Skip to content
2000
Volume 31, Issue 29
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Breast cancer poses a significant global health challenge, necessitating improved diagnostic and treatment strategies. This review explores the role of artificial intelligence (AI) in enhancing breast cancer pathology, emphasizing risk assessment, early detection, and analysis of histopathological and mammographic data. AI platforms show promise in predicting breast cancer risks and identifying tumors up to three years before clinical diagnosis. Deep learning techniques, particularly convolutional neural networks (CNNs), effectively classify cancer subtypes and grade tumor risk, achieving accuracy comparable to expert radiologists. Despite these advancements, challenges, such as the need for high-quality datasets and integration into clinical workflows, persist. Continued research on AI technologies is essential for advancing breast cancer detection and improving patient outcomes.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128369168250311172823
2025-04-08
2025-09-02
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.00130258937
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  4. FaramarziF. ZafariP. AlimohammadiM. MoonesiM. RafieiA. BekeschusS. Cold physical plasma in cancer therapy: Mechanisms, signaling, and immunity.Oxid. Med. Cell. Longev.202120211991679610.1155/2021/991679635284036
    [Google Scholar]
  5. QuinnC. MaguireA. RakhaE. Pitfalls in breast pathology.Histopathology202382114016110.1111/his.1479936482276
    [Google Scholar]
  6. BejnordiE.B. VetaM. Johannes van DiestP Ginnekenv.B. KarssemeijerN. LitjensG. Laakd.v.J.A.W.M. HermsenM. MansonQ.F. BalkenholM. GeessinkO. StathonikosN. Dijkv.M.C.R.F. BultP. BecaF. BeckA.H. WangD. KhoslaA. GargeyaR. IrshadH. ZhongA. DouQ. LiQ. ChenH. LinH.J. HengP.A. HaßC. BruniE. WongQ. HaliciU. ÖnerM.Ü. Cetin-AtalayR. BersethM. KhvatkovV. VylegzhaninA. KrausO. ShabanM. RajpootN. AwanR. SirinukunwattanaK. QaiserT. TsangY.W. TellezD. AnnuscheitJ. HufnaglP. ValkonenM. KartasaloK. LatonenL. RuusuvuoriP. LiimatainenK. AlbarqouniS. MungalB. GeorgeA. DemirciS. NavabN. WatanabeS. SenoS. TakenakaY. MatsudaH. PhouladyA.H. KovalevV. KalinovskyA. LiauchukV. BuenoG. Fernandez-CarroblesM.M. SerranoI. DenizO. RacoceanuD. VenâncioR. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer.JAMA2017318222199221010.1001/jama.2017.1458529234806
    [Google Scholar]
  7. ShafiS. ParwaniA.V. Artificial intelligence in diagnostic pathology.Diagn. Pathol.202318110910.1186/s13000‑023‑01375‑z37784122
    [Google Scholar]
  8. RakhaE.A. Reis-FilhoJ.S. EllisI.O. Combinatorial biomarker expression in breast cancer.Breast Cancer Res. Treat.2010120229330810.1007/s10549‑010‑0746‑x20107892
    [Google Scholar]
  9. ElstonCW EllisIO Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up.Histopathology199119540341010.1111/j.1365‑2559.1991.tb00229.x1757079
    [Google Scholar]
  10. KeelanS. FlanaganM. HillA.D.K. Evolving trends in surgical management of breast cancer: An analysis of 30 years of practice changing papers.Front. Oncol.20211162262110.3389/fonc.2021.62262134422626
    [Google Scholar]
  11. WolffA.C. HammondM.E.H. AllisonK.H. HarveyB.E. ManguP.B. BartlettJ.M.S. BilousM. EllisI.O. FitzgibbonsP. HannaW. JenkinsR.B. PressM.F. SpearsP.A. VanceG.H. VialeG. McShaneL.M. DowsettM. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update.Arch. Pathol. Lab. Med.2018142111364138210.5858/arpa.2018‑0902‑SA29846104
