbalip.2023.159333 37224999
    [Google Scholar]
  10. SongW. TiruthaniK. WangY. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis.Adv. Mater.20183052180500710.1002/adma.201805007 30387230
    [Google Scholar]
  11. Nabavi-RadA. SadeghiA. Asadzadeh AghdaeiH. YadegarA. SmithS.M. ZaliM.R. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management.Gut Microbes2022141210865510.1080/19490976.2022.2108655 35951774
    [Google Scholar]
  12. MasoodiM. GastaldelliA. HyötyläinenT. Metabolomics and lipidomics in NAFLD: Biomarkers and non-invasive diagnostic tests.Nat. Rev. Gastroenterol. Hepatol.2021181283585610.1038/s41575‑021‑00502‑9 34508238
    [Google Scholar]
  13. KhanK. AhmadW. AminM.N. NazarS. A scientometric-analysis-based review of the research development on geopolymers.Polymers20221417367610.3390/polym14173676 36080752
    [Google Scholar]
  14. GaoJ. WuX. LuoX. GuanS. Scientometric analysis of safety sign research: 1990–2019.Int. J. Environ. Res. Public Health202118127310.3390/ijerph18010273 33401394
    [Google Scholar]
  15. LeeG. YouH.J. BajajJ.S. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD.Nat. Commun.2020111498210.1038/s41467‑020‑18754‑5 33020474
    [Google Scholar]
  16. PowellE.E. WongV.W.S. RinellaM. Non-alcoholic fatty liver disease.Lancet2021397102902212222410.1016/S0140‑6736(20)32511‑3 33894145
    [Google Scholar]
  17. HungT.C. ZhaoN. HuangC. Exploring the mechanism of PingTang No.5 capsule on nonalcoholic fatty liver disease through network pharmacology and experimental validation.Biomed. Pharmacother.202113811140810.1016/j.biopha.2021.111408 33684693
    [Google Scholar]
  18. ParkM. YooJ.H. LeeY.S. LeeH.J. Lonicera caerulea Extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice.Nutrients201911349410.3390/nu11030494 30813654
    [Google Scholar]
  19. ChaoH.W. ChaoS.W. LinH. KuH.C. ChengC.F. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease.Int. J. Mol. Sci.201920229810.3390/ijms20020298 30642126
    [Google Scholar]
  20. ErikssonJ.W. LundkvistP. JanssonP.A. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: A double-blind randomised placebo-controlled study.Diabetologia20186191923193410.1007/s00125‑018‑4675‑2 29971527
    [Google Scholar]
  21. FraserD.A. WangX. LundJ. A structurally engineered fatty acid, icosabutate, suppresses liver inflammation and fibrosis in NASH.J. Hepatol.202276480081110.1016/j.jhep.2021.12.004 34915054
    [Google Scholar]
  22. GoedekeL. BatesJ. VatnerD.F. Acetyl‐CoA carboxylase inhibition reverses NAFLD and hepatic insulin resistance but promotes hypertriglyceridemia in rodents.Hepatology20186862197221110.1002/hep.30097 29790582
    [Google Scholar]
  23. PatelR. SantoroA. HoferP. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids.Nature2022606791696897510.1038/s41586‑022‑04787‑x 35676490
    [Google Scholar]
  24. JangC. OhS.F. WadaS. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance.Nat. Med.201622442142610.1038/nm.4057 26950361
    [Google Scholar]
  25. RobichaudS. FairmanG. VijithakumarV. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells.Autophagy202117113671368910.1080/15548627.2021.1886839 33590792
    [Google Scholar]
  26. WangX.J. MalhiH. Nonalcoholic fatty liver disease.Ann. Intern. Med.20181699ITC65ITC8010.7326/AITC201811060 30398639
    [Google Scholar]
  27. SchwimmerJ.B. Ugalde-NicaloP. WelshJ.A. Effect of a low free sugar diet vs usual diet on nonalcoholic fatty liver disease in adolescent boys: A randomized clinical trial.JAMA2019321325626510.1001/jama.2018.20579 30667502
