Skip to content
2000
Volume 31, Issue 20
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective

The present study delves into the exploration of diagnostic biomarkers linked with ferroptosis in the context of diabetic nephropathy, unraveling their underlying molecular mechanisms.

Methods

In this study, we retrieved datasets GSE96804 and GSE30529 as the training cohort, followed by screening for Differentially Expressed Genes (DEGs). By intersecting these DEGs with known ferroptosis-related genes, we obtained the differentially expressed genes related to ferroptosis (DEFGs). Subsequently, Weighted Correlation Network Analysis (WGCNA) was carried out to identify key modules associated with Diabetic Nephropathy (DN), culminating in the identification of a significant gene. Enrichment analysis and Gene Set Enrichment Analysis (GSEA) were then carried out on the DEFGs and genes linked to the significant gene. To validate our findings, we employed cohorts GSE30528 and GSE43950, utilizing ROC curve analysis to assess diagnostic efficacy for DN, as measured by the area under the curve (AUC). Immune cell infiltration was analyzed and compared between groups using the CIBERSORT algorithm. Bayesian co-localization analysis was performed to examine the co-location of DEFGs and DN. Finally, to validate the hub genes identified, we conducted quantitative real-time polymerase chain reaction (qRT-PCR) experiments .

Results

FUZ, GLI1, GLI2, GLI3, and DVL2 were identified as the hub genes. Functional enrichment analysis demonstrated that ferroptosis and immune response play an important role in DN. ROC analysis showed that the identified genes had good diagnostic efficiency in DN. The results of the immune infiltration analysis showed that there may be crosstalk between ferroptosis and immune cells in DN. Bayesian co-localization analysis revealed the genetic correlation between the hub genes and DN. The outcomes of the qRT-PCR analyses corroborated the reliability of the identified hub genes as robust molecular markers for targeted therapy in DN.

Conclusion

The interplay between immune inflammatory reactions and ferroptosis emerges as a crucial pathogenic mechanism, offering novel insights into the molecular therapy of DN. Furthermore, the identification of FUZ, GLI1, GLI2, GLI3, and DVL2 as potential targets holds promise for future therapeutic interventions aimed at treating DN.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128349101250102113613
2025-01-24
2025-12-06
Loading full text...

Full text loading...

