Skip to content
2000
Volume 31, Issue 29
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nanomaterials offer significant potential for disease diagnosis and dental treatments due to their unique properties, such as a large surface area and nanoscale size. According to the World Health Organization, about 3.5 billion people worldwide regularly experience dental problems, which can cause significant suffering and disrupt the sufferer’s everyday activities. Dental problems, such as dental caries (tooth decay), pulpitis (inflammation of the dental pulp), periodontal disease (gum disease), tooth fractures, and impacted wisdom teeth, necessitate a multidimensional approach, involving nanotechnology, dental materials, implants, ., treating the underlying problem while providing symptomatic relief. This review discusses the role of nanotechnology in addressing major dental issues like dental caries, periodontal diseases, and tooth fractures. The collaborative endeavors of sophisticated nanomaterials facilitate their application in dental science, improving therapeutic efficacy and enhancing patient comfort and overall oral health.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128361827250312053051
2025-04-08
2025-12-19
Loading full text...

Full text loading...

References

  1. RentonT. Dental (odontogenic) pain.Rev. Pain2011512710.1177/204946371100500102 26527224
    [Google Scholar]
  2. RauberE.D. MenegazzoG.R. KnorstJ.K. BolssonG.B. ArdenghiT.M. Pathways between toothache and children’s oral health-related quality of life.Int. J. Paediatr. Dent.202131555856410.1111/ipd.12692 32767803
    [Google Scholar]
  3. BaniHaniA DeeryC ToumbaJ MunyombweT DuggalM The impact of dental caries and its treatment by conventional or biological approaches on the oral health-related quality of life of children and carers.Int J Paediatr Dent201828226627610.1111/ipd.1235029288546
    [Google Scholar]
  4. HmudR. WalshL.J. Dental anxiety: Causes, complications and management approaches.J Minim Interv Dent200926778
    [Google Scholar]
  5. ElmarsafyS.M. A comprehensive narrative review of nanomaterial applications in restorative dentistry: Demineralization inhibition and remineralization applications (Part I).Cureus2024164e5854410.7759/cureus.58544 38644945
    [Google Scholar]
  6. ShiR. ZhuY. LuW. Nanomaterials: Innovative approaches for addressing key objectives in periodontitis treatment.RSC Advances20241438279042792710.1039/D4RA03809F 39224639
    [Google Scholar]
  7. KumarP.S. KumarS. SavadiR.C. JohnJ. Nanodentistry: A paradigm shift-from fiction to reality.J. Indian Prosthodont. Soc.20111111610.1007/s13191‑011‑0062‑0 22379298
    [Google Scholar]
  8. GamezA.D. CepedaS.E.N. TrejoC.S.F. A review of the etiology, symptoms, diagnosis, and treatment of the cracked tooth.Int J Appl Dent Sci2023931510.22271/oral.2023.v9.i3a.1776
    [Google Scholar]
  9. KleinK.P. KabanL.B. MasoudM.I. Orthognathic surgery and orthodontics.Oral Maxillofac. Surg. Clin. North Am.2020321718210.1016/j.coms.2019.08.008 31744601
    [Google Scholar]
  10. BayarG.R. SanalG. GündüzD. DemrA.E. The importance of periodic oral and dental health examination of aircrew.J. Aviat.20237231031610.30518/jav.1275421
    [Google Scholar]
  11. PittsN.B. ZeroD.T. MarshP.D. Dental caries.Nat. Rev. Dis. Primers2017311703010.1038/nrdp.2017.30 28540937
    [Google Scholar]
  12. MooreC. McListerC. CardwellC. O’NeillC. DonnellyM. McKennaG. Dental caries following radiotherapy for head and neck cancer: A systematic review.Oral Oncol.202010010448410.1016/j.oraloncology.2019.104484 31786391
