Skip to content
2000
Volume 31, Issue 28
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nanoemulsions have gained popularity as drug delivery vehicles owing to the enhanced solubility of insoluble drugs, the augmented stability of photo- and thermosensitive substances, and the facilitation of transdermal permeation of efficacy substances. As the cell surfaces of the skin, cornea, gastrointestinal mucosa, and other cells in living organisms carry negative charges, cationic nanoemulsions (CNE) mainly promote drug absorption through electrostatic effects. In this review, a brief characterization of CNEs is provided, and the types of cationic agents and their roles in nanoemulsions, including cationic surfactants, cationic lipids, cationic polymers, cationized polysaccharides, and phytosphingosine (PS), are discussed. In addition, the current application circumstances of CNEs in ocular drug delivery, mucosal drug delivery, and transdermal drug delivery systems are elaborated on, and the crucial matters that require attention during the research process are briefly discussed. Eventually, the extensive application prospects of CNEs are envisioned.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357859250121120216
2025-02-11
2025-12-12
Loading full text...

Full text loading...

References

  1. GuptaA. EralH.B. HattonT.A. DoyleP.S. Nanoemulsions: Formation, properties and applications.Soft Matter201612112826284110.1039/C5SM02958A26924445
    [Google Scholar]
  2. BorelT. SabliovC.M. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles.Annu. Rev. Food Sci. Technol.20145119721310.1146/annurev‑food‑030713‑09235424387603
    [Google Scholar]
  3. LallemandF. DaullP. BenitaS. BuggageR. GarrigueJ.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb.J. Drug Deliv.2012201211610.1155/2012/60420422506123
    [Google Scholar]
  4. DaullP. LallemandF. GarrigueJ.S. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery.J. Pharm. Pharmacol.201466453154110.1111/jphp.1207524001405
    [Google Scholar]
  5. HagigitT. AbdulrazikM. OrucovF. ValamaneshF. LambertM. LambertG. CohenB.F. BenitaS. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye.J. Control. Release2010145329730510.1016/j.jconrel.2010.04.01320420865
    [Google Scholar]
  6. JainV. PrasadV. JadhavP. MishraP.R. Preparation and performance evaluation of saquinavir laden cationic submicron emulsions.Drug Deliv.2009161374410.1080/1071754080248164619555307
    [Google Scholar]
  7. McClementsD.J. Non-covalent interactions between proteins and polysaccharides.Biotechnol. Adv.200624662162510.1016/j.biotechadv.2006.07.00316935458
    [Google Scholar]
  8. MishraN. YadavK.S. RaiV.K. YadavN.P. Polysaccharide encrusted multilayered nano-colloidal system of andrographolide for improved hepatoprotection.AAPS PharmSciTech201718238139210.1208/s12249‑016‑0512‑427007741
    [Google Scholar]
  9. RaiV.K. MishraN. YadavK.S. YadavN.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications.J. Control. Release201827020322510.1016/j.jconrel.2017.11.04929199062
    [Google Scholar]
  10. IshikawaS. MatsumuraY. KuboK.K. TsuchidoT. Antibacterial activity of surfactants against Escherichia coli cells is influenced by carbon source and anaerobiosis.J. Appl. Microbiol.200293230230910.1046/j.1365‑2672.2002.01690.x12147079
    [Google Scholar]
  11. PiemiY.M.P. KornerD. BenitaS. MartyJ.P. Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs.J. Control. Release199958217718710.1016/S0168‑3659(98)00156‑410053190