    [Google Scholar]
  28. Neuschwander-TetriB.A. Too much sugar-The not-so-sweet reality of its impact on our health.Hepatology202071137737910.1002/hep.30910 31446629
    [Google Scholar]
  29. GrossB. PawlakM. LefebvreP. StaelsB. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD.Nat. Rev. Endocrinol.2017131364910.1038/nrendo.2016.135 27636730
    [Google Scholar]
  30. ReinkeH. AsherG. Circadian clock control of liver metabolic functions.Gastroenterology2016150357458010.1053/j.gastro.2015.11.043 26657326
    [Google Scholar]
  31. WeiselF.J. MullettS.J. ElsnerR.A. Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis.Nat. Immunol.202021333134210.1038/s41590‑020‑0598‑4 32066950
    [Google Scholar]
  32. NiW. LinS. BianS. USP7 mediates pathological hepatic de novo lipogenesis through promoting stabilization and transcription of ZNF638.Cell Death Dis.2020111084310.1038/s41419‑020‑03075‑8 33040080
    [Google Scholar]
  33. HarrisonS.A. BedossaP. GuyC.D. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis.N. Engl. J. Med.2024390649750910.1056/NEJMoa2309000 38324483
    [Google Scholar]
  34. The Lancet Gastroenterology Hepatology. Resmetirom for NASH: balancing promise and prudence.Lancet Gastroenterol. Hepatol.20249427310.1016/S2468‑1253(24)00049‑9 38460531
    [Google Scholar]
  35. KarimG. BansalM.B. Resmetirom: An orally administered, small-molecule, liver-directed, β-selective THR agonist for the treatment of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.Eur. Endocrinol.2023191607010.17925/EE.2023.19.1.60 37313239
    [Google Scholar]
  36. Syed-AbdulM.M. ParksE.J. GaballahA.H. Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities.Hepatology202072110311810.1002/hep.31000 31630414
    [Google Scholar]
  37. Barbier-TorresL. FortnerK.A. IruzubietaP. Silencing hepatic MCJ attenuates non-alcoholic fatty liver disease (NAFLD) by increasing mitochondrial fatty acid oxidation.Nat. Commun.2020111336010.1038/s41467‑020‑16991‑2 32620763
    [Google Scholar]
  38. HanY. HuZ. CuiA. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene.Nat. Commun.201910162310.1038/s41467‑019‑08585‑4 30733434
    [Google Scholar]
  39. YanC. TianX. LiJ. A high-fat diet attenuates AMPK α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver development in vivo.Diabetes202170257758810.2337/db20‑0146 33262120
    [Google Scholar]
  40. ZhaoQ. LiuJ. DengH. Targeting Mitochondria-Located circRNA SCAR alleviates NASH via reducing mROS output.Cell202018317693.e2210.1016/j.cell.2020.08.009 32931733
    [Google Scholar]
  41. DallM. HassingA.S. TreebakJ.T. NAD + and NAFLD – caution, causality and careful optimism.J. Physiol.202260051135115410.1113/JP280908 33932956
    [Google Scholar]
  42. ZhangK. KimH. FuZ. Deficiency of the mitochondrial NAD kinase causes stress-induced hepatic steatosis in mice.Gastroenterology2018154122423710.1053/j.gastro.2017.09.010 28923496
    [Google Scholar]
  43. YanL. ChenY.G. One ring to rule them all: Mitochondrial circular RNAs control mitochondrial function.Cell20201831111310.1016/j.cell.2020.09.028 33007261
    [Google Scholar]
  44. LuoJ. YangH. SongB.L. Mechanisms and regulation of cholesterol homeostasis.Nat. Rev. Mol. Cell Biol.202021422524510.1038/s41580‑019‑0190‑7 31848472
    [Google Scholar]