    [Google Scholar]
  12. HammondM.E.H. HayesD.F. DowsettM. AllredD.C. HagertyK.L. BadveS. FitzgibbonsP.L. FrancisG. GoldsteinN.S. HayesM. HicksD.G. LesterS. LoveR. ManguP.B. McShaneL. MillerK. OsborneC.K. PaikS. PerlmutterJ. RhodesA. SasanoH. SchwartzJ.N. SweepF.C.G. TaubeS. TorlakovicE.E. ValensteinP. VialeG. VisscherD. WheelerT. WilliamsR.B. WittliffJ.L. WolffA.C. American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version).Arch. Pathol. Lab. Med.20101347e48e7210.5858/134.7.e4820586616
    [Google Scholar]
  13. BockstalV.M.R. FrançoisA. AltinayS. ArnouldL. BalkenholM. BroeckxG. BurguèsO. ColpaertC. DedeurwaerdereF. DessauvagieB. DuwelV. FlorisG. FoxS. GerosaC. HastirD. JafferS. KurpershoekE. Lacroix-TrikiM. LakaA. LambeinK. MacGroganG.M. MarchiòC. MartinezM.M.D. Nofech-MozesS. PeetersD. RavarinoA. ReisenbichlerE. ResetkovaE. SanatiS. SchelfhoutA.M. SchelfhoutV. ShaabanA. SinkeR. Stanciu-PopC.M. Deurzenv.C.H.M. Vijverd.V.K.K. RompuyV.A.S. Vincent-SalomonA. WenH.Y. WongS. BouzinC. GalantC. Interobserver variability in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative invasive breast carcinoma influences the association with pathological complete response: The IVITA study.Mod. Pathol.202134122130214010.1038/s41379‑021‑00865‑z34218258
    [Google Scholar]
  14. AllisonK.H. HammondM.E.H. DowsettM. McKerninS.E. CareyL.A. FitzgibbonsP.L. HayesD.F. LakhaniS.R. Chavez-MacGregorM. PerlmutterJ. PerouC.M. ReganM.M. RimmD.L. SymmansW.F. TorlakovicE.E. VarellaL. VialeG. WeisbergT.F. McShaneL.M. WolffA.C. Estrogen and progesterone receptor testing in breast cancer: Asco/cap guideline update.J. Clin. Oncol.202038121346136610.1200/JCO.19.0230931928404
    [Google Scholar]
  15. LesterS.C. BoseS. ChenY.Y. ConnollyJ.L. Bacad.M.E. FitzgibbonsP.L. HayesD.F. KleerC. O’MalleyF.P. PageD.L. SmithB.L. TanL.K. WeaverD.L. WinerE. Protocol for the examination of specimens from patients with invasive carcinoma of the breast.Arch. Pathol. Lab. Med.2009133101515153810.5858/133.10.151519792042
    [Google Scholar]
  16. AllredD.C. HarveyJ.M. BerardoM. ClarkG.M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis.Mod. Pathol.19981121551689504686
    [Google Scholar]
  17. BaxiV. EdwardsR. MontaltoM. SahaS. Digital pathology and artificial intelligence in translational medicine and clinical practice.Mod. Pathol.2022351233210.1038/s41379‑021‑00919‑234611303
    [Google Scholar]
  18. LarsenM. OlstadC.F. KochH.W. MartiniussenM.A. HoffS.R. Lund-HanssenH. SolliH.S. MikalsenK.Ø. AuensenS. NygårdJ. LångK. ChenY. HofvindS. AI risk score on screening mammograms preceding breast cancer diagnosis.Radiology20233091e23098910.1148/radiol.23098937847135
    [Google Scholar]
  19. BalasubramanianA.A. Al-HeejawiS.M.A. SinghA. BreggiaA. AhmadB. ChristmanR. RyanS.T. AmalS. Ensemble deep learning-based image classification for breast cancer subtype and invasiveness diagnosis from whole slide image histopathology.Cancers20241612222210.3390/cancers1612222238927927
    [Google Scholar]
  20. SechopoulosI. TeuwenJ. MannR. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art.Semin. Cancer Biol.20217221422510.1016/j.semcancer.2020.06.00232531273
    [Google Scholar]