    [Google Scholar]
  13. ObiedallahM.M. Abdel-MageedA.M. ElfahamT.H. Ocular administration of acetazolamide microsponges in situ gel formulations.Saudi Pharm. J.201826790992010.1016/j.jsps.2018.01.005 30416345
    [Google Scholar]
  14. AnitasariS. WahabD.E. BarliantaB. BudiH.S. Determining the effectivity of infrared distance to eliminate dental pain due to pulpitis and periodontitis.Eur. J. Dent.202014336036510.1055/s‑0040‑1714454 32707590
    [Google Scholar]
  15. ScannapiecoF.A. GershovichE. The prevention of periodontal disease—An overview.Periodontol. 2000202084191310.1111/prd.12330 32844421
    [Google Scholar]
  16. JanakiramC. DyeB.A. A public health approach for prevention of periodontal disease.Periodontol. 2000202084120221410.1111/prd.12337 32844412
    [Google Scholar]
  17. PengY. TangS. The factors affecting orthodontic pain with periodontitis.J. Healthcare Eng.202120218942979
    [Google Scholar]
  18. PatelS. BhuvaB. BoseR. Present status and future directions: Vertical root fractures in root filled teeth.Int. Endod. J.202255S380482610.1111/iej.13737 35338655
    [Google Scholar]
  19. KahlerW. The cracked tooth conundrum: Terminology, classification, diagnosis, and management.Am. J. Dent.2008215275282 19024251
    [Google Scholar]
  20. KlingK. Diagnosis and treatment of fractured teeth.2022Available from: https://todaysveterinary-practice.com/dentistry/diagnosis-and-treatment-of-fractured-teeth/
    [Google Scholar]
  21. BalajiS.M. BalajiP. Impacted wisdom tooth in the floor of the orbit.Indian J. Dent. Res.202031231231410.4103/ijdr.IJDR_251_20 32436914
    [Google Scholar]
  22. ParkinsG. BlanksonP.K. AmpaduM.K. SackeyfioJ. BoamahM.O. Mandibular wisdom teeth impactions and the risk factors that are associated with complications following surgery.East Afr. Med. J.202096
    [Google Scholar]
  23. DelemeZH HammedAN The effects of bioadhesive hyaluronic acid gel versus diclofenac after surgical removal of impacted wisdom teeth.J Oral Res20198Sup. 12831
    [Google Scholar]
  24. TimmermanA. ParashosP. Management of dental pain in primary care.Aust. Prescr.2020432394410.18773/austprescr.2020.010 32346209
    [Google Scholar]
  25. AlbanoM.G. d’IvernoisJ.F. de AndradeV. LevyG. Patient education in dental medicine: A review of the literature.Eur. J. Dent. Educ.201923211011810.1111/eje.12409 30556294
    [Google Scholar]
  26. HaJ.W. JungW. LeeK.E. SuhB.J. Non-odontogenic toothache caused by the fungal ball of maxillary sinus: Case reports.J. Oral Med. Pain201944417417810.14476/jomp.2019.44.4.174
    [Google Scholar]
  27. TranH.T. KongY. TalatiA. Posada-QuinteroH. ChonK.H. ChenI.P. The use of electrodermal activity in pulpal diagnosis and dental pain assessment.Int. Endod. J.202356335636810.1111/iej.13868 36367715
    [Google Scholar]
  28. TenyiA. NemethL. GoležA. CankarK. MilutinovićA. Comparison of the vitality tests used in the dental clinical practice and histological analysis of the dental pulp.Bosn. J. Basic Med. Sci.202222337438110.17305/bjbms.2021.6841 35150478
    [Google Scholar]
  29. LaudenbachJ.M. SimonZ. Common dental and periodontal diseases: Evaluation and management.Med. Clin. North Am.20149861239126010.1016/j.mcna.2014.08.002 25443675
    [Google Scholar]
  30. IaculliF. Rodríguez-LozanoF.J. Briseño-MarroquínB. WolfT.G. SpagnuoloG. RengoS. Vital pulp therapy of permanent teeth with reversible or irreversible pulpitis: An overview of the literature.J. Clin. Med.20221114401610.3390/jcm11144016 35887779