    [Google Scholar]
  12. LeeE.H. KimJ.K. LimJ.S. LimS.J. Enhancement of indocyanine green stability and cellular uptake by incorporating cationic lipid into indocyanine green-loaded nanoemulsions.Colloids Surf. B Biointerfaces201513630531310.1016/j.colsurfb.2015.09.02526432618
    [Google Scholar]
  13. NamH.Y. ParkJ.H. KimK. KwonI.C. JeongS.Y. Lipid-based emulsion system as non-viral gene carriers.Arch. Pharm. Res.200932563964610.1007/s12272‑009‑1500‑y19471876
    [Google Scholar]
  14. SchuhR.S. BidoneJ. PolettoE. PinheiroC.V. PasqualimG. Carvalhod.T.G. FarinonM. DielS.D. XavierR.M. BaldoG. MatteU. TeixeiraH.F. Nasal administration of cationic nanoemulsions as nucleic acids delivery systems aiming at mucopolysaccharidosis type I gene therapy.Pharm. Res.2018351122110.1007/s11095‑018‑2503‑530259180
    [Google Scholar]
  15. SchuhR.S. PolettoÉ. FachelF.N.S. MatteU. BaldoG. TeixeiraH.F. Physicochemical properties of cationic nanoemulsions and liposomes obtained by microfluidization complexed with a single plasmid or along with an oligonucleotide: Implications for CRISPR/Cas technology.J. Colloid Interface Sci.201853024325510.1016/j.jcis.2018.06.05829982016
    [Google Scholar]
  16. FasoloD. PippiB. MeirellesG. ZorziG. FuentefriaA.M. Poserv.G. TeixeiraH.F. Topical delivery of antifungal Brazilian red propolis benzophenones-rich extract by means of cationic lipid nanoemulsions optimized by means of box-behnken design.J. Drug Deliv. Sci. Technol.20205610157310.1016/j.jddst.2020.101573
    [Google Scholar]
  17. SchuhR.S. Carvalhod.T.G. GiuglianiR. MatteU. BaldoG. TeixeiraH.F. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers.Eur. J. Pharm. Biopharm.201812215816610.1016/j.ejpb.2017.10.01729122734
    [Google Scholar]
  18. WangX. NiuD. HuC. LiP. Polyethyleneimine-based nanocarriers for gene delivery.Curr. Pharm. Des.201521426140615610.2174/138161282166615102715290726503146
    [Google Scholar]
  19. TranE. MapileA.N. RichmondG.L. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions.J. Colloid Interface Sci.202159970671610.1016/j.jcis.2021.04.11533984763
    [Google Scholar]
  20. ParkJ. XiangZ. LiuY. LiC.H. ChenC. NagarajH. NguyenT. NabawyA. KooH. RotelloV.M. Surface-charge tuned polymeric nanoemulsions for carvacrol delivery in interkingdom biofilms.ACS Appl. Mater. Interfaces20241629376133762210.1021/acsami.4c0661839007413
    [Google Scholar]
  21. HasanovicA. HoellerS. ValentaC. Analysis of skin penetration of phytosphingosine by fluorescence detection and influence of the thermotropic behaviour of DPPC liposomes.Int. J. Pharm.20103831-2141710.1016/j.ijpharm.2009.08.03819732812
    [Google Scholar]
  22. HoellerS. SpergerA. ValentaC. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation.Int. J. Pharm.20093701-218118610.1016/j.ijpharm.2008.11.01419073240
    [Google Scholar]
  23. SilvaT.N. ReynaudF. PiccianiP.H.S. SilvaH.K.G. BarradasT.N. Chitosan-based films containing nanoemulsions of methyl salicylate: Formulation development, physical-chemical and in vitro drug release characterization.Int. J. Biol. Macromol.20201642558256810.1016/j.ijbiomac.2020.08.11732805287
    [Google Scholar]
  24. NguyenH.T. HenselA. GoycooleaF.M. Chitosan/cyclodextrin surface-adsorbed naringenin-loaded nanocapsules enhance bacterial quorum quenching and anti-biofilm activities.Colloids Surf. B Biointerfaces202221111228110.1016/j.colsurfb.2021.11228134952287
    [Google Scholar]