  45. EganA. VellaA. TTP399: An investigational liver-selective glucokinase (GK) activator as a potential treatment for type 2 diabetes.Expert Opin. Investig. Drugs201928974174710.1080/13543784.2019.1654993 31398075
    [Google Scholar]
  46. AgiusL. Hormonal and metabolite regulation of hepatic glucokinase.Annu. Rev. Nutr.201636138941510.1146/annurev‑nutr‑071715‑051145 27146014
    [Google Scholar]
  47. TaskinenM.R. PackardC.J. BorénJ. Dietary fructose and the metabolic syndrome.Nutrients2019119198710.3390/nu11091987 31443567
    [Google Scholar]
  48. TodoricJ. Di CaroG. ReibeS. Fructose stimulated de novo lipogenesis is promoted by inflammation.Nat. Metab.20202101034104510.1038/s42255‑020‑0261‑2 32839596
    [Google Scholar]
  49. NakamuraM.T. YudellB.E. LoorJ.J. Regulation of energy metabolism by long-chain fatty acids.Prog. Lipid Res.20145312414410.1016/j.plipres.2013.12.001 24362249
    [Google Scholar]
  50. RomO. LiuY. LiuZ. Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome.Sci. Transl. Med.202012572eaaz284110.1126/scitranslmed.aaz2841 33268508
    [Google Scholar]
  51. UenoT. KomatsuM. Autophagy in the liver: Functions in health and disease.Nat. Rev. Gastroenterol. Hepatol.201714317018410.1038/nrgastro.2016.185 28053338
    [Google Scholar]
  52. DiNicolantonioJ.J. MehtaV. OnkaramurthyN. O’KeefeJ.H. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity.Prog. Cardiovasc. Dis.20186113910.1016/j.pcad.2017.12.001 29225114
    [Google Scholar]
  53. MotaM. BaniniB.A. CazanaveS.C. SanyalA.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease.Metabolism20166581049106110.1016/j.metabol.2016.02.014 26997538
    [Google Scholar]
  54. WidjajaA.A. SinghB.K. AdamiE. Inhibiting interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis.Gastroenterology201915737792.e1410.1053/j.gastro.2019.05.002 31078624
    [Google Scholar]
  55. TsuchidaT. LeeY.A. FujiwaraN. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer.J. Hepatol.201869238539510.1016/j.jhep.2018.03.011 29572095
    [Google Scholar]
  56. YangY. XieL. ZhangN. ZhouD. LiuT. WuJ. Updates on novel pharmacotherapeutics for the treatment of nonalcoholic steatohepatitis.Acta Pharmacol. Sin.20224351180119010.1038/s41401‑022‑00860‑3 35190696
    [Google Scholar]
  57. YenilmezB. WetoskaN. KellyM. An RNAi therapeutic targeting hepatic DGAT2 in a genetically obese mouse model of nonalcoholic steatohepatitis.Mol. Ther.20223031329134210.1016/j.ymthe.2021.11.007 34774753
    [Google Scholar]
  58. FinanB. ParleeS.D. YangB. Nuclear hormone and peptide hormone therapeutics for NAFLD and NASH.Mol. Metab.20214610115310.1016/j.molmet.2020.101153 33359400
    [Google Scholar]
  59. QinX. ZhaoY. GongJ. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction.Theranostics2019961698171310.7150/thno.30640 31037132
    [Google Scholar]
  60. LiM.Y. LiuL.Z. XinQ. Downregulation of mTORC1 and Mcl-1 by lipid-oversupply contributes to islet β-cell apoptosis and dysfunction.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20231868715933210.1016/j.bbalip.2023.159332 37196823
    [Google Scholar]
  61. LoombaR. FriedmanS.L. ShulmanG.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease.Cell2021184102537256410.1016/j.cell.2021.04.015 33989548
    [Google Scholar]
  62. AndrieuxP. ChevillardC. Cunha-NetoE. NunesJ.P.S. Mitochondria as a cellular hub in infection and inflammation.Int. J. Mol. Sci.202122211133810.3390/ijms222111338 34768767
    [Google Scholar]