    [Google Scholar]
  31. MarkowitzK. PashleyD.H. Discovering new treatments for sensitive teeth: The long path from biology to therapy.J. Oral Rehabil.200835430031510.1111/j.1365‑2842.2007.01798.x 18321266
    [Google Scholar]
  32. BalhaddadA.A. KansaraA.A. HidanD. WeirM.D. XuH.H.K. MeloM.A.S. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials.Bioact. Mater.2018414355 30582079
    [Google Scholar]
  33. IqbalA. Antimicrobial irrigants in the endodontic therapy.Int. J. Health Sci.2012621710.12816/0005998 23580897
    [Google Scholar]
  34. MurrayC.A. SaundersW.P. Root canal treatment and general health: A review of the literature.Int. Endod. J.200033111810.1046/j.1365‑2591.2000.00293.x 11307468
    [Google Scholar]
  35. DentinoA. LeeS. MailhotJ. HeftiA.F. Principles of periodontology.Periodontol. 20002013611165310.1111/j.1600‑0757.2011.00397.x 23240942
    [Google Scholar]
  36. ReichE. HillerK.A. Reasons for tooth extraction in the western states of Germany.Community Dent. Oral Epidemiol.199321637938310.1111/j.1600‑0528.1993.tb01103.x 8306617
    [Google Scholar]
  37. DeniscoR.C. KennaG.A. O’NeilM.G. Prevention of prescription opioid abuse.J. Am. Dent. Assoc.2011142780081010.14219/jada.archive.2011.0268 21719802
    [Google Scholar]
  38. HabibS.R. RamalingamS. Al BeladiA. Al HabibA. Patient’s satisfaction with the dental care provided by dental students.J. Ayub Med. Coll. Abbottabad2014263353356 25671946
    [Google Scholar]
  39. MittalM. ChopraR. KumarA. SrivastavaD. Comparison of pain perception using conventional versus computer-controlled intraligamentary local anesthetic injection for extraction of primary molars.Anesth. Prog.2019662697610.2344/anpr‑66‑01‑09 31184941
    [Google Scholar]
  40. SinglaN. SinglaS. MinkowitzH.S. MoodieJ. BrownC. Intranasal ketorolac for acute postoperative pain.Curr. Med. Res. Opin.20102681915192310.1185/03007995.2010.495564 20557145
    [Google Scholar]
  41. IngielewiczA. SzymczakR.K. Intranasal therapy in palliative care.Pharmaceutics202416451910.3390/pharmaceutics16040519 38675179
    [Google Scholar]
  42. AnsariG. ToomarianL. MasoumT. ShayeghiS. EftekharL. Evaluation of the sedative effect of intranasal versus intramuscular ketamine in 2-6-year-old uncooperative dental patients.Dent. Med. Probl.2024611354110.17219/dmp/144364 38375967
    [Google Scholar]
  43. HoffmannB. ErwoodK. NcomanziS. FischerV. O’BrienD. LeeA. Management strategies for adult patients with dental anxiety in the dental clinic: A systematic review.Aust. Dent. J.202267S1S3S1310.1111/adj.12926 35735746
    [Google Scholar]
  44. YangR. ZhaoR. ChaudryF. Modern sedative agents and techniques used in dentistry for patients with special needs: A review.J. Taibah Univ. Med. Sci.202419115316310.1016/j.jtumed.2023.10.004 38047240
    [Google Scholar]
  45. McMainL. Principles of acute pain management.J. Perioper. Pract.2008181147247810.1177/175045890801801102 19051960
    [Google Scholar]
  46. MalcangiG PatanoA TrilliI Therapeutic and adverse effects of lasers in dentistry: A systematic review.Photonics202310665010.3390/photonics10060650
    [Google Scholar]
  47. MiraP.C.S. VilelaL.D. CoronaS.A.M. BorsattoM.C. Effect of low-level laser stimulation of acupuncture points in pediatric dentistry: A systematic review.Lasers Med. Sci.20233815210.1007/s10103‑023‑03720‑6 36690781
    [Google Scholar]
  48. KarkehabadiH. ZafariJ. KhoshbinE. AbbasiR. EsmailnasabS. Doosti-IraniA. Effect of low-level laser therapy on differentiation and proliferation of human dental pulp stem cells: A systematic review.J. Lasers Med. Sci.202314e4710.34172/jlms.2023.47 38028866