References

  1. JiangR. LawE. ZhouZ. YangH. WuE.Q. SeifeldinR. Clinical trajectories, healthcare resource use, and costs of diabetic nephropathy among patients with type 2 diabetes: A latent class analysis.Diabetes Ther.2018931021103610.1007/s13300‑018‑0410‑8 29600504
    [Google Scholar]
  2. ChenY. LiuQ. ShanZ. Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy.Front. Pharmacol.201910147710.3389/fphar.2019.01477 31920663
    [Google Scholar]
  3. YangC. WangH. ZhaoX. CKD in China: Evolving spectrum and public health implications.Am. J. Kidney Dis.202076225826410.1053/j.ajkd.2019.05.032 31492486
    [Google Scholar]
  4. CalleP. HotterG. Macrophage phenotype and fibrosis in diabetic nephropathy.Int. J. Mol. Sci.2020218280610.3390/ijms21082806 32316547
    [Google Scholar]
  5. SunH.J. XiongS.P. CaoX. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3.Redox Biol.20213810181310.1016/j.redox.2020.101813 33279869
    [Google Scholar]
  6. QiaoS. LiuR. LvC. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway.Free Radic. Biol. Med.201914511813510.1016/j.freeradbiomed.2019.09.003 31494242
    [Google Scholar]
  7. TypiakM. PiwkowskaA. Antiinflammatory actions of Klotho: Implications for therapy of diabetic nephropathy.Int. J. Mol. Sci.202122295610.3390/ijms22020956 33478014
    [Google Scholar]
  8. SalehH. SalamaM. HusseinR.M. Polyethylene glycol capped gold nanoparticles ameliorate renal ischemia–reperfusion injury in diabetic mice through AMPK-Nrf2 signaling pathway.Environ. Sci. Pollut. Res. Int.20222951778847790710.1007/s11356‑022‑21235‑5 35688972
    [Google Scholar]
  9. KimS. KangS.W. JooJ. Characterization of ferroptosis in kidney tubular cell death under diabetic conditions.Cell Death Dis.202112216010.1038/s41419‑021‑03452‑x 33558472
    [Google Scholar]
  10. ChenY. HuangG. QinT. Ferroptosis: A new view on the prevention and treatment of diabetic kidney disease with traditional Chinese medicine.Biomed. Pharmacother.202417011595210.1016/j.biopha.2023.115952 38056233
    [Google Scholar]
  11. PanY. JiangS. HouQ. Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function.Diabetes201867471773010.2337/db17‑0755 29242313
    [Google Scholar]
  12. ShiJ.S. QiuD.D. LeW.B. Identification of transcription regulatory relationships in diabetic nephropathy.Chin. Med. J. (Engl.)20181312328862890 30511699
    [Google Scholar]
  13. WoronieckaK.I. ParkA.S.D. MohtatD. ThomasD.B. PullmanJ.M. SusztakK. Transcriptome analysis of human diabetic kidney disease.Diabetes20116092354236910.2337/db10‑1181 21752957
    [Google Scholar]
  14. HuberW. CareyV.J. GentlemanR. Orchestrating high-throughput genomic analysis with Bioconductor.Nat. Methods201512211512110.1038/nmeth.3252 25633503
    [Google Scholar]
  15. RitchieM.E. PhipsonB. WuD. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  16. HuangY. YangD.D. LiX.Y. FangD.L. ZhouW.J. ZBP1 is a significant pyroptosis regulator for systemic lupus erythematosus.Ann. Transl. Med.2021924177310.21037/atm‑21‑6193 35071467
    [Google Scholar]
  17. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  18. SubramanianA. TamayoP. MoothaV.K. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  19. LiberzonA. SubramanianA. PinchbackR. ThorvaldsdóttirH. TamayoP. MesirovJ.P. Molecular signatures database (MSigDB) 3.0.Bioinformatics201127121739174010.1093/bioinformatics/btr260 21546393
    [Google Scholar]
  20. WangQ. QiaoW. ZhangH. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma.Front. Immunol.202213101963810.3389/fimmu.2022.1019638 36505501
    [Google Scholar]
  21. NewmanA.M. LiuC.L. GreenM.R. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.3337 25822800
    [Google Scholar]
  22. WallaceC. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses.PLoS Genet.2020164e100872010.1371/journal.pgen.1008720 32310995
    [Google Scholar]
  23. OuY.N. YangY.X. DengY.T. Identification of novel drug targets for Alzheimer’s disease by integrating genetics and proteomes from brain and blood.Mol. Psychiatry202126106065607310.1038/s41380‑021‑01251‑6 34381170
    [Google Scholar]
  24. ZhangB. HorvathS. A general framework for weighted gene co-expression network analysis.Stat. Appl. Genet. Mol. Biol.2005410.2202/1544‑6115.1128 16646834
    [Google Scholar]
  25. KanehisaM. GotoS. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.27 10592173
    [Google Scholar]
  26. KanehisaM. FurumichiM. SatoY. KawashimaM. Ishiguro-WatanabeM. KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res.202351D1D587D59210.1093/nar/gkac963 36300620
    [Google Scholar]
  27. GengX. WangW. FengZ. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis.J. Diabetes Investig.201910497298410.1111/jdi.12986 30536626
    [Google Scholar]
  28. WuY. ChenY. Research progress on ferroptosis in diabetic kidney disease.Front. Endocrinol. (Lausanne)20221394597610.3389/fendo.2022.945976 36246888
    [Google Scholar]