  21. PisanoE.D. GatsonisC. HendrickE. YaffeM. BaumJ.K. AcharyyaS. ConantE.F. FajardoL.L. BassettL. D’OrsiC. JongR. RebnerM. Diagnostic performance of digital versus film mammography for breast-cancer screening.N. Engl. J. Med.2005353171773178310.1056/NEJMoa05291116169887
    [Google Scholar]
  22. ShahS.M. KhanR.A. ArifS. SajidU. Artificial intelligence for breast cancer analysis: Trends & directions.Comput. Biol. Med.202214210522110.1016/j.compbiomed.2022.10522135016100
    [Google Scholar]
  23. SabaT. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges.J. Infect. Public Health20201391274128910.1016/j.jiph.2020.06.03332758393
    [Google Scholar]
  24. YoonJ.H. KimE.K. Deep learning-based artificial intelligence for mammography.Korean J. Radiol.20212281225123910.3348/kjr.2020.121033987993
    [Google Scholar]
  25. SandbankJ. BataillonG. NudelmanA. KrasnitskyI. MikulinskyR. BienL. ThibaultL. ShachA.A. SebagG. ClarkD.P. LaifenfeldD. SchnittS.J. LinhartC. VecslerM. Vincent-SalomonA. Validation and real- world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies.NPJ Breast Cancer20228112910.1038/s41523‑022‑00496‑w36473870
    [Google Scholar]
  26. LiuY. HanD. ParwaniAV LiZ. Applications of artificial intelligence in breast pathology.Arch. Pathol. Lab. Med.202314791003101310.5858/arpa.2022‑0457‑RA36800539
    [Google Scholar]
  27. GandomkarZ. BrennanP.C. Mello-ThomsC. MuDeRN: Multi-category classification of breast histopathological image using deep residual networks.Artif. Intell. Med.201888142410.1016/j.artmed.2018.04.00529705552
    [Google Scholar]
  28. IvanovaM. PesciaC. TrapaniD. VenetisK. FrascarelliC. ManeE. CursanoG. SajjadiE. ScatenaC. CerbelliB. d’AmatiG. PortaF.M. Guerini-RoccoE. CriscitielloC. CuriglianoG. FuscoN. Early breast cancer risk assessment: Integrating histopathology with artificial intelligence.Cancers20241611198110.3390/cancers1611198138893102
    [Google Scholar]
  29. SharmaS. MehraR. Conventional machine learning and deep learning approach for multi-classification of breast cancer histopathology images—a comparative insight.J. Digit. Imaging202033363265410.1007/s10278‑019‑00307‑y31900812
    [Google Scholar]
  30. IbrahimA. JahanifarM. WahabN. TossM.S. MakhloufS. AtallahN. LashenA.G. KatayamaA. GrahamS. BilalM. BhaleraoA. RazaA.S.E. SneadD. MinhasF. RajpootN. RakhaE. Artificial intelligence-based mitosis scoring in breast cancer: Clinical application.Mod. Pathol.202437310041610.1016/j.modpat.2023.10041638154653
    [Google Scholar]
  31. AhnJ.S. ShinS. YangS.A. ParkE.K. KimK.H. ChoS.I. OckC.Y. KimS. Artificial intelligence in breast cancer diagnosis and personalized medicine.J. Breast Cancer202326540543510.4048/jbc.2023.26.e4537926067
    [Google Scholar]
  32. SajjadU. RezapourM. SuZ. TozbikianG.H. GurcanM.N. NiaziM.K.K. NRK-ABMIL: Subtle metastatic deposits detection for predicting lymph node metastasis in breast cancer whole-slide images.Cancers20231513342810.3390/cancers1513342837444538
    [Google Scholar]
  33. Holten-RossingH. TalmanM.L.M. JyllingA.M.B. LænkholmA.V. KristenssonM. VainerB. Application of automated image analysis reduces the workload of manual screening of sentinel lymph node biopsies in breast cancer.Histopathology201771686687310.1111/his.1330528677240
    [Google Scholar]