  63. Henao-MejiaJ. ElinavE. JinC. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity.Nature2012482738417918510.1038/nature10809 22297845
    [Google Scholar]
  64. ZhouR. YazdiA.S. MenuP. TschoppJ. A role for mitochondria in NLRP3 inflammasome activation.Nature2011469732922122510.1038/nature09663 21124315
    [Google Scholar]
  65. UnamunoX. Gómez-AmbrosiJ. RamírezB. NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling.Cell. Mol. Immunol.20211841045105710.1038/s41423‑019‑0296‑z 31551515
    [Google Scholar]
  66. SchusterS. CabreraD. ArreseM. FeldsteinA.E. Triggering and resolution of inflammation in NASH.Nat. Rev. Gastroenterol. Hepatol.201815634936410.1038/s41575‑018‑0009‑6 29740166
    [Google Scholar]
  67. LuanH.H. WangA. HilliardB.K. GDF15 is an inflammation-induced central mediator of tissue tolerance.Cell2019178512311244.e1110.1016/j.cell.2019.07.033 31402172
    [Google Scholar]
  68. FurutaK. GuoQ. PavelkoK.D. Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis.J. Clin. Invest.20211316e14369010.1172/JCI143690 33476308
    [Google Scholar]
  69. BadreddineA. ZarroukA. KarymE.M. Argan oil-mediated attenuation of organelle dysfunction, oxidative stress and cell death induced by 7-ketocholesterol in murine oligodendrocytes 158N.Int. J. Mol. Sci.20171810222010.3390/ijms18102220 29065513
    [Google Scholar]
  70. ChenX. LiL. LiuX. Oleic acid protects saturated fatty acid mediated lipotoxicity in hepatocytes and rat of non-alcoholic steatohepatitis.Life Sci.201820329130410.1016/j.lfs.2018.04.022 29709653
    [Google Scholar]
  71. PlemelJ.R. MichaelsN.J. WeishauptN. Mechanisms of lysophosphatidylcholine‐induced demyelination: A primary lipid disrupting myelinopathy.Glia201866232734710.1002/glia.23245 29068088
    [Google Scholar]
  72. HoQ.W.C. ZhengX. AliY. Ceramide acyl chain length and its relevance to intracellular lipid regulation.Int. J. Mol. Sci.20222317969710.3390/ijms23179697 36077094
    [Google Scholar]
  73. YueS. LiJ. LeeS.Y. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness.Cell Metab.201419339340610.1016/j.cmet.2014.01.019 24606897
    [Google Scholar]
  74. BoutagyN.E. FowlerJ.W. SessaW.C. A vectorial, ER-mitochondria link to energy homeostasis in the vascular endothelium.Cell Metab.202032215015210.1016/j.cmet.2020.07.010 32755606
    [Google Scholar]
  75. DasguptaD. NakaoY. MauerA.S. IRE1A stimulates hepatocyte-derived extracellular vesicles that promote inflammation in mice with steatohepatitis.Gastroenterology2020159414871503.e1710.1053/j.gastro.2020.06.031 32574624
    [Google Scholar]
  76. ChuS.G. VillalbaJ.A. LiangX. Palmitic acid-rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress.Am. J. Respir. Cell Mol. Biol.201961673774610.1165/rcmb.2018‑0324OC 31461627
    [Google Scholar]
  77. XuD. LiuL. ZhaoY. Melatonin protects mouse testes from palmitic acid‐induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1‐dependent manner.J. Pineal Res.2020694e1269010.1111/jpi.12690 32761924
    [Google Scholar]
  78. McNabneyS. HenaganT. Short chain fatty acids in the colon and peripheral tissues: A focus on butyrate, colon cancer, obesity and insulin resistance.Nutrients2017912134810.3390/nu9121348 29231905
    [Google Scholar]
  79. KahleovaH. HlozkovaA. FleemanR. FletcherK. HolubkovR. BarnardN.D. Fat quantity and quality, as part of a low-fat, vegan diet, are associated with changes in body composition, insulin resistance, and insulin secretion. A 16-week randomized controlled trial.Nutrients201911361510.3390/nu11030615 30871233
