Skip to content
2000
Volume 31, Issue 20
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway is an natural immune response signaling pathway in the human body that is essential for sensing abnormal DNA aggregation in the cell. When the cGAS protein senses abnormal or damaged DNA, it forms a second messenger called cyclic dinucleotide (cGAMP). The cycled dinucleotide will activate the downstream STING protein, thereby inducing the expression of inflammatory cytokines such as type I interferon, which binds to receptors on its own cell membrane and ultimately initiates multiple immune response pathways. This signaling pathway plays an important immune role in antimicrobial and antitumor functions, . so the development of drugs targeting this signaling pathway has important clinical application value. In recent years, nanocomplexes based cGAS-STING signaling pathway activation and inhibition treatments have been gradually developed. In this review, on the basis of elaborating the main activation mechanism of the cGAS-STING pathway, we further introduced the nanocomplexes that effectively activate the cGAS-STING pathway, focusing on the composition, types and applications of the nanocomplexes. In addition, we discussed the key challenges and future research directions of the way that stimulating the cGAS-STING signaling pathway in the form of nanocomplexes to activate immuno-tumor therapy. Our work aims to provide a better understanding of the progress of nanotherapeutics in the cGAS-STING pathway, providing a promising anti-tumor therapeutic strategy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128339788241221160639
2025-01-16
2025-12-06
Loading full text...

Full text loading...

References

  1. HussainF. HojjatiM. OkamotoM. GorgaR.E. Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview.J. Compos. Mater.200640171511157510.1177/0021998306067321
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.21820 38230766
    [Google Scholar]
  3. MotzG.T. CoukosG. Deciphering and reversing tumor immune suppression.Immunity2013391617310.1016/j.immuni.2013.07.005 23890064
    [Google Scholar]
  4. ZugazagoitiaJ. GuedesC. PonceS. FerrerI. Molina-PineloS. Paz-AresL. Current challenges in cancer treatment.Clin. Ther.20163871551156610.1016/j.clinthera.2016.03.026 27158009
    [Google Scholar]
  5. ChenD.S. MellmanI. Oncology meets immunology: The cancer-immunity cycle.Immunity201339111010.1016/j.immuni.2013.07.012 23890059
    [Google Scholar]
  6. HeW. MuX. WuX. The cGAS-STING pathway: A therapeutic target in diabetes and its complications.Burns Trauma202412tkad05010.1093/burnst/tkad050 38312740
    [Google Scholar]
  7. GeH. DanQ. YangY. cGAS-STING pathway as the target of immunotherapy for lung cancer.Curr. Cancer Drug Targets202323535436210.2174/1568009623666221115095114 36380440
    [Google Scholar]
  8. XuD. TianY. XiaQ. KeB. The cGAS-STING pathway: Novel perspectives in liver diseases.Front. Immunol.20211268273610.3389/fimmu.2021.682736 33995425
    [Google Scholar]
  9. AyandaO.S. QuadriR.O. AdewuyiS.O. Multidimensional applications and potential health implications of nanocomposites.J. Water Health20232181110114210.2166/wh.2023.141 37632385
    [Google Scholar]
  10. BergerG. MarloyeM. LawlerS.E. Pharmacological modulation of the STING pathway for cancer immunotherapy.Trends Mol. Med.201925541242710.1016/j.molmed.2019.02.007 30885429
    [Google Scholar]
  11. LiuY. LuX. QinN. STING, a promising target for small molecular immune modulator: A review.Eur. J. Med. Chem.202121111311310.1016/j.ejmech.2020.113113 33360799