    [Google Scholar]
  49. MüllerM. SchmuckerC. NaumannJ. SchlueterN. HuberR. LedererA.K. Acupuncture in management of acute dental pain – A systematic review and meta-analysis.Jpn. Dent. Sci. Rev.20235911412810.1016/j.jdsr.2023.02.005 36950225
    [Google Scholar]
  50. MotwaniM. FadnavisA. DholeA. Efficacy of transcutaneous electrical nerve stimulation (TENS) in the management of trigeminal neuralgia: A systematic review and meta-analysis.J. Clin. Exp. Dent.2023156e505e51010.4317/jced.60500 37388436
    [Google Scholar]
  51. JerjesW. HopperC. KumarM. Psychological intervention in acute dental pain: Review.Br. Dent. J.2007202633734310.1038/bdj.2007.227 17384613
    [Google Scholar]
  52. CustódioN.B. CostaF.D.S. CademartoriM.G. da CostaV.P.P. GoettemsM.L. Effectiveness of virtual reality glasses as a distraction for children during dental care.Pediatr. Dent.202042293102 32276674
    [Google Scholar]
  53. SholjakovaM.V. DurnevV.M. Multimodal pain management in the setting of palliative care.Suggestions Addressing Clin Non-Clin Issues Palliat Care202122112610.5772/intechopen.96579
    [Google Scholar]
  54. OgleO.E. New approaches to pain management.Dent. Clin. North Am.202064231532410.1016/j.cden.2019.12.001 32111271
    [Google Scholar]
  55. ChauhanS. KumarK. Recent advances in biopolymers for drug delivery applications.Advances in Nano and Biochemistry.Academic Press202351354410.1016/B978‑0‑323‑95253‑8.00019‑X
    [Google Scholar]
  56. ZakrzewskiW. DobrzynskiM. DobrzynskiW. Nanomaterials application in orthodontics.Nanomaterials202111233710.3390/nano11020337 33525572
    [Google Scholar]
  57. TahmasbiS. MohamadianF. HosseiniS. EftekharL. A review on the applications of nanotechnology in orthodontics.Nanomed. J.201961118
    [Google Scholar]
  58. LekhadiaD.R. Nanotechnology in orthodontics—futuristic approach dental applications of nanotechnology.Springer201815517510.1007/978‑3‑319‑97634‑1_9
    [Google Scholar]
  59. JandtK.D. WattsD.C. Nanotechnology in dentistry: Present and future perspectives on dental nanomaterials.Dent. Mater.202036111365137810.1016/j.dental.2020.08.006 32981749
    [Google Scholar]
  60. BokobzaL. On the use of nanoparticles in dental implants.Materials20241713319110.3390/ma17133191 38998274
    [Google Scholar]
  61. HossainN. IslamM.A. ChowdhuryM.A. AlamA. Advances of nanoparticles employment in dental implant applications.Appl Surf Sci Adv20221210034110.1016/j.apsadv.2022.100341
    [Google Scholar]
  62. HuynhT.P. WittigN.K. AndersenA. Bach-GansmoF.L. BirkedalH. Underwater fabrication of carbon nanotube/coacervate composites.Langmuir20244025130101301610.1021/acs.langmuir.4c00715 38858173
    [Google Scholar]
  63. BhardwajA. BhardwajA. MisuriyaA. MaroliS. ManjulaS. SinghA.K. Nanotechnology in dentistry: Present and future.J. Int. Oral Health201461121126 24653616
    [Google Scholar]
  64. UmalkarD.G. JawaleB.A. PatilS. Application of nanotechnology in orthodontics: A critical review.IJCO20171912
    [Google Scholar]
  65. PushpalathaC. SureshJ. GayathriV.S. Zinc oxide nanoparticles: A review on its applications in dentistry.Front. Bioeng. Biotechnol.20221091799010.3389/fbioe.2022.917990 35662838
    [Google Scholar]
  66. ZeidanN.K. EnanyN.M. MohamedG.G. MarzoukE.S. The antibacterial effect of silver, zinc-oxide and combination of silver/zinc oxide nanoparticles coating of orthodontic brackets (an in vitro study).BMC Oral Health202222123010.1186/s12903‑022‑02263‑6 35681128
