Skip to content
2000
Volume 31, Issue 28
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Aim

Random use of natural herbal products affects the treatment of diseases. In this review, the limitations may be encountered in using natural substances of plant origin and the studies on using these substances in treating cancer, cognitive disorders, heart diseases, diabetes, and microbial diseases are examined and summarized.

Background

People worldwide use herbal products derived from natural plants to solve health problems. It is known that random use of herbal products can negatively affect the treatment. However, people need help with the formulation or use of natural substances. There is no new disease-modifying herbal therapy available to treat diseases such as cancer, microbial disorders, diabetes, cognitive disorders, and cardiac disorders.

Objective

This review aims to report the difficulties encountered in formulating and using natural herbal substances and highlight their possible use in some diseases.

Materials and Methods

Available information about the study was collected through many search engines such as Science Direct, PubMed, and Google Scholar.

Results

Working with natural herbal substances worldwide presents many difficulties, especially a lack of knowledge, modern technological devices, or clinical studies. According to currently available studies, some natural herbal substances are effective against cancer, microbial disorders, diabetes, cognitive disorders, and heart disorders.

Conclusion

Deepening the studies would be benefical in eliminating the difficulties related to natural herbal medicines and making them more reliable. More research is needed to include these substances in the protocol and use them in treating diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128346715250120074519
2025-02-11
2025-10-25
Loading full text...

Full text loading...