    [Google Scholar]
  12. BaoT. LiuJ. LengJ. CaiL. The CGAS–STING pathway: More than fighting against viruses and cancer.Cell Biosci.202111120910.1186/s13578‑021‑00724‑z 34906241
    [Google Scholar]
  13. GuoJ. HuangL. Membrane-core nanoparticles for cancer nanomedicine.Adv. Drug Deliv. Rev.2020156233910.1016/j.addr.2020.05.005 32450105
    [Google Scholar]
  14. WangY. LiuY. ZhangJ. Nanomaterial-mediated modulation of the cGAS-STING signaling pathway for enhanced cancer immunotherapy.Acta Biomater.2024176517610.1016/j.actbio.2024.01.008 38237711
    [Google Scholar]
  15. SamsonN. AblasserA. The CGAS–STING pathway and cancer.Nat. Cancer20223121452146310.1038/s43018‑022‑00468‑w 36510011
    [Google Scholar]
  16. XinX. ZhangZ. ZhangX. Bioresponsive nanomedicines based on dynamic covalent bonds.Nanoscale20211327117121173310.1039/D1NR02836G 34227639
    [Google Scholar]
  17. PikabeaA. ForcadaJ. Novel approaches for the preparation of magnetic nanogels via covalent bonding.J. Polym. Sci. A Polym. Chem.201755213573358610.1002/pola.28740
    [Google Scholar]
  18. GuC. LiuY. WangW. LiuJ. HuJ. Effects of functional groups for CO2 capture using metal organic frameworks.Front. Chem. Sci. Eng.202115243744910.1007/s11705‑020‑1961‑6
    [Google Scholar]
  19. MondalP. ZhengZ. Schmidt-RohrK. CohenS.M. Accessing benzylic amine and azide chemical handles in canonical metal–organic frameworks.Chem. Mater.202335229702971210.1021/acs.chemmater.3c02143
    [Google Scholar]
  20. DingL. LiangM. LiY. Zinc-organometallic framework vaccine controlled-release Zn2+ regulates tumor extracellular matrix degradation potentiate efficacy of immunotherapy.Adv. Sci.20231027230296710.1002/advs.202302967 37439462
    [Google Scholar]
  21. LiR. WuX. LiJ. A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery.Nanoscale202214269369937810.1039/D2NR01252A 35726974
    [Google Scholar]
  22. HabibizadehM. RostamizadehK. DalaliN. RamazaniA. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study.Mater. Sci. Eng. C2017741910.1016/j.msec.2016.12.023 28254271
    [Google Scholar]
  23. SmithS.J. RadfordR.J. SubramanianR.H. BarnettB.R. FigueroaJ.S. TezcanF.A. Tunable helicity, stability and DNA-binding properties of short peptides with hybrid metal coordination motifs.Chem. Sci.2016785453546110.1039/C6SC00826G 27800151
    [Google Scholar]
  24. HouM.J. ChenJ.T. JiangW.L. ATP fluorescent nanoprobe based on ZIF-90 and near-infrared dyes for imaging in tumor mice.Sens. Actuators B Chem.202236913228610.1016/j.snb.2022.132286
    [Google Scholar]
  25. QianY. HanZ. YangD. CaiY. JinJ. YangZ. Metal-organic frameworks facilitate nucleic acids for multimode synergistic therapy of breast cancer.Langmuir202339238205821410.1021/acs.langmuir.3c00667 37236267
    [Google Scholar]
  26. ChurchillC.D.M. WetmoreS.D. Noncovalent interactions involving histidine: the effect of charge on π-π stacking and T-shaped interactions with the DNA nucleobases.J. Phys. Chem. B200911349160461605810.1021/jp907887y 19904910
    [Google Scholar]
  27. ShenY. ZhangY. GaoX. ShangM. CaiY. YangZ. MicroRNA functional metal-organic framework nanocomposite for efficient inhibition of drug-resistant breast cancer cells.Emergent Mater.2023651537154710.1007/s42247‑023‑00532‑w
    [Google Scholar]
  28. WalkerG.C. KondaS.S.M. MajiT.K. SchanzeK.S. Preface to the “metal–organic frameworks: Fundamental study and applications” joint virtual issue.Langmuir20203649149011490310.1021/acs.langmuir.0c03350 33317268
    [Google Scholar]