  25. LuesakulU. PuthongS. SansanaphongprichaK. MuangsinN. Quaternized chitosan-coated nanoemulsions: A novel platform for improving the stability, anti-inflammatory, anti-cancer and transdermal properties of Plai extract.Carbohydr. Polym.202023011562510.1016/j.carbpol.2019.11562531887856
    [Google Scholar]
  26. LuG. Recent advances in developing ophthalmic formulations: A patent review.Recent Pat. Drug Deliv. Formul.201041495710.2174/18722111078995724619807679
    [Google Scholar]
  27. SahooS. DilnawazF. KrishnakumarS. Nanotechnology in ocular drug delivery.Drug Discov. Today2008133-414415110.1016/j.drudis.2007.10.02118275912
    [Google Scholar]
  28. PatelN. NakraniH. RavalM. ShethN. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability.Drug Deliv.20162393712372310.1080/10717544.2016.122322527689408
    [Google Scholar]
  29. FernandesA.R. LopezS.E. SantosT. GarciaM.L. SilvaA.M. SoutoE.B. Development and characterization of nanoemulsions for ophthalmic applications: Role of cationic surfactants.Materials20211424754110.3390/ma1424754134947136
    [Google Scholar]
  30. ZhangJ. LiuZ. TaoC. LinX. ZhangM. ZengL. ChenX. SongH. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus.Eur. J. Pharm. Sci.202014410522910.1016/j.ejps.2020.10522931958581
    [Google Scholar]
  31. SinghM. BharadwajS. LeeK.E. KangS.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery.J. Control. Release202032889591610.1016/j.jconrel.2020.10.02533069743
    [Google Scholar]
  32. HuckabyJ.T. LaiS.K. PEGylation for enhancing nanoparticle diffusion in mucus.Adv. Drug Deliv. Rev.201812412513910.1016/j.addr.2017.08.01028882703
    [Google Scholar]
  33. WangY.Y. LaiS.K. SukJ.S. PaceA. ConeR. HanesJ. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier.Angew. Chem. Int. Ed.200847509726972910.1002/anie.20080352618979480
    [Google Scholar]
  34. GrimaudoM.A. PescinaS. PadulaC. SantiP. ConcheiroA. LorenzoA.C. NicoliS. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery.Mol. Pharm.201815257158410.1021/acs.molpharmaceut.7b0093929313693
    [Google Scholar]
  35. XuQ. EnsignL.M. BoylanN.J. SchönA. GongX. YangJ.C. LambN.W. CaiS. YuT. FreireE. HanesJ. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo.ACS Nano2015999217922710.1021/acsnano.5b0387626301576
    [Google Scholar]
  36. MaX. LiuY. WangJ. LiuH. WeiG. LuW. LiuY. Combination of pegylation and cationization on phospholipid-coated cyclosporine nanosuspensions for enhanced ocular drug delivery.ACS Appl. Mater. Interfaces20241621270402705410.1021/acsami.4c0173238743443
    [Google Scholar]
  37. AttiaM.A. ElerakyN.E. AbdelazeemK. SafwatM.A. Prednisolone loaded-cationic nanoemulsion formulation for uveitis management.J. Drug Deliv. Sci. Technol.20249210540610.1016/j.jddst.2024.105406
    [Google Scholar]
  38. HagigitT. AbdulrazikM. ValamaneshF. CohenB.F. BenitaS. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: An in-vivo study in rats and mice.J. Control. Release2012160222523110.1016/j.jconrel.2011.11.02222138070
    [Google Scholar]
  39. HenostrozaB. MA MeloC. KJ YukuyamaMN LobenbergR ChacraB. NA Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis.Colloids Surf. A Physicochem. Eng. Aspects202059712475510.1016/j.colsurfa.2020.124755
    [Google Scholar]
  40. DukovskiJ.B. JuretićM. BračkoD. RandjelovićD. SavićS. MoralC.M. DieboldY. GrčićF.J. PepićI. LovrićJ. Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment.Int. J. Pharm.202057611897910.1016/j.ijpharm.2019.11897931870964