References

  1. The Importance of Pharmacovigilance Safety monitoring of Medicinal products. Geneva: World Health Organization (WHO).2002
    [Google Scholar]
  2. Al-WorafiY.M. Chapter 14 - Herbal medicines safety issues.Drug Safety in Developing Countries - Achievements and ChallengesElsevier2020163178
    [Google Scholar]
  3. TanL. NiY. XieY. ZhangW. ZhaoJ. XiaoQ. LuJ. PanQ. LiC. XuB. Next-generation meat preservation: integrating nano-natural substances to tackle hurdles and opportunities.Crit. Rev. Food Sci. Nutr.20246433127201274310.1080/10408398.2023.225601337702757
    [Google Scholar]
  4. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.202020201656539610.1155/2020/656539632148547
    [Google Scholar]
  5. ShaitoA. ThuanD.T.B. PhuH.T. NguyenT.H.D. HasanH. HalabiS. AbdelhadyS. NasrallahG.K. EidA.H. PintusG. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety.Front. Pharmacol.20201142210.3389/fphar.2020.0042232317975
    [Google Scholar]
  6. ZhangW. ZhaoJ. MaY. LiJ. ChenX. The effective components of herbal medicines used for prevention and control of fish diseases.Fish Shellfish Immunol.2022126738310.1016/j.fsi.2022.05.03635609759
    [Google Scholar]
  7. YinR. XueJ. TanY. FangC. HuC. YangQ. MeiX. QiD. The positive role and mechanism of herbal medicine in parkinson’s sisease.Oxid. Med. Cell. Longev.202120211992333110.1155/2021/992333134567415
    [Google Scholar]
  8. LuD.Y. LuT.R. YarlaN.S. Chapter 4 - Natural drug cancer treatments, strategies from herbal medicine to chemical or biological drugs.Studies in Natural Products Chemistry20209111510.1016/B978‑0‑12‑817907‑9.00004‑0
    [Google Scholar]
  9. SenS. ChakrabortyR. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future.J. Tradit. Complement. Med.20177223424410.1016/j.jtcme.2016.05.00628417092
    [Google Scholar]
  10. ZhangJ. WiderB. ShangH. LiX. ErnstE. Quality of herbal medicines: Challenges and solutions.Complement. Ther. Med.2012201-210010610.1016/j.ctim.2011.09.00422305255
    [Google Scholar]
  11. HossainC.M. GeraM. AliK.A. Current status and challenges of herbal drug development and regulatory aspect: a global perspective.Asian J. Pharm. Clin. Res.202215314110.22159/ajpcr.2022.v15i12.46134
    [Google Scholar]
  12. GurleyB.J. Emerging technologies for improving phytochemical bioavailability: benefits and risks.Clin. Pharmacol. Ther.201189691591910.1038/clpt.2011.5121544076
    [Google Scholar]
  13. MehtaM. SharmaP. KaurS. Plant-based drug delivery systems in respiratory diseases.Target Chronic Inflamm Lung Dis Using Adv Drug Deliv Syst.1st ed DuaK. HansbroP.M. WadhwaR. Elsevier Inc.202051753910.1016/B978‑0‑12‑820658‑4.00024‑8
    [Google Scholar]
  14. NagalingamA. Drug Delivery Aspects of Herbal Medicines.Japanese Kampo Med Treat Common Dis Focus Inflamm. ArumugamS. WatanabeK. Elsevier Inc.2017143164
    [Google Scholar]
  15. RiederM. BendJ.R. Development of drugs from plants: regulation and evaluation.Advances in Botanical Research1st ed KueteV. Elsevier Ltd.2012385408
    [Google Scholar]
  16. BalunasM.J. KinghornA.D. Drug discovery from medicinal plants.Life Sci.200578543144110.1016/j.lfs.2005.09.01216198377
    [Google Scholar]
  17. SahooN. ManchikantiP. DeyS. Herbal drugs: Standards and regulation.Fitoterapia201081646247110.1016/j.fitote.2010.02.00120156530
    [Google Scholar]
  18. WooC.S.J. LauJ.S.H. El-NezamiH. Herbal medicine: toxicity and recent trends in assessing their potential toxic effects.Advances in Botanical Research ShyurL-F. LauA.S.Y. Elsevier Ltd.2012365384
    [Google Scholar]
  19. DasguptaA. Review of abnormal laboratory test results and toxic effects due to use of herbal medicines.Am. J. Clin. Pathol.2003120112713710.1309/P024K7VRDDPJCTVN12866383
    [Google Scholar]
  20. KocaadamB. ŞanlierN. Curcumin, an active component of turmeric ( Curcuma longa ), and its effects on health.Crit. Rev. Food Sci. Nutr.201757132889289510.1080/10408398.2015.107719526528921
    [Google Scholar]