  29. MargolisS.R. WilsonS.C. VanceR.E. Evolutionary origins of cGAS-STING signaling.Trends Immunol.2017381073374310.1016/j.it.2017.03.004 28416447
    [Google Scholar]
  30. ChenQ. SunL. ChenZ.J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.Nat. Immunol.201617101142114910.1038/ni.3558 27648547
    [Google Scholar]
  31. Seaf ElnasrT.A. IbrahimO.M. AlhumaimessM.S. Chitosan/selenium@olive oil nanocomplex targeted therapy for multiple cancers.J. Polym. Environ.202432265867110.1007/s10924‑023‑02975‑y
    [Google Scholar]
  32. GuoX. TuP. WangX. Decomposable nanoagonists enable NIR-elicited CGAS-STING activation for tandem-amplified photodynamic-metalloimmunotherapy.Adv. Mater.20243621231302910.1002/adma.202313029 38353366
    [Google Scholar]
  33. ZhangL. ShangK. LiX. Reduction sensitive polymers delivering cationic platinum drugs as STING agonists for enhanced chemo-immunotherapy.Adv. Funct. Mater.20223243220458910.1002/adfm.202204589 36569597
    [Google Scholar]
  34. ZhouL. HouB. WangD. Engineering polymeric prodrug nanoplatform for vaccination immunotherapy of cancer.Nano Lett.20202064393440210.1021/acs.nanolett.0c01140 32459969
    [Google Scholar]
  35. DanilchankaO. MekalanosJ.J. Cyclic dinucleotides and the innate immune response.Cell2013154596297010.1016/j.cell.2013.08.014 23993090
    [Google Scholar]
  36. BergerG. LawlerS.E. Novel non-nucleotidic STING agonists for cancer immunotherapy.Future Med. Chem.201810242767276910.4155/fmc‑2018‑0367 30526033
    [Google Scholar]
  37. GaoM. XieY.Q. LeiK.W. A manganese phosphate nanocluster activates the cGAS-STING pathway for enhanced cancer immunotherapy.Adv Therap202148210006510.1002/adtp.202100065
    [Google Scholar]
  38. Launer-FeltyK.D. StrobelS.A. Enzymatic synthesis of cyclic dinucleotide analogs by a promiscuous cyclic-AMP-GMP synthetase and analysis of cyclic dinucleotide responsive riboswitches.Nucleic Acids Res.20184662765277610.1093/nar/gky137 29514227
    [Google Scholar]
  39. WangC. SinnM. StifelJ. HeilerA.C. SommershofA. HartigJ.S. Synthesis of all possible canonical (3′–5′-linked) cyclic dinucleotides and evaluation of riboswitch interactions and immune-stimulatory effects.J. Am. Chem. Soc.201713945161541616010.1021/jacs.7b06141 29056046
    [Google Scholar]
  40. KnouseK.W. deGruyterJ.N. SchmidtM.A. Unlocking P(V): Reagents for chiral phosphorothioate synthesis.Science201836164081234123810.1126/science.aau3369 30072577
    [Google Scholar]
  41. WuJ.J. ZhaoL. HuH.G. LiW.H. LiY.M. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy.Med. Res. Rev.20204031117114110.1002/med.21649 31793026
    [Google Scholar]
  42. FuJ. KanneD.B. LeongM. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade.Sci. Transl. Med.20157283283ra5210.1126/scitranslmed.aaa4306 25877890
    [Google Scholar]
  43. ConlonJ. BurdetteD.L. SharmaS. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid.J. Immunol.2013190105216522510.4049/jimmunol.1300097 23585680
    [Google Scholar]
  44. CavlarT. DeimlingT. AblasserA. HopfnerK.P. HornungV. Species-specific detection of the antiviral small-molecule compound CMA by STING.EMBO J.201332101440145010.1038/emboj.2013.86 23604073
    [Google Scholar]
  45. RamanjuluJ.M. PesiridisG.S. YangJ. Design of amidobenzimidazole STING receptor agonists with systemic activity.Nature2018564773643944310.1038/s41586‑018‑0705‑y 30405246
    [Google Scholar]
  46. PanB.S. PereraS.A. PiesvauxJ.A. An orally available non-nucleotide STING agonist with antitumor activity.Science20203696506eaba609810.1126/science.aba6098 32820094
    [Google Scholar]
