Skip to content
2000
Volume 31, Issue 20
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Purpose

Liquidambaris Fructus (LF), a prevalent Chinese medicinal herb, has been effectively utilized in the clinical treatment of rheumatoid arthritis (RA). Coniferin, is the active ingredient in LF, and there is a paucity of research examining its potential anti-RA properties. This study employs analysis and experimental validation to delve into the therapeutic potential of Coniferin against RA and to elucidate its mechanism of action.

Methods

analysis was employed to construct a drug-disease target protein-protein interaction (PPI) network, to perform functional enrichment analysis, and to molecular docking of the principal compounds and target proteins. Subsequently, the effects of coniferin on the proliferation, migration, and invasion of rheumatoid arthritis - Fibroblast-like synoviocytes (RA-FLSs) were observed using a CCK8 assay and Transwell assay. ELISA was employed to detect the inflammatory response of RA-FLSs in coniferin. Flow cytometry was utilized to detect the effects of coniferin on apoptosis, oxidative stress, and mitochondrial transmembrane potential in RA-FLSs. Ultimately, the expression of pivotal proteins and apoptosis markers within the PTGS2/Apoptosis signaling pathway was discerned through the utilization of Real-time quantitative PCR (RT-qPCR) and Western blot.

Results

It was observed that coniferin promotes apoptosis of RA-FLSs through the PTGS2/Apoptosis signaling pathway and inhibits the proliferation, migration, and invasion of RA-FLSs, with anti-inflammatory, oxidative stress-reducing, and mitochondrial transmembrane potential disruption effects.

Conclusion

The potential mechanism of coniferin for the treatment of RA is to promote apoptosis of RA-FLSs by intervening in the PTGS2/apoptosis signaling pathway.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128358952241220184047
2025-02-26
2025-12-05
Loading full text...

Full text loading...