  21. MosaddadS.A. BeigiK. DoroodizadehT. HaghnegahdarM. GolfeshanF. RanjbarR. TebyanianH. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update.Eur. J. Pharmacol.202189017365710.1016/j.ejphar.2020.17365733096111
    [Google Scholar]
  22. AmjadS. JafriA. SharmaA.K. SerajuddinM. A novel strategy of nanotized herbal drugs and their delivery in the treatment of diabetes: Present status and future prospects.J. Herb. Med.201917-1810027910.1016/j.hermed.2019.100279
    [Google Scholar]
  23. SyadA.N. DeviK.P. Botanics: a potential source of new therapies for Alzheimer’s disease?Botanics201441126
    [Google Scholar]
  24. LicciardiP.V. UnderwoodJ.R. Plant-derived medicines: A novel class of immunological adjuvants.Int. Immunopharmacol.201111339039810.1016/j.intimp.2010.10.01421056709
    [Google Scholar]
  25. BarwalI. SoodA. SharmaM. SinghB. YadavS.C. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine.Colloids Surf. B Biointerfaces201310151051610.1016/j.colsurfb.2012.07.00523022553
    [Google Scholar]
  26. LinS.R. FuY.S. TsaiM.J. ChengH. WengC.F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy.Int. J. Mol. Sci.2017187141210.3390/ijms1807141228671583
    [Google Scholar]
  27. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.1481631368509
    [Google Scholar]
  28. DaleyD.K. Pharmacognosy. Fundamentals, Applications and StrategiesElsevier Inc.20178189
    [Google Scholar]
  29. MuthauraC.N. KerikoJ.M. DereseS. YenesewA. RukungaG.M. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs.Exp. Parasitol.2011127360962610.1016/j.exppara.2010.11.00421095187
    [Google Scholar]
  30. ZhangT. ChenY. GeY. HuY. LiM. JinY. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers.Acta Pharm. Sin. B20188344044810.1016/j.apsb.2018.03.00429881683
    [Google Scholar]
  31. KanwalT. SaifullahS. RehmanJ. KawishM. RazzakA. MaharjanR. ImranM. AliI. RoomeT. SimjeeS.U. ShahM.R. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability.J. Mol. Liq.202132411477410.1016/j.molliq.2020.114774
    [Google Scholar]
  32. WuT.C. LinY.C. ChenH.L. HuangP.R. LiuS.Y. YehS.L. The enhancing effect of genistein on apoptosis induced by trichostatin A in lung cancer cells with wild type p53 genes is associated with upregulation of histone acetyltransferase.Toxicol. Appl. Pharmacol.20162929410210.1016/j.taap.2015.12.02826768552
    [Google Scholar]
  33. WuB. LiangY. TanY. XieC. ShenJ. ZhangM. LiuX. YangL. ZhangF. LiuL. CaiS. HuaiD. ZhengD. ZhangR. ZhangC. ChenK. TangX. SuiX. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer.Mater. Sci. Eng. C20165979280010.1016/j.msec.2015.10.08726652434
    [Google Scholar]
  34. BaeK.H. TanS. YamashitaA. AngW.X. GaoS.J. WangS. ChungJ.E. KurisawaM. Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity.Biomaterials2017148415310.1016/j.biomaterials.2017.09.02728961534
    [Google Scholar]
  35. SinghR.K. RanjanA. SrivastavaA.K. SinghM. ShuklaA.K. AtriN. MishraA. SinghA.K. SinghS.K. Cytotoxic and apoptotic inducing activity of Amoora rohituka leaf extracts in human breast cancer cells.J. Ayurveda Integr. Med.202011438339010.1016/j.jaim.2018.12.00530846274
    [Google Scholar]
  36. MohanakumaraP. SreejayanN. PritiV. RameshaB.T. RavikanthG. GaneshaiahK.N. VasudevaR. MohanJ. SanthoshkumarT.R. MishraP.D. RamV. ShaankerR.U. Dysoxylum binectariferum Hook.f (Meliaceae), a rich source of rohitukine.Fitoterapia201081214514810.1016/j.fitote.2009.08.01019686817
    [Google Scholar]
  37. AliK. SaquibQ. SiddiquiM.A. AhmadJ. Al-KhedhairyA.A. MusarratJ. Anti-cancer efficacy of Aloe vera capped hematite nanoparticles in human breast cancer (MCF-7) cells.J. Drug Deliv. Sci. Technol.20206010205210.1016/j.jddst.2020.102052
    [Google Scholar]
  38. JianB. ZhangH. LiuJ. Structural diversity and biological activities of diterpenoids derived from Euphorbia fischeriana steud.Molecules201823493510.3390/molecules2304093529669996
    [Google Scholar]
  39. ZhangH. LiangZ. ZhangJ. WangW. ZhangH. LuQ. Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells.Arab. J. Chem.20201376174618310.1016/j.arabjc.2020.05.020