  47. ChinE.N. YuC. VartabedianV.F. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic.Science2020369650699399910.1126/science.abb4255 32820126
    [Google Scholar]
  48. LiuB. TangL. ZhangX. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists.Antiviral Res.2017147374610.1016/j.antiviral.2017.10.001 28982551
    [Google Scholar]
  49. ZhangX. LiuB. TangL. Discovery and mechanistic study of a novel human-stimulator-of-interferon-genes agonist.ACS Infect. Dis.2019571139114910.1021/acsinfecdis.9b00010 31060350
    [Google Scholar]
  50. PrydeD.C. MiddyaS. BanerjeeM. The discovery of potent small molecule activators of human STING.Eur. J. Med. Chem.202120911286910.1016/j.ejmech.2020.112869 33038794
    [Google Scholar]
  51. LiuD. YuB. GuanX. Discovery of a photoactivatable dimerized STING agonist based on the benzo[b]selenophene scaffold.Chem. Sci.202314154174418210.1039/D2SC06860E 37063808
    [Google Scholar]
  52. ZhangR. WangC. GuanY. Manganese salts function as potent adjuvants.Cell. Mol. Immunol.20211851222123410.1038/s41423‑021‑00669‑w 33767434
    [Google Scholar]
  53. LiZ. ChuZ. YangJ. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy.ACS Nano2022169154711548310.1021/acsnano.2c08013 35981098
    [Google Scholar]
  54. HeH. DuL. XueH. Triple tumor microenvironment-responsive ferroptosis pathways induced by manganese-based imageable nanoenzymes for enhanced breast cancer theranostics.Small Methods202377230023010.1002/smtd.202300230 37096886
    [Google Scholar]
  55. SunX.Q. ZhangY. LiJ.Q. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy.Nat. Nanotechnol.202116111260127010.1038/s41565‑021‑00962‑9 34594005
    [Google Scholar]
  56. ZhaoY. PanY. ZouK. Biomimetic manganese-based theranostic nanoplatform for cancer multimodal imaging and twofold immunotherapy.Bioact. Mater.20231923725010.1016/j.bioactmat.2022.04.011 35510176
    [Google Scholar]
  57. HouL. TianC. YanY. ZhangL. ZhangH. ZhangZ. Manganese-based nanoactivator optimizes cancer immunotherapy via enhancing innate immunity.ACS Nano20201443927394010.1021/acsnano.9b06111 32298077
    [Google Scholar]
  58. LeiH. LiQ. LiG. Manganese molybdate nanodots with dual amplification of STING activation for “cycle” treatment of metalloimmunotherapy.Bioact. Mater.202431536210.1016/j.bioactmat.2023.07.026 37601278
    [Google Scholar]
  59. HeQ. ZhengR. MaJ. ZhaoL. ShiY. QiuJ. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy.Biomater. Res.20232712910.1186/s40824‑023‑00374‑x 37061706
    [Google Scholar]
  60. LiuX. ChengY. MuY. Diverse drug delivery systems for the enhancement of cancer immunotherapy: An overview.Front. Immunol.202415132814510.3389/fimmu.2024.1328145 38298192
    [Google Scholar]
  61. SunL. GaoH. WangH. Nanoscale metal–organic frameworks-mediated degradation of mutant p53 proteins and activation of CGAS-STING pathway for enhanced cancer immunotherapy.Adv. Sci. (Weinh.)20241112230727810.1002/advs.202307278 38225693
    [Google Scholar]
  62. WangZ. ZhangN. LinP. XingY. YangN. Recent advances in the treatment and delivery system of diabetic retinopathy.Front. Endocrinol.202415134786410.3389/fendo.2024.1347864 38425757
    [Google Scholar]
  63. AbdulkareemS.J. Jafari-GharabaghlouD. Farhoudi-Sefidan-JadidM. Salmani-JavanE. ToroghiF. ZarghamiN. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: Potential anti-cancer effect in treatment of lung cancer cells.Daru202432113314410.1007/s40199‑023‑00495‑7 38168007
    [Google Scholar]