References

  1. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑827156434
    [Google Scholar]
  2. LiX. LiS. FuX. WangY. Apoptotic extracellular vesicles restore homeostasis of the articular microenvironment for the treatment of rheumatoid arthritis.Bioact. Mater.20243556457610.1016/j.bioactmat.2023.11.01938469201
    [Google Scholar]
  3. MaX.-N. FengW. LiN. Leonurine alleviates rheumatoid arthritis by regulating the Hippo signaling pathway.Phytomed.202412315524310.1016/j.phymed.2023.155243
    [Google Scholar]
  4. Carmona-RiveraC. CarlucciM. MooreE. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis.Sci. Immunol.2017210eaag335810.1126/sciimmunol.aaz931932005681
    [Google Scholar]
  5. WangY. ChenS. DuK. Traditional herbal medicine: Therapeutic potential in rheumatoid arthritis.J. Ethnopharmacol.202127911436810.1016/j.jep.2021.114368
    [Google Scholar]
  6. ZhongY.T. WangX.L. XieQ.J. ZhangY.N. Effect of the extract from leaves of Liquidambar formosana Hance on S180 cells.Genet. Mol. Res.201615310.4238/gmr.1503879527525864
    [Google Scholar]
  7. ÇetinkayaS. Çınar Ayanİ. Süntarİ. DursunH.G. The phytochemical profile and biological activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and apoptotic pathways in human colorectal cancer.Nutr. Cancer20227441457147310.1080/01635581.2021.195245534291706
    [Google Scholar]
  8. DeliormanD. Çalışİ. ErgunF. DoğanB.S.U. BuharalıoğluC.K. Kanzıkİ. Studies on the vascular effects of the fractions and phenolic compounds isolated from Viscum album ssp. album.J. Ethnopharmacol.2000721-232332910.1016/S0378‑8741(00)00251‑810967490
    [Google Scholar]
  9. RosilloM.A. Alarcón-de-la-LastraC. Sánchez-HidalgoM. An update on dietary phenolic compounds in the prevention and management of rheumatoid arthritis.Food Funct.2016772943296910.1039/C6FO00485G27295367
    [Google Scholar]
  10. LuoW. DingR. GuoX. Clinical data mining reveals Gancao-Banxia as a potential herbal pair against moderate COVID‐19 by dual binding to IL-6/STAT3.Computers Biol. Med.202214510545710.1016/j.compbiomed.2022.105457
    [Google Scholar]
  11. LeeS. ChoiY.J. HuoC. AlishirA. KangK.S. ParkI.H. JangT. KimK.H. Laricitrin 3-rutinoside from Ginkgo biloba fruits prevents damage in TNF-α-stimulated normal human dermal fibroblasts.Antioxidants2023127143210.3390/antiox1207143237507970
    [Google Scholar]
  12. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w33637672
    [Google Scholar]
  13. ChenY. JianX. ZhuL. PTGS2: A potential immune regulator and therapeutic target for chronic spontaneous urticaria.Life Sci.202434412258210.1016/j.lfs.2024.122582
    [Google Scholar]
  14. WangW. ZhaiS. YangW. Acacetin alleviates rheumatoid arthritis by targeting HSP90 ATPase domain to promote COX-2 degradation.Phytomedicine202413515617110.1016/j.phymed.2024.156171
    [Google Scholar]
  15. GollapalliP. SelvanG.T. RaoA.S.J. ManjunathaH. ShettyP. KumariN.S. Systems pharmacology and pharmacokinetics strategy to decode bioactive ingredients and molecular mechanisms from Zingiber officinale as phyto-therapeutics against neurological diseases.Curr. Drug Discov. Technol.2023201e250822207996e25082220799610.2174/157016381966622082514135636028974
    [Google Scholar]
  16. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  17. FengW. WanX. FanS. LiuC.Z. ZhengX.X. LiuQ.P. LiuM.Y. LiuX.B. LinC.S. ZhangL. LiD. XuQ. Mechanism underlying the action of Duanteng-Yimu Tang in regulating Treg/Th17 imbalance and anti-rheumatoid arthritis.Heliyon202395e1586710.1016/j.heliyon.2023.e1586737206012
    [Google Scholar]
  18. MajeedA. MukhtarS. Protein–protein interaction network exploration using cytoscape.Methods Mol. Biol.2023269041942710.1007/978‑1‑0716‑3327‑4_3237450163
    [Google Scholar]
  19. WangF. LiuL. ZhuZ. AisaH.A. XinX. Anti-inflammatory effect and mechanism of active parts of Artemisia mongolica in LPS-induced Raw264. 7 cells based on network pharmacology analysis.J. Ethnopharmacol.202432111750910.1016/j.jep.2023.117509
    [Google Scholar]
  20. ZhangB. YanG. LiF. TangY. XuG. ZhangY. ZeK. Qingxiong ointment and its active ingredient, shikonin treat psoriasis through HIF-1 signaling pathway.Curr. Pharm. Des.202430241927193810.2174/011381612828714224052912034638835124
    [Google Scholar]
  21. WangX. DengY. ZhangY. ZhangC. LiuL. LiuY. JiangJ. XieP. HuangL. Screening and evaluation of novel α-glucosidase inhibitory peptides from Ginkgo biloba seed cake based on molecular docking combined with molecular dynamics simulation.J. Agric. Food Chem.20237127103261033710.1021/acs.jafc.3c0082637288757
