Skip to content
2000
Volume 31, Issue 29
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Zuo Gui pill (ZGP) is a herbal compound formulation used to treat knee osteoarthritis (KOA), but its underlying mechanisms are still unclear. This study aimed to initially elucidate the molecular mechanisms of ZGP in treating KOA using network pharmacology and molecular docking techniques.

Methods

We collected information on the drug compounds and targets from TCMSP, HERB, BATMAN-TCM, and UniProt databases, as well as the KOA-related targets from DisGeNET, GeneCards, OMIM, and GEO databases. Afterward, we obtained the hub targets of ZGP and KOA. The biological processes and major pathways of the hub targets were analyzed by GO and KEGG, and three networks were constructed to illustrate the mechanisms of ZGP for the treatment of KOA. Finally, molecular docking was carried out to verify the binding of the main compounds to the key targets.

Results

Through the network pharmacological analysis, we screened important compounds in ZGP, such as quercetin, kaempferol, wogonin, isorhamnetin, and 138 hub targets, including PTGS2, NOS3, AKT1, MAPK1, which are enriched in PI3K-Akt, MAPK, TNF, IL-17, HIF-1, and other signaling pathways. The molecular docking results showed that the main compounds and key targets have high affinity, which further demonstrated the molecular mechanisms and provided a basis for the clinical application of ZGP.

Conclusion

This study illustrates the specific mechanisms of ZGP in the treatment of KOA using network pharmacology and molecular docking techniques, which lays the foundation for further research on its pharmacological mechanisms.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128330436250210052548
2025-02-28
2025-09-03
Loading full text...

Full text loading...