  64. SamaridouE. HeyesJ. LutwycheP. Lipid nanoparticles for nucleic acid delivery: Current perspectives.Adv. Drug Deliv. Rev.2020154-155376310.1016/j.addr.2020.06.002 32526452
    [Google Scholar]
  65. GuoY. LuoH. JiangH. Liposome encapsulated polydopamine nanoparticles: Enhancing ferroptosis and activating hypoxia prodrug activity.Mater. Today Bio20242510100910.1016/j.mtbio.2024.101009 38445012
    [Google Scholar]
  66. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  67. ParvathiK KesavanMP BhaskarR RenukadeviCR AyyanaarS Targeted drug release and in vitro anticancer activities of iron oxide@folic acid/chitosan-based nano-niosomes.Coll Surf A Physicochem Enginee Aspe2024686613336610.1016/j.colsurfa.2024.133366
    [Google Scholar]
  68. AgrahariV. AgrahariV. Advances and applications of block-copolymer-based nanoformulations.Drug Discov. Today20182351139115110.1016/j.drudis.2018.03.004 29551456
    [Google Scholar]
  69. WangX. ZhongX. LiJ. LiuZ. ChengL. Inorganic nanomaterials with rapid clearance for biomedical applications.Chem. Soc. Rev.202150158669874210.1039/D0CS00461H 34156040
    [Google Scholar]
  70. WangQ. GaoY. LiQ. HeA. XuQ. MouY. Enhancing dendritic cell activation through manganese-coated nanovaccine targeting the cGAS-STING pathway.Int. J. Nanomedicine20241926328010.2147/IJN.S438359 38226319
    [Google Scholar]
  71. ZhengS.J. YangM. LuoJ.Q. Manganese-based immunostimulatory metal–organic framework activates the cGAS-STING pathway for cancer metalloimmunotherapy.ACS Nano20231716159051591710.1021/acsnano.3c03962 37565626
    [Google Scholar]
  72. ChengN. Watkins-SchulzR. JunkinsR.D. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer.JCI Insight2018322e12063810.1172/jci.insight.120638 30429378
    [Google Scholar]
  73. DaneE.L. Belessiotis-RichardsA. BacklundC. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity.Nat. Mater.202221671072010.1038/s41563‑022‑01251‑z 35606429
    [Google Scholar]
  74. ZhanM. YuX. ZhaoW. Extracellular matrix-degrading STING nanoagonists for mild NIR-II photothermal-augmented chemodynamic-immunotherapy.J. Nanobiotechnology20222012310.1186/s12951‑021‑01226‑3 34991618
    [Google Scholar]
  75. AtukoraleP.U. MoonT.J. BokatchA.R. Dual agonist immunostimulatory nanoparticles combine with PD1 blockade for curative neoadjuvant immunotherapy of aggressive cancers.Nanoscale20221441144115910.1039/D1NR06577G 35023530
    [Google Scholar]
  76. DoshiA.S. CantinS. PrickettL.B. MeleD.A. AmijiM. Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy.J. Cont. Rel202234572173310.1016/j.jconrel.2022.03.054 35378213
    [Google Scholar]
  77. NakamuraT. SatoT. EndoR. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation.J. Immunother. Cancer202197e00285210.1136/jitc‑2021‑002852 34215690
    [Google Scholar]
  78. MiaoL. LiL. HuangY. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation.Nat. Biotechnol.201937101174118510.1038/s41587‑019‑0247‑3 31570898
    [Google Scholar]
  79. ChenX. MengF. XuY. LiT. ChenX. WangH. Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity.Nat. Commun.2023141458410.1038/s41467‑023‑40312‑y 37524727
    [Google Scholar]
  80. LuZ.D. ChenY.F. ShenS. XuC.F. WangJ. Co-delivery of phagocytosis checkpoint silencer and stimulator of interferon genes agonist for synergetic cancer immunotherapy.ACS Appl. Mater. Interfaces20211325294242943810.1021/acsami.1c08329 34129318
    [Google Scholar]
  81. LiuH. HuZ. ChenH. Self-degradable poly(β-amino ester)s promote endosomal escape of antigen and agonist.J. Cont. Rel20223459110010.1016/j.jconrel.2022.03.006 35259460
    [Google Scholar]