  29. HuY. ShiR. MoR. HuF. Nomogram for the prediction of diabetic nephropathy risk among patients with type 2 diabetes mellitus based on a questionnaire and biochemical indicators: A retrospective study.Aging (Albany NY)20201211103171033610.18632/aging.103259 32484786
    [Google Scholar]
  30. WuY. ZhaoY. YangH. WangY. ChenY. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose.Biosci. Rep.2021412BSR2020292410.1042/BSR20202924 33565572
    [Google Scholar]
  31. YangR. GaoW. WangZ. Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis.Phytomedicine202412215513510.1016/j.phymed.2023.155135 37856990
    [Google Scholar]
  32. WangY. BiR. QuanF. Ferroptosis involves in renal tubular cell death in diabetic nephropathy.Eur. J. Pharmacol.202088817357410.1016/j.ejphar.2020.173574 32976829
    [Google Scholar]
  33. WangM.Z. CaiY.F. FangQ.J. Inhibition of ferroptosis of renal tubular cells with total flavones of Abelmoschus manihot alleviates diabetic tubulopathy.Anat. Rec. (Hoboken)2023306123199321310.1002/ar.25123 36440653
    [Google Scholar]
  34. ParkT.J. HaigoS.L. WallingfordJ.B. Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling.Nat. Genet.200638330331110.1038/ng1753 16493421
    [Google Scholar]
  35. AdlerP.N. Planar signaling and morphogenesis in Drosophila.Dev. Cell20022552553510.1016/S1534‑5807(02)00176‑4 12015961
    [Google Scholar]
  36. HeM. LiK. YuC. In vitro study of FUZ as a novel potential therapeutic target in non-small-cell lung cancer.Life Sci.20181979110010.1016/j.lfs.2018.02.007 29421438
    [Google Scholar]
  37. KramannR. Hedgehog Gli signalling in kidney fibrosis.Nephrol. Dial. Transplant.201631121989199510.1093/ndt/gfw102 27229466
    [Google Scholar]
  38. DohenyD. ManoreS.G. WongG.L. LoH.W. Hedgehog signaling and truncated GLI1 in cancer.Cells202099211410.3390/cells9092114 32957513
    [Google Scholar]
  39. SkodaA.M. SimovicD. KarinV. KardumV. VranicS. SermanL. The role of the Hedgehog signaling pathway in cancer: A comprehensive review.Bosn. J. Basic Med. Sci.201818182010.17305/bjbms.2018.2756 29274272
    [Google Scholar]
  40. KramannR. FleigS.V. SchneiderR.K. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis.J. Clin. Invest.201512582935295110.1172/JCI74929 26193634
    [Google Scholar]
  41. ShenM. ZhangZ. WangP. GLI3 promotes invasion and predicts poor prognosis in colorectal cancer.BioMed Res. Int.2021202111010.1155/2021/8889986 33506047
    [Google Scholar]
  42. PengJ. ZhangD. Coexpression of EphA10 and Gli3 promotes breast cancer cell proliferation, invasion and migration.J. Investig. Med.20216961215122110.1136/jim‑2021‑001836 33990369
    [Google Scholar]
  43. ChangB. TessneerK.L. McManusJ. Epsin is required for Dishevelled stability and Wnt signalling activation in colon cancer development.Nat. Commun.201561638010.1038/ncomms7380 25871009
    [Google Scholar]
  44. ZhangH. NairV. SahaJ. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice.Kidney Int.201792490992110.1016/j.kint.2017.03.027 28554737
    [Google Scholar]
  45. BernardE. NannyaY. HasserjianR.P. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes.Nat. Med.202026101549155610.1038/s41591‑020‑1008‑z 32747829
    [Google Scholar]
  46. ChenL. WangC. WangY. HongT. ZhangG. CuiX. Functions, roles, and biological processes of ferroptosis-related genes in renal cancer: A pan-renal cancer analysis.Front. Oncol.20221169769710.3389/fonc.2021.697697 35360452
    [Google Scholar]
  47. HeX. Cilia put a brake on Wnt signalling.Nat. Cell Biol.2008101111310.1038/ncb0108‑11 18172427
    [Google Scholar]
  48. MiaoJ. LiuJ. NiuJ. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction.Aging Cell2019185e1300410.1111/acel.13004 31318148
    [Google Scholar]
  49. EdelingM. RagiG. HuangS. PavenstädtH. SusztakK. Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and Hedgehog.Nat. Rev. Nephrol.201612742643910.1038/nrneph.2016.54 27140856
    [Google Scholar]
  50. ChenX. KangR. KroemerG. TangD. Ferroptosis in infection, inflammation, and immunity.J. Exp. Med.20212186e2021051810.1084/jem.20210518 33978684
    [Google Scholar]
  51. MatsushitaM. FreigangS. SchneiderC. ConradM. BornkammG.W. KopfM. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection.J. Exp. Med.2015212455556810.1084/jem.20140857 25824823
    [Google Scholar]
  52. SongS. YuJ. Identification of the shared genes in type 2 diabetes mellitus and osteoarthritis and the role of quercetin.J. Cell. Mol. Med.2024284e1812710.1111/jcmm.18127 38332532
    [Google Scholar]
  53. ZschockeJ. ByersP.H. WilkieA.O.M. Mendelian inheritance revisited: Dominance and recessiveness in medical genetics.Nat. Rev. Genet.202324744246310.1038/s41576‑023‑00574‑0 36806206
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128349101250102113613
Loading
/content/journals/cpd/10.2174/0113816128349101250102113613
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test