    [Google Scholar]
  22. ShangL. WangY. LiJ. Mechanism of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and experimental validation.J Ethnopharmacol202330211587610.1016/j.jep.2022.115876
    [Google Scholar]
  23. HonmaT. OndaK. MasuyamaK. Drug-drug interaction assessment based on a large-scale spontaneous reporting system for hepato- and renal-toxicity, and thrombocytopenia with concomitant low-dose methotrexate and analgesics use.BMC Pharmacol. Toxicol.20242511310.1186/s40360‑024‑00738‑638303016
    [Google Scholar]
  24. LiW. QianP. GuoY. GuL. JuratJ. BaiY. ZhangD. Myrtenal and β-caryophyllene oxide screened from Liquidambaris Fructus suppress NLRP3 inflammasome components in rheumatoid arthritis.BMC Complementary Medicine and Therapies202121124210.1186/s12906‑021‑03410‑234583676
    [Google Scholar]
  25. Díaz LanzaA.M. MartínezM.J.A. MatellanoL.F. CarreteroC.R. CastilloL.V. SenA.M.S. BenitoP.B. Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity.Planta Med.200167321922310.1055/s‑2001‑1200411345691
    [Google Scholar]
  26. CaiH. ZhangJ. XuH. SunW. WuW. DongC. ZhouP. XueC. NanY. NiY. WuX. GuZ. ChenM. WangY. ALOX5 drives the pyroptosis of CD4 + T cells and tissue inflammation in rheumatoid arthritis.Sci. Signal.202417825eadh117810.1126/scisignal.adh117838412254
    [Google Scholar]
  27. LiuR. HaoD. XuW. LiJ. LiX. ShenD. ShengK. ZhaoL. XuW. GaoZ. ZhaoX. LiuQ. ZhangY. β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice.Pharm. Biol.201957116116810.1080/13880209.2019.157746130905278
    [Google Scholar]
  28. HeX. ZhangJ. GongM. Identification of potential ferroptosis-associated biomarkers in rheumatoid arthritis.Front. Immunol202314119727510.3389/fimmu.2023.1197275
    [Google Scholar]
  29. ChengX. LuE. FanM. A comprehensive strategy to clarify the pharmacodynamic constituents and mechanism of Wu-tou decoction based on the constituents migrating to blood and their in vivo process under pathological state.J. Ethnopharmacol202127511417210.1016/j.jep.2021.114172
    [Google Scholar]
  30. ZhaiZ. YangF. XuW. HanJ. LuoG. LiY. ZhuangJ. JieH. LiX. ShiX. HanX. LuoX. SongR. ChenY. LiangJ. WuS. HeY. SunE. Attenuation of rheumatoid arthritis through the inhibition of tumor necrosis factor–induced caspase 3/gasdermin e–mediated pyroptosis.Arthritis Rheumatol.202274342744010.1002/art.4196334480835
    [Google Scholar]
  31. DengH. JiangJ. ShuJ. HuangM. ZhangQ.L. WuL.J. SunW.K. Bavachinin ameliorates rheumatoid arthritis inflammation via PPARG/PI3K/Akt signaling pathway.Inflammation20234651981199610.1007/s10753‑023‑01855‑w37358659
    [Google Scholar]
  32. GongN. WangL. AnL. XuY. Exploring the active ingredients and potential mechanisms of action of Sinomenium acutum in the treatment of rheumatoid arthritis based on systems biology and network pharmacology.Front. Mol. Biosci.202310106517110.3389/fmolb.2023.1065171
    [Google Scholar]
  33. ChenJ. LinX. HeJ. LiuD. HeL. ZhangM. LuanH. HuY. TaoC. WangQ. Artemisitene suppresses rheumatoid arthritis progression via modulating METTL3‐mediated N6‐methyladenosine modification of ICAM2 mRNA in fibroblast‐like synoviocytes.Clin. Transl. Med.20221212e114810.1002/ctm2.114836536495
    [Google Scholar]
  34. FengW. ZhongX.-Q. ZhengX.-X. The underlying mechanism of duanteng yimu decoction in inhibiting synovial hyperplasia in rheumatoid arthritis.J. Immunol. Res.202320231234053810.1155/2023/2340538
    [Google Scholar]
  35. TolboomT.C.A. PietermanE. van der LaanW.H. ToesR.E.M. HuidekoperA.L. NelissenR.G. BreedveldF.C. HuizingaT.W. Invasive properties of fibroblast-like synoviocytes: Correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10.Ann. Rheum. Dis.2002611197598010.1136/ard.61.11.97512379519
    [Google Scholar]
  36. CaoW. ZhangJ. WangG. LuJ. WangT. ChenX. Reducing‐autophagy derived mitochondrial dysfunction during resveratrol promotes fibroblast‐like synovial cell apoptosis.Anat. Rec. (Hoboken)201830171179118810.1002/ar.2379829461680
    [Google Scholar]
  37. ChenH. JiangY. XuT. XuJ. YuJ. ChuZ. JiangY. SongY. WangH. QianH. Au nanocluster-modulated macrophage polarization and synoviocyte apoptosis for enhanced rheumatoid arthritis treatment.J. Mater. Chem. B Mater. Biol. Med.202210254789479910.1039/D2TB00869F35703334
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128358952241220184047
Loading
/content/journals/cpd/10.2174/0113816128358952241220184047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test