  82. ZhengH. GuoB. QiuX. Polymersome-mediated cytosolic delivery of cyclic dinucleotide STING agonist enhances tumor immunotherapy.Bioact. Mater.20221611110.1016/j.bioactmat.2022.02.029 35386324
    [Google Scholar]
  83. LiangJ. WangH. DingW. Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity.Sci. Adv.2020635eabc364610.1126/sciadv.abc3646 32923651
    [Google Scholar]
  84. ZhouS. ChengF. ZhangY. SuT. ZhuG. Engineering and delivery of cGAS-STING immunomodulators for the immunotherapy of cancer and autoimmune diseases.Acc. Chem. Res.202356212933294310.1021/acs.accounts.3c00394 37802125
    [Google Scholar]
  85. ZhaoJ. MaS. XuY. In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy.Biomaterials202126812054210.1016/j.biomaterials.2020.120542 33249316
    [Google Scholar]
  86. LiS.X. LuoM. WangZ.H. Prolonged activation of innate immune pathways by a polyvalent STING agonist.Nat. Biomed. Eng.202155483310.1038/s41551‑021‑00741‑w 33963308
    [Google Scholar]
  87. WangX. WilhelmJ. LiW. Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window.Nat. Commun.2020111582810.1038/s41467‑020‑19651‑7 33203928
    [Google Scholar]
  88. SuT. ChengF. QiJ. Responsive multivesicular polymeric nanovaccines that codeliver STING agonists and neoantigens for combination tumor immunotherapy.Adv. Sci.2022923220189510.1002/advs.202201895 35712773
    [Google Scholar]
  89. ZhouM. WangX. LinS. Multifunctional STING-ACTIVATING Mn3O4@Au-dsDNA/DOX nanoparticle for antitumor immunotherapy.Adv. Healthc. Mater.2020913200006410.1002/adhm.202000064 32484320
    [Google Scholar]
  90. LiangS. LiJ. ZouZ. Tetrahedral DNA nanostructures synergize with MnO2 to enhance antitumor immunity via promoting STING activation and M1 polarization.Acta Pharm. Sin. B20221252494250510.1016/j.apsb.2021.12.010 35646524
    [Google Scholar]
  91. LuQ. ChenR. DuS. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy.Biomaterials202229112187110.1016/j.biomaterials.2022.121871 36323073
    [Google Scholar]
  92. ZhouQ. DuttaD. CaoY. GeZ. Oxidation-responsive polyMOF nanoparticles for combination photodynamic-immunotherapy with enhanced STING activation.ACS Nano202317109374938710.1021/acsnano.3c01333 37141569
    [Google Scholar]
  93. ChenX. TangQ. WangJ. A DNA/DMXAA/Metal–organic framework activator of innate immunity for BOOSTING anticancer immunity.Adv. Mater.20233515221044010.1002/adma.202210440 36656162
    [Google Scholar]
  94. BirrerM.J. MooreK.N. BetellaI. BatesR.C. Antibody-drug conjugate-based therapeutics: State of the science.J. Natl. Cancer Inst.2019111653854910.1093/jnci/djz035 30859213
    [Google Scholar]
  95. JohnsonD.B. NebhanC.A. MoslehiJ.J. BalkoJ.M. Immune-checkpoint inhibitors: Long-term implications of toxicity.Nat. Rev. Clin. Oncol.202219425426710.1038/s41571‑022‑00600‑w 35082367
    [Google Scholar]
  96. SharoyanE.G. MirzakhanyanA.A. GyulasaryanH.T. KocharianA.N. ManukyanA.S. FMR and EPR in Ni@C nanocomposites: Size and concentration effects.J. Contemp. Phys.201752214715410.3103/S1068337217020086
    [Google Scholar]
  97. ParkJ. ChoiY. ChangH. UmW. RyuJ.H. KwonI.C. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment.Theranostics20199268073809010.7150/thno.37198 31754382
    [Google Scholar]
  98. GuoJ. SchlichM. CryanJ.F. O’DriscollC.M. Targeted drug delivery via folate receptors for the treatment of brain cancer: Can the promise deliver?J. Pharm. Sci.2017106123413342010.1016/j.xphs.2017.08.009 28842300
    [Google Scholar]