    [Google Scholar]
  40. JiangG. LiuJ. RenB. ZhangL. OwusuL. LiuL. ZhangJ. TangY. LiW. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro.J. Ethnopharmacol.2017205334010.1016/j.jep.2017.04.02628456578
    [Google Scholar]
  41. LiuD. QiaoS. ChengB. LiD. ChenJ. WuQ. PanH. PanW. Enhanced oral delivery of curcumin via vitamin E TPGS modified nanodiamonds: a comparative study on the nfficacy of Non-covalent and covalent conjugated strategies.AAPS PharmSciTech202021518710.1208/s12249‑020‑01721‑0
    [Google Scholar]
  42. GiordanoA. TommonaroG. Curcumin and Cancer.Nutrients20191110237610.3390/nu1110237631590362
    [Google Scholar]
  43. RatesS.M.K. Plants as source of drugs.Toxicon200139560361310.1016/S0041‑0101(00)00154‑911072038
    [Google Scholar]
  44. NanjappanS. PaulD. BollaL. Chapter 9 - Assessing Herb–Drug Interactions of Herbal Products With Therapeutic Agents for Metabolic Diseases: Analytical and Regulatory Perspectives.Studies in Natural Products Chemistry201828332210.1016/B978‑0‑444‑64179‑3.00009‑8
    [Google Scholar]
  45. MukherjeeP.K. Evaluation of herbal drugs for antimicrobial and parasiticidal effects.Quality Control and Evaluation of Herbal Drugs MukherjeeP.K. Elsevier201957359810.1016/B978‑0‑12‑813374‑3.00015‑6
    [Google Scholar]
  46. MalikT.A. KamiliA.N. ChishtiM.Z. AhadS. TantryM.A. HussainP.R. JohriR.K. Breaking the resistance of Escherichia coli : Antimicrobial activity of Berberis lycium Royle.Microb. Pathog.2017102122010.1016/j.micpath.2016.11.01127888048
    [Google Scholar]
  47. RadusinT. Torres-GinerS. StuparA. RisticI. MileticA. NovakovicA. LagaronJ.M. Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract.Food Packag. Shelf Life20192110035710.1016/j.fpsl.2019.100357
    [Google Scholar]
  48. HuX. YuanL. HanL. LiS. ZhouW. The preparation, characterization, anti-ultraviolet and antimicrobial activity of gelatin film incorporated with berberine-HP-β-CD.Colloids Surf. A Physicochem. Eng. Asp.202058612427310.1016/j.colsurfa.2019.124273
    [Google Scholar]
  49. ParkK.D. ChoS.J. Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: Improvement of stability and proposed action mechanism.Eur. J. Med. Chem.20104531028103310.1016/j.ejmech.2009.11.04519962795
    [Google Scholar]
  50. AkbasE. SoylerU.B. OztopM.H. Physicochemical and antimicrobial properties of oleoresin capsicum nanoemulsions formulated with lecithin and sucrose monopalmitate.Appl. Biochem. Biotechnol.20191881547110.1007/s12010‑018‑2901‑530311173
    [Google Scholar]
  51. Queiroz CancianM.A. AlmeidaF.G. TerhaagM.M. OliveiraA.G. RochaT.S. SpinosaW.A. Curcuma longa L.- and Piper nigrum-based hydrolysate, with high dextrose content, shows antioxidant and antimicrobial properties.Lebensm. Wiss. Technol.20189638639410.1016/j.lwt.2018.05.018
    [Google Scholar]
  52. AkterK. BarnesE.C. Loa-Kum-CheungW.L. YinP. KichuM. BrophyJ.J. BarrowR.A. ImchenI. VemulpadS.R. JamieJ.F. Antimicrobial and antioxidant activity and chemical characterisation of Erythrina stricta Roxb. (Fabaceae).J. Ethnopharmacol.201618517118110.1016/j.jep.2016.03.01126969405
    [Google Scholar]
  53. Süzgeç-SelçukS. BirteksözA.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities.S. Afr. J. Bot.201177117017410.1016/j.sajb.2010.07.017
    [Google Scholar]
  54. SwatiV.R. VermaR. ChauhanA. ShandilyaM. LiX. KumarR. KulshresthaS. Antimicrobial potential of ag-doped ZnO nanostructure synthesized by the green method using moringa oleifera extract.J. Environ. Chem. Eng.20208310373010.1016/j.jece.2020.103730
    [Google Scholar]
  55. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑9574509619120
    [Google Scholar]
  56. NgL.C. GuptaM. Transdermal drug delivery systems in diabetes management: A review.Asian Journal of Pharmaceutical Sciences2020151132510.1016/j.ajps.2019.04.00632175015
    [Google Scholar]
  57. International Diabetes FederationAvailable from: https://www.idf.org/aboutdiabetes/complications.html