    [Google Scholar]
  67. MallineniS.K. SakhamuriS. KothaS.L. Silver nanoparticles in dental applications: A descriptive review.Bioengineering202310332710.3390/bioengineering10030327 36978718
    [Google Scholar]
  68. DiasF.A. VidalC.M.P. ComnickC.L. XieX.J. BergerS.B. Effect of silver nanoparticles associated with fluoride on the progression of root dentin caries in vitro.PLoS One2023181e027727510.1371/journal.pone.0277275 36662694
    [Google Scholar]
  69. AfkhamiF. ForghanP. GutmannJ.L. KishenA. Silver nanoparticles and their therapeutic applications in endodontics: A narrative review.Pharmaceutics202315371510.3390/pharmaceutics15030715 36986576
    [Google Scholar]
  70. VigneshN. KumariK.S. AbrahamA. Nanoparticles: A boon to dentistry.Magna Sci Adv Res Rev202371747910.30574/msarr.2023.7.1.0024
    [Google Scholar]
  71. DivaM.A. PourghaziK. DivaM.A. Gold nanoparticles grafted manganese doped Fe3O4 nanoparticles for determination of short-term release of silver and lead from dental amalgam in saliva.Nanochem Res201722205213
    [Google Scholar]
  72. BapatR.A. ChaubalT.V. DharmadhikariS. Recent advances of gold nanoparticles as biomaterial in dentistry.Int. J. Pharm.202058611959610.1016/j.ijpharm.2020.119596
    [Google Scholar]
  73. ChalayonP. TanwongsanC. Antibacterial effects of copper microparticles/copper nanoparticles/copper (II) oxide nanoparticles and copper microparticles/copper nanoparticles/copper (I) oxide nanoparticles from ultrasono-electrochemical with hydrothermal assisted synthesis method.Eng. J. (N.Y.)2021255566
    [Google Scholar]
  74. MaX. ZhouS. XuX. DuQ. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review.Front. Surg.2022990589210.3389/fsurg.2022.905892 35990090
    [Google Scholar]
  75. AnsarifardE. ZareshahrabadiZ. SarafrazN. ZomorodianK. Evaluation of aqntimicrobial and antibiofilm activities of copper oxide nanoparticles within soft denture liners against oral pathogens.Bioinorg. Chem. Appl.20212021993927510.1155/2021/9939275 34149837
    [Google Scholar]
  76. ShiraziM. QazviniF.F. MohamadrezaieS. Antimicrobial properties of glass-ionomer cement incorporated with zinc oxide nanoparticles against mutans Streptococci and Lactobacilli under orthodontic bands: An in vivo split-mouth study.Dent. Res. J. (Isfahan)20232014510.4103/1735‑3327.372662 37180692
    [Google Scholar]
  77. BahramiR. PourhajibagherM. BadieiA. MasaeliR. TanbakuchiB. Evaluation of the cell viability and antimicrobial effects of orthodontic bands coated with silver or zinc oxide nanoparticles: An in vitro study.Korean J. Orthod.2023531162510.4041/kjod22.091 36696956
    [Google Scholar]
  78. RajasekarN. MohanrajK.G. MartinT.M. MeenakshiK.S. Advanced dental care: β-chitosan zinc oxide nanoparticles targeting cariogenic microorganisms.Cureus2024168e6629610.7759/cureus.66296 39238748
    [Google Scholar]
  79. AlnazehA.A. KamranM.A. AlmoammarS. Al JearahM.M. QasimM. AlshahraniI. Visible light-activated curcumin-doped zinc oxide nanoparticles integrated into orthodontic adhesive on Micro-tensile bond strength, degree of conversion, and antibacterial effectiveness against Staphylococcus aureus. An investigation using scanning electron microscopy and energy-dispersive X-ray spectroscopy.J. Photochem. Photobiol. B202425311288810.1016/j.jphotobiol.2024.112888 38471422
    [Google Scholar]
  80. ChengZ. JanakiramanA.K. GunasekaranB. Unveiling the biomedical applications of Zinc Oxide (ZnO) nanoparticles: A review fostering on the synthesis, therapeutics and imaging with recent developments.Pharm. Sci.202430439842210.34172/PS.2024.24