  99. DanielsT.R. BernabeuE. RodríguezJ.A. The transferrin receptor and the targeted delivery of therapeutic agents against cancer.Biochim. Biophys. Acta, Gen. Subj.20121820329131710.1016/j.bbagen.2011.07.016 21851850
    [Google Scholar]
  100. RousseauxC.G. GreeneS.F. Sigma receptors [σRs]: Biology in normal and diseased states.J. Recept. Signal Transduct. Res.201536416210.3109/10799893.2015.1015737 26056947
    [Google Scholar]
  101. JubeliE. MoineL. Vergnaud-GauduchonJ. BarrattG. E-selectin as a target for drug delivery and molecular imaging.J. Cont. Rel2012158219420610.1016/j.jconrel.2011.09.084 21983284
    [Google Scholar]
  102. SharifiJ. KhirehgeshM.R. SafariF. AkbariB. EGFR and anti-EGFR nanobodies: Review and update.J. Drug Target.202129438740210.1080/1061186X.2020.1853756 33210573
    [Google Scholar]
  103. DhritlahreR.K. SanejaA. Recent advances in HER2-targeted delivery for cancer therapy.Drug Discov. Today20212651319132910.1016/j.drudis.2020.12.014 33359114
    [Google Scholar]
  104. JinW. QinB. ChenZ. LiuH. BarveA. ChengK. Discovery of PSMA-specific peptide ligands for targeted drug delivery.Int. J. Pharm.20165131-213814710.1016/j.ijpharm.2016.08.048 27582001
    [Google Scholar]
  105. GhoshS.C. Neslihan AlpayS. KlostergaardJ. CD44: A validated target for improved delivery of cancer therapeutics.Expert Opin. Ther. Targets201216763565010.1517/14728222.2012.687374 22621669
    [Google Scholar]
  106. CuiM. TangD. WangB. ZhangH. LiangG. XiaoH. Bioorthogonal guided activation of cGAS-STING by AIE photosensitizer nanoparticles for targeted tumor therapy and imaging.Adv. Mater.20233552230566810.1002/adma.202305668 37668998
    [Google Scholar]
  107. GunawanC. LimM. MarquisC.P. AmalR. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles.J. Mater. Chem. B Mater. Biol. Med.20142152060208310.1039/c3tb21526a 32261489
    [Google Scholar]
  108. SukJS XuQ KimN HanesJ EnsignLM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv Drug Deliv Rev201699Pt A285110.1016/j.addr.2015.09.01226456916
    [Google Scholar]
  109. YangZ. YangD. ZengK. Simultaneous delivery of antimiR-21 and doxorubicin by graphene oxide for reducing toxicity in cancer therapy.ACS Omega2020524144371444310.1021/acsomega.0c01010 32596581
    [Google Scholar]
  110. TeleanuD.M. ChircovC. GrumezescuA.M. TeleanuR.I. Neurotoxicity of nanomaterials: An up-to-date overview.Nanomaterials2019919610.3390/nano9010096 30642104
    [Google Scholar]
  111. EleftheriadouM. PyrgiotakisG. DemokritouP. Nanotechnology to the rescue: Using nano-enabled approaches in microbiological food safety and quality.Curr. Opin. Biotechnol.201744879310.1016/j.copbio.2016.11.012 27992831
    [Google Scholar]
  112. GligaA.R. SkoglundS. Odnevall WallinderI. FadeelB. KarlssonH.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: The role of cellular uptake, agglomeration and Ag release.Part. Fibre Toxicol.20141111110.1186/1743‑8977‑11‑11 24529161
    [Google Scholar]
  113. MunnD.H. MellorA.L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance.Trends Immunol.201637319320710.1016/j.it.2016.01.002 26839260
    [Google Scholar]
  114. Wang-BishopL. WehbeM. ShaeD. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma.J. Immunother. Cancer202081e00028210.1136/jitc‑2019‑000282 32169869
    [Google Scholar]
  115. LiangH. DengL. HouY. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance.Nat. Commun.201781173610.1038/s41467‑017‑01566‑5 29170400
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128339788241221160639
Loading
/content/journals/cpd/10.2174/0113816128339788241221160639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test