    [Google Scholar]
  80. ZhangF. HuZ. LiG. Hepatic CREBZF couples insulin to lipogenesis by inhibiting insig activity and contributes to hepatic steatosis in diet‐induced insulin‐resistant mice.Hepatology20186841361137510.1002/hep.29926 29637572
    [Google Scholar]
  81. LyuK. ZhangY. ZhangD. A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance.Cell Metab.2020324654664.e510.1016/j.cmet.2020.08.001 32882164
    [Google Scholar]
  82. Di FilippoM. MoulinP. RoyP. Homozygous MTTP and APOB mutations may lead to hepatic steatosis and fibrosis despite metabolic differences in congenital hypocholesterolemia.J. Hepatol.201461489190210.1016/j.jhep.2014.05.023 24842304
    [Google Scholar]
  83. GlassC.K. OlefskyJ.M. Inflammation and lipid signaling in the etiology of insulin resistance.Cell Metab.201215563564510.1016/j.cmet.2012.04.001 22560216
    [Google Scholar]
  84. CoppsK.D. WhiteM.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2.Diabetologia201255102565258210.1007/s00125‑012‑2644‑8 22869320
    [Google Scholar]
  85. SenZ.D. DanyeliL.V. WoelferM. Linking atypical depression and insulin resistance-related disorders via low-grade chronic inflammation: Integrating the phenotypic, molecular and neuroanatomical dimensions.Brain Behav. Immun.20219333535210.1016/j.bbi.2020.12.020 33359233
    [Google Scholar]
  86. JungT.W. ParkH.S. ChoiG.H. KimD. LeeT. β-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway.J. Biomed. Sci.20182512710.1186/s12929‑018‑0431‑7 29592806
    [Google Scholar]
  87. WuH. WangY. LiW. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome.Autophagy201915111882189810.1080/15548627.2019.1596482 30898010
    [Google Scholar]
  88. LiH. WangC. ZhaoJ. GuoC. JNK downregulation improves olanzapine-induced insulin resistance by suppressing IRS1Ser307 phosphorylation and reducing inflammation.Biomed. Pharmacother.202114211207110.1016/j.biopha.2021.112071 34449309
    [Google Scholar]
  89. VijayA. KourakiA. GohirS. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids.Gut Microbes2021131199755910.1080/19490976.2021.1997559 34787065
    [Google Scholar]
  90. MillerY. Advancements and future directions in research of the roles of insulin in amyloid diseases.Biophys. Chem.202228110672010.1016/j.bpc.2021.106720 34823073
    [Google Scholar]
  91. LonardoA. NascimbeniF. MantovaniA. TargherG. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence?J. Hepatol.201868233535210.1016/j.jhep.2017.09.021 29122390
    [Google Scholar]
  92. TilgH. MoschenA.R. RodenM. NAFLD and diabetes mellitus.Nat. Rev. Gastroenterol. Hepatol.2017141324210.1038/nrgastro.2016.147 27729660
    [Google Scholar]
  93. AdakA. KhanM.R. An insight into gut microbiota and its functionalities.Cell. Mol. Life Sci.201976347349310.1007/s00018‑018‑2943‑4 30317530
    [Google Scholar]
  94. ZmoraN. SuezJ. ElinavE. You are what you eat: Diet, health and the gut microbiota.Nat. Rev. Gastroenterol. Hepatol.2019161355610.1038/s41575‑018‑0061‑2 30262901
    [Google Scholar]
  95. GomesA.C. HoffmannC. MotaJ.F. The human gut microbiota: Metabolism and perspective in obesity.Gut Microbes20189411810.1080/19490976.2018.1465157 29667480
    [Google Scholar]
  96. JiY. YinY. LiZ. ZhangW. Gut microbiota-derived components and metabolites in the progression of non-alcoholic fatty liver disease (NAFLD).Nutrients2019118171210.3390/nu11081712 31349604