    [Google Scholar]
  81. GitiR. ZomorodianK. FirouzmandiM. ZareshahrabadiZ. RahmannasabS. Antimicrobial activity of thermocycled polymethyl methacrylate resin reinforced with titanium dioxide and copper oxide nanoparticles.Int. J. Dent.20212021669080610.1155/2021/6690806
    [Google Scholar]
  82. MahendraT.V.D. MulakalaV. KeerthiV.S. Antibacterial properties and shear bond strength of titanium dioxide nanoparticles incorporated into an orthodontic adhesive: A systematic review.Int. J. Clin. Pediatr. Dent.202417110210810.5005/jp‑journals‑10005‑2729 38559855
    [Google Scholar]
  83. AlanaziA.M. KhanN.A. KhanA.A. Titanium oxide and chitosan nanoparticles loaded in methylene blue activated by photodynamic therapy on caries affected dentin disinfection, bond strength, and smear layer removal efficacy.Photodiagn. Photodyn. Ther.20245010434310.1016/j.pdpdt.2024.104343 39341329
    [Google Scholar]
  84. Kielan-GrabowskaZ. BącelaJ. ZiętyA. Improvement of properties of stainless steel orthodontic archwire using TiO2: Ag coating.Symmetry2021139173410.3390/sym13091734
    [Google Scholar]
  85. NikkerdarN GolshahA MobarakehMS Recent progress in application of zirconium oxide in dentistry.J Med Pharm Chem Res20246810427110.48309/jmpcr.2024.432254.1069
    [Google Scholar]
  86. AdnanA. AghaN. Does the addition of seashell or zirconium oxide nanoparticles at different concentrations improving tensile bond strength of orthodontic adhesive? In-vitro study.Al-Rafidain Dent J202424233134110.33899/rdenj.2022.136509.1176
    [Google Scholar]
  87. AlqerbanA. AsiriS.N. AlharbiF. Incorporation of zirconium oxide nanoparticles in adhesive resin for bonding of brackets to enamel conditioned with Er, Cr: YSGG, photodynamic therapy, and phosphoric acid.Photobiomodul. Photomed. Laser Surg.202341521822410.1089/photob.2022.0132 37159404
    [Google Scholar]
  88. SatyanarayanA. SinghR. SharmaR. LunkadH. MishraR. SandhuH.S. Assessing the outcomes of alluminium oxide on surface roughness and flexural strength of heat cure denture base resin.J. Pharm. Negat. Results20221331116111810.47750/pnr.2022.13.S03.175
    [Google Scholar]
  89. CongreveR.C. QuezadaC.P. KokkaracheduV. Aluminum Oxide Nanoparticles: Properties and Applications Overview.Nanoparticles in Modern Antimicrobial and Antiviral Applications.Springer2024265288
    [Google Scholar]
  90. HegdeV.N. The multifaceted applications of Al2O3 nanoparticles in biomedicine: a comprehensive review.Int. J. Biomed. Eng. Technol.202446476210.1504/IJBET.2024.140690
    [Google Scholar]
  91. VadirajB. RaoP.K.V. Kiran KumarK. Application of biomaterials and finite element analysis in dentistry – A review.Mater. Today Proc.20237656456810.1016/j.matpr.2022.11.164
    [Google Scholar]
  92. Abid AlthaqafiK. AlshabibA. SatterthwaiteJ. SilikasN. Properties of a model self-healing microcapsule-based dental composite reinforced with silica nanoparticles.J. Funct. Biomater.20221311910.3390/jfb13010019 35225982
    [Google Scholar]
  93. MahmoodW.S. AbdullahZ.S. SalahZ. FatallaA.A. Examining the impact of incorporating silicon dioxide nanoparticles on the surface roughness, surface hardness, tensile strength, and shear bond strength of chairside room temperature silicone-based soft denture liners: An in-vitro study.Dent. Hypotheses2024152252810.4103/denthyp.denthyp_18_24
    [Google Scholar]
  94. IkedaH. KawajiriY. SodeyamaM.K. A SiO2/pHEMA-based polymer-infiltrated ceramic network composite for dental restorative materials.J. Compos. Sci.2022611710.3390/jcs6010017