  34. SajjadiE. VenetisK. NoaleM. AzimH.A.Jr BlundoC. BonizziG. LoretoD.E. ScarfoneG. FerreroS. MaggiS. BarberisM. VeronesiP. GalimbertiV.E. VialeG. FuscoN. PeccatoriF.A. Guerini-RoccoE. Breast cancer during pregnancy as a special type of early-onset breast cancer: Analysis of the tumor immune microenvironment and risk profiles.Cells20221115228610.3390/cells1115228635892583
    [Google Scholar]
  35. WangZ. KatsarosD. WangJ. BiglioN. HernandezB.Y. FeiP. LuL. RischH. YuH. Machine learning-based cluster analysis of immune cell subtypes and breast cancer survival.Sci. Rep.20231311896210.1038/s41598‑023‑45932‑437923775
    [Google Scholar]
  36. SajjadiE. VenetisK. ScatenaC. FuscoN. Biomarkers for precision immunotherapy in the metastatic setting: Hope or reality?Ecancermed. sci.202014115010.3332/ecancer.2020.115033574895
    [Google Scholar]
  37. ThagaardJ. BroeckxG. PageD.B. JahangirC.A. VerbandtS. KosZ. GuptaR. KhiroyaR. AbduljabbarK. HaabA.G. AcsB. AkturkG. AlmeidaJ.S. Alvarado-CabreroI. AmgadM. Azmoudeh-ArdalanF. BadveS. BaharunN.B. BalslevE. BellolioE.R. BheemarajuV. BlenmanK.R.M. FujimotoB.M.L. BouchmaaN. BurguesO. ChardasA. Chon U CheangM. CiompiF. CooperL.A.D. CoosemansA. CorredorG. DahlA.B. PortelaD.F.L. DemanF. DemariaS. HansenD.J. DudgeonS.N. EbstrupT. ElghazawyM. Fernandez-MartínC. FoxS.B. GallagherW.M. GiltnaneJ.M. GnjaticS. Gonzalez-EricssonP.I. GrigoriadisA. HalamaN. HannaM.G. HarbhajankaA. HartS.N. HartmanJ. HaubergS. HewittS. HidaA.I. HorlingsH.M. HusainZ. HytopoulosE. IrshadS. JanssenE.A.M. KahilaM. KataokaT.R. KawaguchiK. KharidehalD. KhramtsovA.I. KirazU. KirtaniP. KodachL.L. KorskiK. KovácsA. LaenkholmA.V. Lang-SchwarzC. LarsimontD. LennerzJ.K. LerousseauM. LiX. LyA. MadabhushiA. MaleyS.K. NarasimhamurthyM.V. MarksD.K. McDonaldE.S. MehrotraR. MichielsS. MinhasF.A.A. MittalS. MooreD.A. MushtaqS. NighatH. PapathomasT. Penault-LlorcaF. PereraR.D. PinardC.J. Pinto-CardenasJ.C. PruneriG. PusztaiL. RahmanA. RajpootN.M. RapoportB.L. RauT.T. Reis-FilhoJ.S. RibeiroJ.M. RimmD. RoslindA. Vincent-SalomonA. Salto-TellezM. SaltzJ. SayedS. ScottE. SiziopikouK.P. SotiriouC. StenzingerA. SughayerM.A. SurD. FinebergS. SymmansF. TanakaS. TaxterT. TejparS. TeuwenJ. ThompsonE.A. TrammT. TranW.T. Laakd.v.J. Diestv.P.J. VergheseG.E. VialeG. ViethM. WahabN. WalterT. WaumansY. WenH.Y. YangW. YuanY. ZinR.M. AdamsS. BartlettJ. LoiblS. DenkertC. SavasP. LoiS. SalgadoR. StovgaardS.E. Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the international immuno-oncology biomarker working group on breast cancer.J. Pathol.2023260549851310.1002/path.615537608772
    [Google Scholar]
  38. StewartM.D. VegaM.D. ArendR.C. BadenJ.F. BarbashO. BeaubierN. CollinsG. FrenchT. GhahramaniN. HinsonP. JelinicP. MartonM.J. McGregorK. ParsonsJ. RamamurthyL. SausenM. SokolE.S. StenzingerA. StiresH. TimmsK.M. TurcoD. WangI. WilliamsJ.A. Wong-HoE. AllenJ. Homologous recombination deficiency: Concepts, definitions, and assays.Oncologist202227316717410.1093/oncolo/oyab05335274707
    [Google Scholar]
  39. LazardT. BataillonG. NaylorP. PopovaT. BidardF.C. Stoppa-LyonnetD. SternM.H. DecencièreE. WalterT. Vincent-SalomonA. Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images.Cell Rep. Med.202231210087210.1016/j.xcrm.2022.10087236516847
    [Google Scholar]
  40. AnabyD. ShavinD Zimmerman-MorenoG NissanN FriedmanE. Sklair-LevyM. ‘Earlier than early’ detection of breast cancer in Israeli BRCA mutation carriers applying AI-based analysis to consecutive MRI scans.Cancers20231512312010.3390/cancers1512312037370730