    [Google Scholar]
  97. WongV.W.S. WongG.L.H. ChanH.Y. Bacterial endotoxin and non‐alcoholic fatty liver disease in the general population: A prospective cohort study.Aliment. Pharmacol. Ther.201542673174010.1111/apt.13327 26202818
    [Google Scholar]
  98. WangX. QuinnP.J. Lipopolysaccharide: Biosynthetic pathway and structure modification.Prog. Lipid Res.20104929710710.1016/j.plipres.2009.06.002 19815028
    [Google Scholar]
  99. KessokuT. KobayashiT. ImajoK. Endotoxins and non-alcoholic fatty liver disease.Front. Endocrinol. (Lausanne)20211277098610.3389/fendo.2021.770986 34777261
    [Google Scholar]
  100. KazankovK. JørgensenS.M.D. ThomsenK.L. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.Nat. Rev. Gastroenterol. Hepatol.201916314515910.1038/s41575‑018‑0082‑x 30482910
    [Google Scholar]
  101. JinC.J. EngstlerA.J. ZiegenhardtD. BischoffS.C. TrautweinC. BergheimI. Loss of lipopolysaccharide‐binding protein attenuates the development of diet‐induced non‐alcoholic fatty liver disease in mice.J. Gastroenterol. Hepatol.201732370871510.1111/jgh.13488 27404046
    [Google Scholar]
  102. TimblinG.A. TharpK.M. FordB. Mitohormesis reprogrammes macrophage metabolism to enforce tolerance.Nat. Metab.20213561863510.1038/s42255‑021‑00392‑w 34031590
    [Google Scholar]
  103. KinoshitaM. UchidaT. SatoA. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice.J. Hepatol.201053590391010.1016/j.jhep.2010.04.037 20739085
    [Google Scholar]
  104. MilaniC. DurantiS. BottaciniF. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota.Microbiol. Mol. Biol. Rev.2017814e00036e1710.1128/MMBR.00036‑17 29118049
    [Google Scholar]
  105. BauerK.C. LittlejohnP.T. AyalaV. Creus-CuadrosA. FinlayB.B. Nonalcoholic fatty liver disease and the gut-liver axis: exploring an undernutrition perspective.Gastroenterology2022162718581875.e210.1053/j.gastro.2022.01.058 35248539
    [Google Scholar]
  106. CaraceniP. VargasV. SolàE. The use of rifaximin in patients with cirrhosis.Hepatology20217431660167310.1002/hep.31708 33421158
    [Google Scholar]
  107. StevensBR GoelR SeungbumK Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression.Gut20186781555.2710.1136/gutjnl‑2017‑314759 28814485
    [Google Scholar]
  108. De FilippisF. PaparoL. NocerinoR. Specific gut microbiome signatures and the associated pro-inflamatory functions are linked to pediatric allergy and acquisition of immune tolerance.Nat. Commun.2021121595810.1038/s41467‑021‑26266‑z 34645820
    [Google Scholar]
  109. LiL. LiS. JiangJ. LiuC. JiL. Investigating pharmacological mechanisms of andrographolide on non-alcoholic steatohepatitis (NASH): A bioinformatics approach of network pharmacology.Chin. Herb. Med.202113334235010.1016/j.chmed.2021.05.001 36118934
    [Google Scholar]
  110. YuJ ZhuC WangX Hepatocyte TLR4 triggers interhepatocyte Jagged1/Notch signaling to determine NASH-induced fibrosis. Sci Transl Med202113599eabe1692
    [Google Scholar]
  111. HuberY. PfirrmannD. GebhardtI. Improvement of non‐invasive markers of NAFLD from an individualised, web‐based exercise program.Aliment. Pharmacol. Ther.201950893093910.1111/apt.15427 31342533
    [Google Scholar]
  112. HeK. GuoL.L. TangH. A freshwater fish-based diet alleviates liver steatosis by modulating gut microbiota and metabolites: A clinical randomized controlled trial in chinese participants with nonalcoholic fatty liver disease.Am. J. Gastroenterol.2022117101621163110.14309/ajg.0000000000001885 35973188