    [Google Scholar]
  95. VermaR. AzamM.S. KumarS.R. Mechanical and viscoelastic properties of dental composites reinforced with silicon dioxide nanoparticles.Mater. Sci. Eng. Technol.20245591268127510.1002/mawe.202300420
    [Google Scholar]
  96. UmapathyVR NatarajanPM SumathiJonesC Current trends and future perspectives on dental nanomaterials – An overview of nanotechnology strategies in dentistry.J. King Saud Univ. Sci.202234710223110.1016/j.jksus.2022.102231
    [Google Scholar]
  97. PourhajibagherM. BahramiR. BahadorA. An ex vivo evaluation of physico-mechanical and anti-biofilm properties of resin-modified glass ionomer containing ultrasound waves-activated nanoparticles against Streptococcus mutans biofilm around orthodontic bands.Photodiagn. Photodyn. Ther.20224010305110.1016/j.pdpdt.2022.103051 35932962
    [Google Scholar]
  98. FoudaS.M. GadM.M. EllakanyP. Flexural properties, impact strength, and hardness of nanodiamond-modified PMMA denture base resin.Int. J. Biomater.20222022658308410.1155/2022/6583084
    [Google Scholar]
  99. GuptaS.K. ThirumalaiD. VermaS. RayS.S. PaulK. Strontium-doped phosphate glass with in situ formed nanodiamond for orthopedic and dental application.Seventh International Conference on Multifunctional, Hybrid and NanomaterialsGenoa, Italy19-22 October 2022
    [Google Scholar]
  100. LinL. ZhengY. WangC. LiP. XuD. ZhaoW. Concentration-dependent cellular uptake of graphene oxide quantum dots promotes the odontoblastic differentiation of dental pulp cells via the AMPK/mTOR pathway.ACS Omega2023865393540510.1021/acsomega.2c06508 36816699
    [Google Scholar]
  101. HuY. XuZ. HuY. Bismuth quantum dot (Bi QD)/Polydimethylsiloxane (PDMS) nanocomposites with self-cleaning and antibacterial activity for dental applications.Nanomaterials20221221391110.3390/nano12213911 36364687
    [Google Scholar]
  102. DarvishS. BudalaD.G. GoriucA. Antibacterial properties of an experimental dental resin loaded with gold nanoshells for photothermal therapy applications.J. Funct. Biomater.202415410010.3390/jfb15040100 38667557
    [Google Scholar]
  103. RaoS. NadishB.T. PremanN.K. Synthesis, characterization, and evaluation of quaternary ammonium-based polymerizable antimicrobial monomers for prosthodontic applications.Heliyon202288e1037410.1016/j.heliyon.2022.e10374 36090206
    [Google Scholar]
  104. BapatR.A. ParoliaA. ChaubalT. Recent update on applications of quaternary ammonium silane as an antibacterial biomaterial: A novel drug delivery approach in dentistry.Front. Microbiol.20221392728210.3389/fmicb.2022.927282 36212832
    [Google Scholar]
  105. HeJ. LassilaL. GaroushiS. VallittuP. Tailoring the monomers to overcome the shortcomings of current dental resin composites – Review.Biomater. Investig. Dent.2023101219162110.1080/26415275.2023.2191621 37090482
    [Google Scholar]
  106. SamS. JosephB. ThomasS. Exploring the antimicrobial features of biomaterials for biomedical applications.Results Eng.20231710097910.1016/j.rineng.2023.100979
    [Google Scholar]
  107. GaubaK. GuptaA. ShardaS. Nanotechnology in dentistry. SobtiR. DhallaN.S. Biomedical Translational Research.Springer, Singapore202214115210.1007/978‑981‑16‑9232‑1_10
    [Google Scholar]
  108. GovindankuttyD. Applications of nanotechnology in orthodontics and its future implications: A review.Int J Appl Dent Sci20151166171
    [Google Scholar]