    [Google Scholar]
  41. LoiblS. AndréF. BachelotT. BarriosC.H. BerghJ. BursteinH.J. CardosoM.J. CareyL.A. DawoodS. MastroD.L. DenkertC. FallenbergE.M. FrancisP.A. Gamal-EldinH. GelmonK. GeyerC.E. GnantM. GuarneriV. GuptaS. KimS.B. KrugD. MartinM. MeattiniI. MorrowM. JanniW. Paluch-ShimonS. PartridgeA. PoortmansP. PusztaiL. ReganM.M. SparanoJ. SpanicT. SwainS. TjulandinS. ToiM. TrapaniD. TuttA. XuB. CuriglianoG. HarbeckN. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.Ann. Oncol.202435215918210.1016/j.annonc.2023.11.01638101773
    [Google Scholar]
  42. SuttonR.T. PincockD. BaumgartD.C. SadowskiD.C. FedorakR.N. KroekerK.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success.NPJ Digit. Med.2020311710.1038/s41746‑020‑0221‑y32047862
    [Google Scholar]
  43. PaiR. KarkiS. AgarwalR. SieberS. BaraschS. Optimal settings and clinical validation for automated Ki67 calculation in neuroendocrine tumors with open source informatics (QuPath).J. Pathol. Inform.20221310014110.1016/j.jpi.2022.10014136268106
    [Google Scholar]
  44. CaldonazziN. RizzoP.C. EccherA. GirolamiI. FanelliG.N. NaccaratoA.G. BonizziG. FuscoN. d’AmatiG. ScarpaA. PantanowitzL. MarlettaS. Value of artificial intelligence in evaluating lymph node metastases.Cancers2023159249110.3390/cancers1509249137173958
    [Google Scholar]
  45. JanowczykA. ZuoR. GilmoreH. FeldmanM. MadabhushiA. HistoQC: An open-source quality control tool for digital pathology slides.JCO Clin. Cancer Inform.2019331710.1200/CCI.18.0015730990737
    [Google Scholar]
  46. BeraK. SchalperK.A. RimmD.L. VelchetiV. MadabhushiA. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology.Nat. Rev. Clin. Oncol.2019161170371510.1038/s41571‑019‑0252‑y31399699
    [Google Scholar]
  47. RagabD.A. SharkasM. MarshallS. RenJ. Breast cancer detection using deep convolutional neural networks and support vector machines.PeerJ20197e620110.7717/peerj.620130713814
    [Google Scholar]
  48. WangL. Mammography with deep learning for breast cancer detection.Front. Oncol.202414128192210.3389/fonc.2024.128192238410114
    [Google Scholar]
  49. BhowmikA. Eskreis-WinklerS. Deep learning in breast imaging.BJR|Open2022412021006010.1259/bjro.2021006036105427
    [Google Scholar]
  50. LehmanC.D. YalaA. SchusterT. DontchosB. BahlM. SwansonK. BarzilayR. Mammographic breast density assessment using deep learning: Clinical implementation.Radiology20192901525810.1148/radiol.201818069430325282
    [Google Scholar]
  51. YalaA. SchusterT. MilesR. BarzilayR. LehmanC. A deep learning model to triage screening mammograms: A simulation study.Radiology20192931384610.1148/radiol.201918290831385754
    [Google Scholar]
  52. BeckerA.S. MarconM. GhafoorS. WurnigM.C. FrauenfelderT. BossA. Deep learning in mammography.Invest. Radiol.201752743444010.1097/RLI.000000000000035828212138
    [Google Scholar]
  53. SubasiI.D. ÖzçelikŞ.B. Artificial intelligence in breast imaging: Opportunities, challenges, and legal-ethical considerations.Eurasian J. Med.202355111411939128072
    [Google Scholar]
  54. XavierD. MiyawakiI. JorgeC.C.A. SilvaF.G.B. LloydM. MoraesF. PatelB. BataliniF. Artificial intelligence for triaging of breast cancer screening mammograms and workload reduction: A meta-analysis of a deep learning software.J. Med. Screen.202431315716510.1177/0969141323121995238115810