    [Google Scholar]
  113. AgusA. ClémentK. SokolH. Gut microbiota-derived metabolites as central regulators in metabolic disorders.Gut20217061174118210.1136/gutjnl‑2020‑323071 33272977
    [Google Scholar]
  114. KhorutsA. StaleyC. SadowskyM.J. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology.Nat. Rev. Gastroenterol. Hepatol.2021181678010.1038/s41575‑020‑0350‑4 32843743
    [Google Scholar]
  115. El-SalhyM. HatlebakkJ.G. GiljaO.H. KristoffersenA.B. HauskenT. Efficacy of faecal microbiota transplantation for patients with irritable bowel syndrome in a randomised, double-blind, placebo-controlled study.Gut202069585986710.1136/gutjnl‑2019‑319630 31852769
    [Google Scholar]
  116. HuJ. LinS. ZhengB. CheungP.C.K. Short-chain fatty acids in control of energy metabolism.Crit. Rev. Food Sci. Nutr.20185881243124910.1080/10408398.2016.1245650 27786539
    [Google Scholar]
  117. LiuX. MaoB. GuJ. Blautia: A new functional genus with potential probiotic properties?Gut Microbes2021131187579610.1080/19490976.2021.1875796 33525961
    [Google Scholar]
  118. KimE.R. ParkJ.S. KimJ.H. A GLP‐1/GLP‐2 receptor dual agonist to treat NASH: Targeting the gut‐liver axis and microbiome.Hepatology20227561523153810.1002/hep.32235 34773257
    [Google Scholar]
  119. ZhengM YangX WuQ Butyrate attenuates hepatic steatosis induced by a high-fat and fiber-deficient diet via the hepatic GPR41/43-CaMKII/HDAC1-CREB pathway. Mol Nutr Food Res202267110.1002/mnfr.202200597
    [Google Scholar]
  120. de VosW.M. TilgH. Van HulM. CaniP.D. Gut microbiome and health: Mechanistic insights.Gut20227151020103210.1136/gutjnl‑2021‑326789 35105664
    [Google Scholar]
  121. NimerN. ChoucairI. WangZ. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression.Metabolism202111615445710.1016/j.metabol.2020.154457 33275980
    [Google Scholar]
  122. PerinoA. DemagnyH. Velazquez-VillegasL. SchoonjansK. Molecular physiology of bile acid signaling in health, disease, and aging.Physiol. Rev.2021101268373110.1152/physrev.00049.2019 32790577
    [Google Scholar]
  123. HylemonP.B. SuL. ZhengP.C. BajajJ.S. ZhouH. Bile acids, gut microbiome and the road to fatty liver disease.Compr. Physiol.202112127192730 34964117
    [Google Scholar]
  124. YounossiZ.M. RatziuV. LoombaR. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial.Lancet2019394102152184219610.1016/S0140‑6736(19)33041‑7 31813633
    [Google Scholar]
  125. ChenF. EsmailiS. RogersG.B. Lean NAFLD: A distinct entity shaped by differential metabolic adaptation.Hepatology20207141213122710.1002/hep.30908 31442319
    [Google Scholar]
  126. MouriesJ. BresciaP. SilvestriA. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development.J. Hepatol.20197161216122810.1016/j.jhep.2019.08.005 31419514
    [Google Scholar]
  127. Aron-WisnewskyJ. WarmbrunnM.V. NieuwdorpM. ClémentK. Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies.Gastroenterology2021160257359910.1053/j.gastro.2020.10.057 33253685
    [Google Scholar]
  128. RotmanY. SanyalA.J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease.Gut201766118019010.1136/gutjnl‑2016‑312431 27646933
    [Google Scholar]
  129. GuanB. TongJ. HaoH. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases.Acta Pharm. Sin. B20221252129214910.1016/j.apsb.2021.12.011 35646540
    [Google Scholar]
  130. KubesP. JenneC. Immune responses in the liver.Annu. Rev. Immunol.201836124727710.1146/annurev‑immunol‑051116‑052415 29328785