    [Google Scholar]
  41. WangQ. WuZ. WangF. ZhangH. GanL. Tacrolimus-loaded cationic nanoemulsion in-situ gel system: In-vitro characterization and performance in a dry-eye rabbit model.J. Pharm. Sci.2023112112790279810.1016/j.xphs.2023.05.00137453530
    [Google Scholar]
  42. LiX. MüllerR.H. KeckC.M. ChacraB.N.A. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept.Pharmazie201671632733310.1691/ph.2016.519027455551
    [Google Scholar]
  43. KassemA.A. SalamaA. MohsenA.M. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments.J. Drug Deliv. Sci. Technol.20226810304710.1016/j.jddst.2021.103047
    [Google Scholar]
  44. FernandesA.R. VidalL.B. LópezS.E. Santosd.T. GranjaP.L. SilvaA.M. GarciaM.L. SoutoE.B. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes.Int. J. Pharm.202262312193810.1016/j.ijpharm.2022.12193835728716
    [Google Scholar]
  45. GamboaJ.M. LeongK.W. In vitro and in vivo models for the study of oral delivery of nanoparticles.Adv. Drug Deliv. Rev.201365680081010.1016/j.addr.2013.01.00323415952
    [Google Scholar]
  46. KrasniciS. WernerA. EichhornM.E. SodyS.M. PahernikS.A. SauerB. SchulzeB. TeifelM. MichaelisU. NaujoksK. DellianM. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels.Int. J. Cancer2003105456156710.1002/ijc.1110812712451
    [Google Scholar]
  47. ShalabyT.I. RefaieE.W.M. Bioadhesive chitosan-coated cationic nanoliposomes with improved insulin encapsulation and prolonged oral hypoglycemic effect in diabetic mice.J. Pharm. Sci.201810782136214310.1016/j.xphs.2018.04.01129689252
    [Google Scholar]
  48. AlshehriS. AltamimiM.A. HussainA. ImamS.S. SinghS.K. FarukA. Morphological transition of M. tuberculosis and modulation of intestinal permeation by food grade cationic nanoemulsion: In vitro-ex vivo-in silico GastroPlus™ studies.J. Drug Deliv. Sci. Technol.20206010197110.1016/j.jddst.2020.101971
    [Google Scholar]
  49. MengJ. HuL. Positively-charged microemulsion for improving the oral bioavailability of alendronate: In-vitro and in-vivo assessment.J. Pharm. Pharmacol.201163340040810.1111/j.2042‑7158.2010.01229.x21749388
    [Google Scholar]
  50. JhaS.K. ChungJ.Y. PangeniR. ChoiH.S. SubediL. KweonS. ChoiJ.U. ByunY. KimY.H. ParkJ.W. Enhanced antitumor efficacy of bile acid-lipid complex-anchored docetaxel nanoemulsion via oral metronomic scheduling.J. Control. Release202032836839410.1016/j.jconrel.2020.08.06732890552
    [Google Scholar]
  51. FuentesG.M. AlonsoM.J. Chitosan-based drug nanocarriers: Where do we stand?J. Control. Release2012161249650410.1016/j.jconrel.2012.03.01722480607
    [Google Scholar]
  52. MalkawiA. AlrabadiN. KennedyR.A. Dual-acting zeta-potential-changing micelles for optimal mucus diffusion and enhanced cellular uptake after oral delivery.Pharmaceutics202113797410.3390/pharmaceutics1307097434199091
    [Google Scholar]
  53. HarsiddharayR.K. GuptaA. SinghP.K. RaiS. SinghY. SharmaM. PawarV. KedarA.S. GayenJ.R. ChourasiaM.K. Poly-l-lysine coated oral nanoemulsion for combined delivery of insulin and C-peptide.J. Pharm. Sci.2022111123352336110.1016/j.xphs.2022.08.02636030844
    [Google Scholar]
  54. HussainA. AltamimiM.A. RamzanM. MirzaM.A. KhurooT. GastroPlus- and HSPiP-oriented predictive parameters as the basis of valproic acid-loaded mucoadhesive cationic nanoemulsion gel for improved nose-to-brain delivery to control convulsion in humans.Gels20239860310.3390/gels908060337623058
    [Google Scholar]