  109. PriyaG.B. ArchanaP. KumariV. BalajiS. Nanobiomaterials in preventive and restorative dentistry-A review.J. Coast. Life Med.20231130373045
    [Google Scholar]
  110. ZhaoJ. LiuY. SunW. ZhangH. Amorphous calcium phosphate and its application in dentistry.Chem. Cent. J.2011514010.1186/1752‑153X‑5‑40 21740535
    [Google Scholar]
  111. CascioneM. De MatteisV. PellegrinoP. Improvement of PMMA dental matrix performance by addition of titanium dioxide nanoparticles and clay nanotubes.Nanomaterials2021118202710.3390/nano11082027 34443858
    [Google Scholar]
  112. MahmoodiM. HaghighiV. MirhajM. TavafoghiM. ShamsF. DarabiA. Highly osteogenic and mechanically strong nanofibrous scaffolds based on functionalized multi-walled carbon nanotubes-reinforced electrospun keratin/poly(ε-caprolactone).Mater. Today Commun.20212710240110.1016/j.mtcomm.2021.102401
    [Google Scholar]
  113. Iwanami-KadowakiK. UchikoshiT. UezonoM. KikuchiM. MoriyamaK. Development of novel bone-like nanocomposite coating of hydroxyapatite/collagen on titanium by modified electrophoretic deposition.J. Biomed. Mater. Res. A2021109101905191110.1002/jbm.a.37182 33786996
    [Google Scholar]
  114. GanapathyD. ShanmugamR. PitchiahS. MuruganP. ChinnathambiA. AlharbiS.A. Potential applications of halloysite nanotubes as drug carriers: A review.J. Nanomater.20221068536
    [Google Scholar]
  115. AldwimiI.M. AlharebA.O. AkilH.M. HamidZ.A.A. The effect of halloysite nanotubes and mult wall carbon nanotubes on the mechanical properties of poly (Methyl Methacrylate).Denture Base Nanocomposites2023
    [Google Scholar]
  116. WijerathneD. GongY. AfrojS. KarimN. AbeykoonC. Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate composites.Int J Lightweight Mater Manuf20236111712810.1016/j.ijlmm.2022.09.001
    [Google Scholar]
  117. DanialW.H. Abdul MajidZ. Recent advances on the enhanced thermal conductivity of graphene nanoplatelets composites: a short review.Carbon Letters20223261411142410.1007/s42823‑022‑00371‑5
    [Google Scholar]
  118. BangeraM.K. KotianR. NatarajanS. SomasundaramJ. MangalathD.L. Effects of graphene nanoplatelets and montmorillonite nanoclay reinforcement on dental polymethyl methacrylate.Polym. Compos.20224363626363810.1002/pc.26642
    [Google Scholar]
  119. KwackK.H. LeeH.W. Clinical potential of dental pulp stem cells in pulp regeneration: current endodontic progress and future perspectives.Front. Cell Dev. Biol.20221085706610.3389/fcell.2022.857066 35478967
    [Google Scholar]
  120. TadikondaR.R. AdityaA. Nanobots: The future of drug delivery.Ars Pharmaceutica2024654392408
    [Google Scholar]
  121. GuoJ. WangP. LiY. Advances in hybridized nanoarchitectures for improved oro-dental health.J. Nanobiotechnology202422146910.1186/s12951‑024‑02680‑5 39113060
    [Google Scholar]
  122. FatimaA ShafiI AfzalH Advancements in dentistry with artificial intelligence: Current clinical applications and future perspectives.Healthcare(Basel)20221011218810.3390/healthcare10112188 36360529
    [Google Scholar]
  123. AlammarA. KoisJ.C. Revilla-LeónM. AttW. Additive manufacturing technologies: current status and future perspectives.J. Prosthodont.202231S141210.1111/jopr.13477 35313022
    [Google Scholar]
  124. YudaevP. ChuevV. KlyukinB. KuskovA. MezhuevY. ChistyakovE. Polymeric dental nanomaterials: Antimicrobial action.Polymers202214586410.3390/polym14050864 35267686
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128361827250312053051
Loading
/content/journals/cpd/10.2174/0113816128361827250312053051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test