    [Google Scholar]
  131. PeiselerM. SchwabeR. HampeJ. KubesP. HeikenwälderM. TackeF. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease: Novel insights into cellular communication circuits.J. Hepatol.20227741136116010.1016/j.jhep.2022.06.012 35750137
    [Google Scholar]
  132. FengM. JiangW. KimB.Y.S. ZhangC.C. FuY.X. WeissmanI.L. Phagocytosis checkpoints as new targets for cancer immunotherapy.Nat. Rev. Cancer2019191056858610.1038/s41568‑019‑0183‑z 31462760
    [Google Scholar]
  133. ThaissC.A. ZmoraN. LevyM. ElinavE. The microbiome and innate immunity.Nature20165357610657410.1038/nature18847 27383981
    [Google Scholar]
  134. VogelA. BrunnerJ.S. HajtoA. SharifO. SchabbauerG. Lipid scavenging macrophages and inflammation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20221867115906610.1016/j.bbalip.2021.159066 34626791
    [Google Scholar]
  135. QinY. LiB. ArumugamS. m6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity.Cell Rep.202137610996810.1016/j.celrep.2021.109968 34758326
    [Google Scholar]
  136. MridhaA.R. HaczeyniF. YehM.M. TLR9 is up-regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival.Clin. Sci. (Lond.)2017131162145215910.1042/CS20160838 28687713
    [Google Scholar]
  137. MeliR. RasoG.M. CalignanoA. Role of innate immune response in non-alcoholic Fatty liver disease: Metabolic complications and therapeutic tools.Front. Immunol.2014517710.3389/fimmu.2014.00177 24795720
    [Google Scholar]
  138. Etienne-MesminL. Vijay-KumarM. GewirtzA.T. ChassaingB. Hepatocyte Toll-like receptor 5 promotes bacterial clearance and protects mice against high-fat diet-induced liver disease.Cell. Mol. Gastroenterol. Hepatol.20162558460410.1016/j.jcmgh.2016.04.007 28090564
    [Google Scholar]
  139. FuchsA. SamovskiD. SmithG.I. Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease.Gastroenterology20211613968981.e1210.1053/j.gastro.2021.05.008 34004161
    [Google Scholar]
  140. PolyzosS.A. KountourasJ. MantzorosC.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics.Metabolism201992829710.1016/j.metabol.2018.11.014 30502373
    [Google Scholar]
  141. SakaneS. HikitaH. ShiraiK. White adipose tissue autophagy and adipose-liver crosstalk exacerbate nonalcoholic fatty liver disease in mice.Cell. Mol. Gastroenterol. Hepatol.20211251683169910.1016/j.jcmgh.2021.07.008 34303881
    [Google Scholar]
  142. ShiY. SuW. ZhangL. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation.Front. Immunol.20211160906010.3389/fimmu.2020.609060 33692776
    [Google Scholar]
  143. ChoaR. TohyamaJ. WadaS. Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion.Science20213736554eabd289310.1126/science.abd2893 34326208
    [Google Scholar]
  144. BarrowF. KhanS. FredricksonG. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling.Hepatology202174270472210.1002/hep.31755 33609303
    [Google Scholar]
  145. DudekM. PfisterD. DonakondaS. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH.Nature2021592785444444910.1038/s41586‑021‑03233‑8 33762736
    [Google Scholar]
  146. HaasJ.T. VonghiaL. MogilenkoD.A. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution.Nat. Metab.20191660461410.1038/s42255‑019‑0076‑1 31701087
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128350055250224055446
Loading
/content/journals/cpd/10.2174/0113816128350055250224055446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test