  55. SuwanbumrungD. WongkhieoS. KeaswejjareansukW. DechbumroongP. KambleM.T. YataT. KitiyodomS. RodkhumC. ThompsonK.D. NamdeeK. PiraratN. Oral delivery of a Streptococcus agalactiae vaccine to Nile tilapia (Oreochromis niloticus) using a novel cationic-based nanoemulsion containing bile salts.Fish Shellfish Immunol.202313910891310.1016/j.fsi.2023.10891337393062
    [Google Scholar]
  56. YadavS. PawarG. KulkarniP. FerrisC. AmijiM. CNS delivery and anti-inflammatory effects of intranasally administered cyclosporine-A in cationic nanoformulations.J. Pharmacol. Exp. Ther.2019370384385410.1124/jpet.118.25467230591529
    [Google Scholar]
  57. WongP.T. WangS.H. CiottiS. MakidonP.E. SmithD.M. FanY. SchulerC.F.IV BakerJ.R.Jr Formulation and characterization of nanoemulsion intranasal adjuvants: Effects of surfactant composition on mucoadhesion and immunogenicity.Mol. Pharm.201411253154410.1021/mp400502924320221
    [Google Scholar]
  58. ManikkathJ. SumathyT.K. ManikkathA. MutalikS. Delving deeper into dermal and transdermal drug delivery: Factors and mechanisms associated with nanocarrier-mediated strategies.Curr. Pharm. Des.201824273210322210.2174/138161282466618092412264030246632
    [Google Scholar]
  59. AlvarezL.A. FernándezR.M. MéndezB.J. GuyR.H. CharroD.M.B. Iontophoretic permselectivity of mammalian skin: Characterization of hairless mouse and porcine membrane models.Pharm. Res.199815798498710.1023/A:10119096230199688048
    [Google Scholar]
  60. MarroD. GuyR.H. CharroB.D.M. Characterization of the iontophoretic permselectivity properties of human and pig skin.J. Control. Release2001701-221321710.1016/S0168‑3659(00)00350‑311166421
    [Google Scholar]
  61. GilletA. CompèreP. LecomteF. HubertP. DucatE. EvrardB. PielG. Liposome surface charge influence on skin penetration behaviour.Int. J. Pharm.20114111-222323110.1016/j.ijpharm.2011.03.04921458550
    [Google Scholar]
  62. CountL.T.D. KastingG.B. Erratum to “Human skin is permselective for the small, monovalent cations sodium and potassium but not for nickel and chromium” .J. Pharm. Sci.201610531351135210.1016/j.xphs.2015.11.013
    [Google Scholar]
  63. RojanasakulY. WangL.Y. BhatM. GloverD.D. MalangaC.J. MaJ.K.H. The transport barrier of epithelia: A comparative study on membrane permeability and charge selectivity in the rabbit.Pharm. Res.1992981029103410.1023/A:10158024274281409373
    [Google Scholar]
  64. BurnetteR.R. OngpipattanakulB. Characterization of the pore transport properties and tissue alteration of excised human skin during iontophoresis.J. Pharm. Sci.198877213213710.1002/jps.26007702083361428
    [Google Scholar]
  65. YilmazE. BorchertH.H. Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides.Eur. J. Pharm. Biopharm.2005601919810.1016/j.ejpb.2004.11.00915848061
    [Google Scholar]
  66. YilmazE. BorchertH.H. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—An in vivo study.Int. J. Pharm.2006307223223810.1016/j.ijpharm.2005.10.00216289984
    [Google Scholar]
  67. BaspinarY. BorchertH.H. Penetration and release studies of positively and negatively charged nanoemulsions—Is there a benefit of the positive charge?Int. J. Pharm.20124301-224725210.1016/j.ijpharm.2012.03.04022486953
    [Google Scholar]
  68. AltamimiM.A. HussainA. AlshehriS. ImamS.S. AlnemerU.A. Development and evaluations of transdermally delivered luteolin loaded cationic nanoemulsion: In vitro and ex vivo evaluations.Pharmaceutics2021138121810.3390/pharmaceutics13081218