References

  1. HunterD.J. Bierma-ZeinstraS. Osteoarthritis. Lancet2019393101821745175910.1016/S0140‑6736(19)30417‑9 31034380
    [Google Scholar]
  2. VosT. AllenC. AroraM. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015.Lancet2016388100531545160210.1016/S0140‑6736(16)31678‑6 27733282
    [Google Scholar]
  3. Glyn-JonesS. PalmerA.J.R. AgricolaR. Osteoarthritis. Lancet2015386999137638710.1016/S0140‑6736(14)60802‑3 25748615
    [Google Scholar]
  4. SharmaL. Osteoarthritis of the knee.N. Engl. J. Med.20213841515910.1056/NEJMcp1903768 33406330
    [Google Scholar]
  5. ArdenN.K. PerryT.A. BannuruR.R. Non-surgical management of knee osteoarthritis: Comparison of ESCEO and OARSI 2019 guidelines.Nat. Rev. Rheumatol.2021171596610.1038/s41584‑020‑00523‑9 33116279
    [Google Scholar]
  6. WenxiongL. KuaiqiangZ. ZhuL. Effect of Zuogui pill and Yougui pill on osteoporosis: A randomized controlled trial.J. Tradit. Chin. Med.2018381334210.1016/j.jtcm.2018.01.005 32185949
    [Google Scholar]
  7. GongW. ZhangN. ChengG. Rehmannia glutinosa Libosch extracts prevent bone loss and architectural deterioration and enhance osteoblastic bone formation by regulating the IGF-1/PI3K/mTOR pathway in streptozotocin-induced diabetic rats.Int. J. Mol. Sci.20192016396410.3390/ijms20163964
    [Google Scholar]
  8. JianG. SuB. ZhouW. XiongH. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Eucommia ulmoides-Radix achyranthis bidentatae against osteoarthritis.BioData Min.20201311210.1186/s13040‑020‑00221‑y 32874205
    [Google Scholar]
  9. WengX. LinP. LiuF. Achyranthes bidentata polysaccharides activate the Wnt/β-catenin signaling pathway to promote chondrocyte proliferation.Int. J. Mol. Med.20143441045105010.3892/ijmm.2014.1869 25176272
    [Google Scholar]
  10. WangL. ZhangX.F. ZhangX. Evaluation of the therapeutic effect of traditional Chinese medicine on osteoarthritis: A systematic review and meta-analysis.Pain Res. Manag.2020202012310.1155/2020/5712187 33414859
    [Google Scholar]
  11. LeeW.Y. LeeC.Y. KimY.S. KimC.E. The methodological trends of traditional herbal medicine employing network pharmacology.Biomolecules20199836210.3390/biom9080362
    [Google Scholar]
  12. BarabásiA.L. GulbahceN. LoscalzoJ. Network medicine: A network-based approach to human disease.Nat. Rev. Genet.2011121566810.1038/nrg2918 21164525
    [Google Scholar]
  13. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  14. RuJ. LiP. WangJ. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  15. FangS. DongL. LiuL. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine.Nucleic Acids Res.202149D1D1197D120610.1093/nar/gkaa1063 33264402
    [Google Scholar]
  16. LiuZ. GuoF. WangY. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine.Sci. Rep.2016612114610.1038/srep21146 26879404
    [Google Scholar]
  17. ConsortiumT.U. UniProt: The universal protein knowledgebase in 2023.Nucleic Acids Res.202251D523D53110.1093/nar/gkac1052
    [Google Scholar]
  18. PiñeroJ. Ramírez-AnguitaJ.M. Saüch-PitarchJ. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D855 31680165
    [Google Scholar]
  19. SafranM. RosenN. TwikM. The GeneCards suite. AbugessaisaI. KasukawaT. Practical Guide to Life Science Databases.SingaporeSpringer2021275610.1007/978‑981‑16‑5812‑9_2
    [Google Scholar]
  20. StelzerG RosenN PlaschkesI et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses.curr protoc bioinformatics201654:1.30.1-1.30.33 54(1): 21146.10.1002/cpbi.5 27322403
    [Google Scholar]
  21. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433supp-1D514D51710.1093/nar/gki033 15608251
    [Google Scholar]
  22. ZhouY. ZhouB. PacheL. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  23. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  24. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  25. BurleyS.K. BhikadiyaC. BiC. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning.Nucleic Acids Res.202351D1D488D50810.1093/nar/gkac1077 36420884
    [Google Scholar]
  26. van der GreefJ. Perspective: All systems go.Nature20114807378S8710.1038/480S87a 22190087
    [Google Scholar]
  27. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  28. HaoD.C. XiaoP.G. Network pharmacology: A Rosetta Stone for traditional Chinese medicine.Drug Dev. Res.20147529931210.1002/ddr.21214 25160070
    [Google Scholar]
  29. RameshP. JagadeesanR. SekaranS. DhanasekaranA. VimalrajS. Flavonoids: Classification, function, and molecular mechanisms involved in bone remodelling.Front. Endocrinol. (Lausanne)20211277963810.3389/fendo.2021.779638 34887836
    [Google Scholar]
  30. WongS.K. ChinK.Y. Ima-NirwanaS. Quercetin as an agent for protecting the bone: A review of the current evidence.Int. J. Mol. Sci.20202117644810.3390/ijms21176448
    [Google Scholar]
  31. DeviK.P. MalarD.S. NabaviS.F. Kaempferol and inflammation: From chemistry to medicine.Pharmacol. Res.20159911010.1016/j.phrs.2015.05.002 25982933
    [Google Scholar]
  32. ZhouF. MeiJ. YuanK. HanX. QiaoH. TangT. Isorhamnetin attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through modulating reactive oxygen species homeostasis.J. Cell. Mol. Med.20192364395440710.1111/jcmm.14333 30983153
    [Google Scholar]
  33. SirongS. YangC. TaoranT. Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis.Bone Res.202081610.1038/s41413‑019‑0077‑4 32047705
    [Google Scholar]
  34. SunK. LuoJ. GuoJ. YaoX. JingX. GuoF. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review.Osteoarthritis Cartilage202028440040910.1016/j.joca.2020.02.027 32081707
    [Google Scholar]
  35. KapoorM. Martel-PelletierJ. LajeunesseD. PelletierJ.P. FahmiH. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.Nat. Rev. Rheumatol.201171334210.1038/nrrheum.2010.196 21119608
    [Google Scholar]
  36. LatourteA. CherifiC. MailletJ. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis.Ann. Rheum. Dis.201776474875510.1136/annrheumdis‑2016‑209757 27789465
    [Google Scholar]
  37. MimaZ WangK LiangM Blockade of JAK2 retards cartilage degeneration and IL-6-induced pain amplification in osteoarthritis.Int Immunopharmacol2022113Pt A10934010.1016/j.intimp.2022.10934036330910
    [Google Scholar]
  38. ZhangL. LiM. LiX. Characteristics of sensory innervation in synovium of rats within different knee osteoarthritis models and the correlation between synovial fibrosis and hyperalgesia.J. Adv. Res.20223514115110.1016/j.jare.2021.06.007 35003798
    [Google Scholar]
  39. QianJ. XuQ. XuW. CaiR. HuangG. Expression of VEGF-A signaling pathway in cartilage of ACLT-induced osteoarthritis mouse model.J. Orthop. Surg. Res.202116137910.1186/s13018‑021‑02528‑w 34127028
    [Google Scholar]
  40. LiuY. ZengY. SiH.B. TangL. XieH.Q. ShenB. Exosomes derived from human urine-derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model.Am. J. Sports Med.20225041088110510.1177/03635465221073991 35179989
    [Google Scholar]
  41. ZhangF.J. LuoW. LeiG.H. Role of HIF-1α and HIF-2α in osteoarthritis.Joint Bone Spine201582314414710.1016/j.jbspin.2014.10.003 25553838
    [Google Scholar]
  42. LuJ. ZhangH. PanJ. Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways.Arthritis Res. Ther.202123114210.1186/s13075‑021‑02512‑z 33990219
    [Google Scholar]
  43. MajidiniaM. SadeghpourA. YousefiB. The roles of signaling pathways in bone repair and regeneration.J. Cell. Physiol.201823342937294810.1002/jcp.26042 28590066
    [Google Scholar]
  44. ZhouF. MeiJ. HanX. Kinsenoside attenuates osteoarthritis by repolarizing macrophages through inactivating NF-κB/MAPK signaling and protecting chondrocytes.Acta Pharm. Sin. B20199597398510.1016/j.apsb.2019.01.015 31649847
    [Google Scholar]
  45. KusumbeA.P. RamasamyS.K. AdamsR.H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.Nature2014507749232332810.1038/nature13145 24646994
    [Google Scholar]
  46. PengY. WuS. LiY. CraneJ.L. Type H blood vessels in bone modeling and remodeling.Theranostics202010142643610.7150/thno.34126 31903130
    [Google Scholar]
  47. ZhuJ. TangY. WuQ. JiY.C. FengZ.F. KangF.W. HIF‐1α facilitates osteocyte‐mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro.J. Cell. Physiol.201923411211822119210.1002/jcp.28721 31032948
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128330436250210052548
Loading
/content/journals/cpd/10.2174/0113816128330436250210052548
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test