    [Google Scholar]
  55. TizhooshH.R. PantanowitzL. Artificial intelligence and digital pathology: Challenges and opportunities.J. Pathol. Inform.2018913810.4103/jpi.jpi_53_1830607305
    [Google Scholar]
  56. BiW.L. HosnyA. SchabathM.B. GigerM.L. BirkbakN.J. MehrtashA. AllisonT. ArnaoutO. AbboshC. DunnI.F. MakR.H. TamimiR.M. TempanyC.M. SwantonC. HoffmannU. SchwartzL.H. GilliesR.J. HuangR.Y. AertsH.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin.201969212715710.3322/caac.2155230720861
    [Google Scholar]
  57. IbrahimA. GambleP. JaroensriR. AbdelsameaM.M. MermelC.H. ChenP.H.C. RakhaE.A. Artificial intelligence in digital breast pathology: Techniques and applications.Breast20204926727310.1016/j.breast.2019.12.00731935669
    [Google Scholar]
  58. AndrewA. TizzardE. Large language models for improving cancer diagnosis and management in primary health care settings.J. Med. Surge. Public Health2024410015710.1016/j.glmedi.2024.100157
    [Google Scholar]
  59. AlSamhoriJ.F. AlSamhoriA.R.F. DuncanL.A. QalajoA. AlshahwanH.F. Al-abbadiM. SoudiM.A. ZakraouiR. AlSamhoriA.F. AlryalatS.A. NashwanA.J. Artificial intelligence for breast cancer: Implications for diagnosis and management.J. Med. Surg. Public Health2024310012010.1016/j.glmedi.2024.100120
    [Google Scholar]
  60. CuiM. ZhangD.Y. Artificial intelligence and computational pathology.Lab. Invest.2021101441242210.1038/s41374‑020‑00514‑033454724
    [Google Scholar]
  61. PagalloU. O’SullivanS. NevejansN. HolzingerA. FriebeM. JeanquartierF. Jean-QuartierC. MiernikA. The underuse of AI in the health sector: Opportunity costs, success stories, risks and recommendations.Health Technol.202414111410.1007/s12553‑023‑00806‑738229886
    [Google Scholar]
  62. ShimabukuroD.W. BartonC.W. FeldmanM.D. MatarasoS.J. DasR. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial.BMJ Open Respir. Res.201741e00023410.1136/bmjresp‑2017‑00023429435343
    [Google Scholar]
  63. UwimanaA. GneccoG. RiccaboniM. Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.Comput. Biol. Med.202518410939110.1016/j.compbiomed.2024.10939139579663
    [Google Scholar]
  64. HannaM.G. HannaM.H. Current applications and challenges of artificial intelligence in pathology.Human Path. Rep.20222730059610.1016/j.hpr.2022.300596
    [Google Scholar]
  65. TilalaH.M. ChenchalaK.P. ChoppadandiA. KaurJ. NaguriS. SaojiR. DevaguptapuB. Ethical considerations in the use of artificial intelligence and machine learning in health care: A comprehensive review.Cureus2024166e6244310.7759/cureus.6244339011215
    [Google Scholar]
  66. KhalidN. QayyumA. BilalM. Al-FuqahaA. QadirJ. Privacy-preserving artificial intelligence in healthcare: Techniques and applications.Comput. Biol. Med.202315810684810.1016/j.compbiomed.2023.10684837044052
    [Google Scholar]
  67. JaimeF.J. MuñozA. Rodríguez-GómezF. Jerez-CaleroA. Strengthening privacy and data security in biomedical microelectromechanical systems by IoT communication security and protection in smart healthcare.Sensors20232321894410.3390/s23218944
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128369168250311172823
Loading
/content/journals/cpd/10.2174/0113816128369168250311172823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test