    [Google Scholar]
  69. MalikM.R. HarbiA.F.F. NawazA. AminA. FaridA. MohainiM.A. AlsalmanA.J. HawajM.A.A. AlhashemY.N. Formulation and characterization of chitosan-decorated multiple nanoemulsion for topical delivery in vitro and ex vivo.Molecules20222710318310.3390/molecules2710318335630660
    [Google Scholar]
  70. İsarS. AkbabaH. AkbabaE.G. BaşpinarY. Development and characterization of cationic nanoemulsions as non-viral vectors for plasmid DNA delivery.J. Res. Pharm.202024695296010.35333/JRP.2020.255
    [Google Scholar]
  71. SilvaA.L. MarcelinoH.R. VeríssimoL.M. AraujoI.B. LimaA.L.F. Egitod.E.S.T. Stearylamine-containing cationic nanoemulsion as a promising carrier for gene delivery.J. Nanosci. Nanotechnol.20161621339134510.1166/jnn.2016.1167127433584
    [Google Scholar]
  72. BritoL.A. ChanM. ShawC.A. HekeleA. CarsilloT. SchaeferM. ArcherJ. SeubertA. OttenG.R. BeardC.W. DeyA.K. LiljaA. ValianteN.M. MasonP.W. MandlC.W. BarnettS.W. DormitzerP.R. UlmerJ.B. SinghM. O’HaganD.T. GeallA.J. A cationic nanoemulsion for the delivery of next-generation RNA vaccines.Mol. Ther.201422122118212910.1038/mt.2014.13325027661
    [Google Scholar]
  73. KhachaneP.V. JainA.S. DhawanV.V. JoshiG.V. DateA.A. MulherkarR. NagarsenkerM.S. Cationic nanoemulsions as potential carriers for intracellular delivery.Saudi Pharm. J.201523218819410.1016/j.jsps.2014.07.00725972740
    [Google Scholar]
  74. İsarS. AkbabaH. ŞahİnY. AltinözM.A. NalbantsoyA. AkbabaE.G. BaşpınarY. Design and evaluation of erucic acid-phytosphingosine structured cationic nanoemulsions as a plasmid DNA delivery system against breast cancer cells.Pharm. Dev. Technol.202227214515410.1080/10837450.2021.202524735021932
    [Google Scholar]
  75. TeixeiraH. Fraga Bruxel Lagranha MatteU. Influence of phospholipid composition on cationic emulsions/DNA complexes: Physicochemical properties, cytotoxicity, and transfection on Hep G2 cells.Int. J. Nanomedicine201162213222010.2147/IJN.S2233522114484
    [Google Scholar]
  76. FarwickM. GauglitzG. PavicicT. KöhlerT. WegmannM. AbdellaouiS.K. MalleB. TarabinV. SchmitzG. KortingH.C. Fifty-kDa hyaluronic acid upregulates some epidermal genes without changing TNF-α expression in reconstituted epidermis.Skin Pharmacol. Physiol.201124421021710.1159/00032429621412035
    [Google Scholar]
  77. HowK.N. YapW.H. LimC.L.H. GohB.H. LaiZ.W. Hyaluronic acid-mediated drug delivery system targeting for inflammatory skin diseases: A mini review.Front. Pharmacol.202011110510.3389/fphar.2020.0110532848737
    [Google Scholar]
  78. BourguignonL.Y.W. Matrix hyaluronan-activated CD44 signaling promotes keratinocyte activities and improves abnormal epidermal functions.Am. J. Pathol.201418471912191910.1016/j.ajpath.2014.03.01024819962
    [Google Scholar]
  79. LiY. RuanS. WangZ. FengN. ZhangY. Hyaluronic acid coating reduces the leakage of melittin encapsulated in liposomes and increases targeted delivery to melanoma cells.Pharmaceutics2021138123510.3390/pharmaceutics1308123534452196
    [Google Scholar]
  80. HuangG. HuangH. Application of hyaluronic acid as carriers in drug delivery.Drug Deliv.201825176677210.1080/10717544.2018.145091029536778
    [Google Scholar]
  81. NiC. ZhangZ. WangY. ZhangZ. GuoX. LvH. Hyaluronic acid and HA-modified cationic liposomes for promoting skin penetration and retention.J. Control. Release202335743244310.1016/j.jconrel.2023.03.04937004799
    [Google Scholar]
  82. JeonS. YooC.Y. ParkS.N. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery.Colloids Surf. B Biointerfaces201512971410.1016/j.colsurfb.2015.03.01825819360
    [Google Scholar]
  83. KotsmarC. PradinesV. AlahverdjievaV.S. AksenenkoE.V. FainermanV.B. KovalchukV.I. KrägelJ. LeserM.E. NoskovB.A. MillerR. Thermodynamics, adsorption kinetics and rheology of mixed protein–surfactant interfacial layers.Adv. Colloid Interface Sci.20091501415410.1016/j.cis.2009.05.00219493522
    [Google Scholar]
  84. PugnaloniL.A. DickinsonE. EttelaieR. MackieA.R. WildeP.J. Competitive adsorption of proteins and low-molecular-weight surfactants: Computer simulation and microscopic imaging.Adv. Colloid Interface Sci.20041071274910.1016/j.cis.2003.08.00314962406
    [Google Scholar]
  85. GuzmánE. LlamasS. MaestroA. PeñaF.L. AkannoA. MillerR. OrtegaF. RubioR.G. Polymer–surfactant systems in bulk and at fluid interfaces.Adv. Colloid Interface Sci.2016233386410.1016/j.cis.2015.11.00126608684
    [Google Scholar]
  86. McClementsD.J. JafariS.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review.Adv. Colloid Interface Sci.2018251557910.1016/j.cis.2017.12.00129248154
    [Google Scholar]
  87. PreetzC. HauserA. HauseG. KramerA. MäderK. Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: Distinction of nanoemulsions from nanocapsules.Eur. J. Pharm. Sci.2010391-314115110.1016/j.ejps.2009.11.00919958830
    [Google Scholar]
  88. QadirA. FaiyazuddinM.D. HussainT.M.D. AlshammariT.M. ShakeelF. Critical steps and energetics involved in a successful development of a stable nanoemulsion.J. Mol. Liq.201621471810.1016/j.molliq.2015.11.050
    [Google Scholar]
  89. GaoF. ZhangZ. BuH. HuangY. GaoZ. ShenJ. ZhaoC. LiY. Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism.J. Control. Release2011149216817410.1016/j.jconrel.2010.10.01320951749
    [Google Scholar]
  90. GeorgievG. YokoiN. NenchevaY. PeevN. DaullP. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds.Int. J. Mol. Sci.2017187155810.3390/ijms1807155828718823
    [Google Scholar]
  91. GeorgievG.A. YokoiN. IvanovaS. KrastevR. LalchevZ. Surface chemistry study of the interactions of pharmaceutical ingredients with human meibum films.Invest. Ophthalmol. Vis. Sci.20125384605461510.1167/iovs.12‑990722695955
    [Google Scholar]
  92. LiG. ZhangY. TangW. ZhengJ. Comprehensive investigation of in vitro hemocompatibility of surface modified polyamidoamine nanocarrier.Clin. Hemorheol. Microcirc.202074326727910.3233/CH‑19064131476147
    [Google Scholar]
  93. DengX. ZhaoJ. LiuK. WuC. LiangF. Stealth PEGylated chitosan polyelectrolyte complex nanoparticles as drug delivery carrier.J. Biomater. Sci. Polym. Ed.202132111387140510.1080/09205063.2021.191804333863271
    [Google Scholar]
  94. BagueS. PhilipsB. GarrigueJ-S. GuilattR.L. LambertG. Oil-in-water type emulsion with low concentration of cationic agent and positive zeta potential.U.S. Patent No. 8,298,568,2012
  95. CalvoP. JatoV.J.L. AlonsoM.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers.Int. J. Pharm.19971531415010.1016/S0378‑5173(97)00083‑5
    [Google Scholar]
  96. DukovskiB.J. BračkoA. ŠareM. PepićI. LovrićJ. In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery.Acta Pharm.201969462163410.2478/acph‑2019‑005431639085
    [Google Scholar]
  97. OttlikP.M. LewińskaA. JarominA. KrasowskaA. WilkK.A. Antifungal organoselenium compound loaded nanoemulsions stabilized by bifunctional cationic surfactants.Colloids Surf. A Physicochem. Eng. Asp.2016510536210.1016/j.colsurfa.2016.07.062
    [Google Scholar]
  98. MalikP. AmetaR.K. SinghM. Physicochemical study of curcumin in oil driven nanoemulsions with surfactants.J. Mol. Liq.201622060462210.1016/j.molliq.2016.04.126
    [Google Scholar]
  99. ChangY. McLandsboroughL. McClementsD.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate).Food Chem.201517229830410.1016/j.foodchem.2014.09.08125442557
    [Google Scholar]
  100. ZianiK. ChangY. McLandsboroughL. McClementsD.J. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.J. Agric. Food Chem.201159116247625510.1021/jf200450m21520914
    [Google Scholar]
  101. ZhuY. SunP. DuanC. CaoY. KongB. WangH. ChenQ. Improving stability and bioavailability of curcumin by quaternized chitosan coated nanoemulsion.Food Res. Int.2023174Pt 111363410.1016/j.foodres.2023.11363437986538
    [Google Scholar]
  102. SilvaH.D. BeldíkováE. PoejoJ. AbrunhosaL. SerraA.T. DuarteC.M.M. BrányikT. CerqueiraM.A. PinheiroA.C. VicenteA.A. Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions.J. Food Eng.20192438910010.1016/j.jfoodeng.2018.09.007
    [Google Scholar]
  103. AlsolamiA. BazaidA.S. AlshammariM.A. QanashH. AminB.H. BakriM.M. AbdelghanyT.M. Ecofriendly fabrication of natural jojoba nanoemulsion and chitosan/jojoba nanoemulsion with studying the antimicrobial, anti-biofilm, and anti-diabetic activities in vitro.Biomass Convers. Biorefin.2023202311210.1007/s13399‑023‑05162‑0
    [Google Scholar]
  104. ShukrM.H. FaridO.A.A. Brain targeting of agomelatine egg lecithin based chitosan coated nanoemulsion.Pharm. Dev. Technol.202126446447510.1080/10837450.2021.188898033586593
    [Google Scholar]
  105. BruxelF. CojeanS. BochotA. TeixeiraH. BoriesC. LoiseauP.M. FattalE. Cationic nanoemulsion as a delivery system for oligonucleotides targeting malarial topoisomerase II.Int. J. Pharm.2011416240240910.1016/j.ijpharm.2011.01.04821291974
    [Google Scholar]
  106. CorreaL. MeirellesC.G. BalestrinL. Souzad.P.O. MoreiraJ.C.F. SchuhR.S. BidoneJ. Poserv.G.L. TeixeiraH.F. In vitro protective effect of topical nanoemulgels containing Brazilian red propolis benzophenones against UV-induced skin damage.Photochem. Photobiol. Sci.202019101460146910.1039/d0pp00243g33026028
    [Google Scholar]
  107. LiuF. SuH. LiM. XieW. YanY. ShuaiQ. Zwitterionic modification of polyethyleneimine for efficient in vitro siRNA delivery.Int. J. Mol. Sci.2022239501410.3390/ijms2309501435563405
    [Google Scholar]
  108. YangQ. LiuS. LiuX. LiuZ. XueW. ZhangY. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems.Acta Biomater.20199643645510.1016/j.actbio.2019.06.04331254682
    [Google Scholar]
  109. SuY. ZhiZ. GaoQ. XieM. YuM. LeiB. LiP. MaP.X. Autoclaving‐derived surface coating with in vitro and in vivo antimicrobial and antibiofilm efficacies.Adv. Healthc. Mater.201766160117310.1002/adhm.20160117328128893
    [Google Scholar]
  110. GallardoG.M. EckhardU. DelgadoL.M. PuenteR.Y.J.D. NoguésH.M. GilF.J. PerezR.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications.Bioact. Mater.20216124470449010.1016/j.bioactmat.2021.04.03334027235
    [Google Scholar]
  111. RuseskaI. FresacherK. PetschacherC. ZimmerA. Use of protamine in nanopharmaceuticals—A review.Nanomaterials2021116150810.3390/nano1106150834200384
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357859250121120216
Loading
/content/journals/cpd/10.2174/0113816128357859250121120216
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test