  58. CosansuG. CelikS. ÖzcanS. OlgunN. YıldırımN. Gulyuz DemirH. Determining type 2 diabetes risk factors for the adults: A community based study from Turkey.Prim. Care Diabetes201812540941510.1016/j.pcd.2018.05.00129804712
    [Google Scholar]
  59. YıldırımD.İ. MarakoğluK. Complementary and alternative medicine use amongst Turkish type 2 diabetic patients: A cross-sectional study.Complement. Ther. Med.201841414610.1016/j.ctim.2018.08.00830477863
    [Google Scholar]
  60. ParsamaneshN. MoossaviM. BahramiA. ButlerA.E. SahebkarA. Therapeutic potential of curcumin in diabetic complications.Pharmacol. Res.201813618119310.1016/j.phrs.2018.09.01230219581
    [Google Scholar]
  61. XiaZH. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver.Food Chem Toxicol.2020146111803
    [Google Scholar]
  62. AsadiS. GholamiM.S. SiassiF. QorbaniM. KhamoshianK. SotoudehG. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial.Complement. Ther. Med.20194325326010.1016/j.ctim.2019.02.01430935539
    [Google Scholar]
  63. MurthyH.N. DandinV.S. LeeE.J. PaekK.Y. Efficacy of ginseng adventitious root extract on hyperglycemia in streptozotocin induced diabetic rats.J. Ethnopharmacol.2014153391792110.1016/j.jep.2014.03.06224709314
    [Google Scholar]
  64. Nazratun NafizahA.H. BudinS.B. ZaryanteyA.H. MariatiA.R. SanthanaR.L. OsmanM. Muhd HanisM.I. JamaludinM. Aqueous calyxes extract of Roselle or Hibiscus sabdariffa Linn supplementation improves liver morphology in streptozotocin induced diabetic rats.Arab J. Gastroenterol.2017181132010.1016/j.ajg.2017.02.00128336227
    [Google Scholar]
  65. TranN. TranM. TruongH. LeL. Spray-drying microencapsulation of high concentration of bioactive compounds fragments from euphorbia hirta L. extract and their effect on diabetes mellitus.Foods20209788110.3390/foods907088132635546
    [Google Scholar]
  66. ZafarM. SharifA. KhanD. Preventive effect of Euphorbia royleana Boiss on diabetes induced by streptozotocin via modulating oxidative stress and deoxyribonucleic acid damage.Toxin Rev.202040114
    [Google Scholar]
  67. RehmanK. SaeedK. MunawarS.M. AkashM.S.H. Resveratrol regulates hyperglycemia-induced modulations in experimental diabetic animal model.Biomed. Pharmacother.201810214014610.1016/j.biopha.2018.03.05029550637
    [Google Scholar]
  68. ShariatiM.A.K. NtsombohM.U. HussainG. AkramM.B. MishraM. Preparation of Phytopharmaceuticals for the Management of Disorders: The Development of Nutraceuticals and Traditional MedicineAcademic Press2021
    [Google Scholar]
  69. El ShafeyA.A.M. El-EzabiM.M. SeliemM.M.E. OudaH.H.M. IbrahimD.S. Effect of Gymnema sylvestre R. Br. leaves extract on certain physiological parameters of diabetic rats.J. King Saud Univ. Sci.201325213514110.1016/j.jksus.2012.11.001
    [Google Scholar]
  70. MukherjeeP.K. Safety-related quality issues for the development of herbal drugs.Quality Control and Evaluation of Herbal Drugs MukherjeeP.K. Elsevier Inc.201965568310.1016/B978‑0‑12‑813374‑3.00018‑1
    [Google Scholar]
  71. M SS. C DN. Influence of quercetin, naringenin and berberine on glucose transporters and insulin signalling molecules in brain of streptozotocin-induced diabetic rats.Biomed. Pharmacother.20179460561110.1016/j.biopha.2017.07.14228783583
    [Google Scholar]
  72. VenkateshS. ThilagavathiJ. Shyam sundarD. Anti-diabetic activity of flowers of Hibiscus rosasinensis.Fitoterapia2008792798110.1016/j.fitote.2007.06.01517850989
    [Google Scholar]
  73. HuangD.D. ShiG. JiangY. YaoC. ZhuC. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications.Biomed. Pharmacother.202012510976710.1016/j.biopha.2019.10976732058210
    [Google Scholar]
  74. WangP. WangF. NiL. WuP. ChenJ. Targeting redox-altered plasticity to reactivate synaptic function: A novel therapeutic strategy for cognitive disorder.Acta Pharm. Sin. B202111359960810.1016/j.apsb.2020.11.01233777670
    [Google Scholar]
  75. Özcan BülbülE. MesutB. CevherE. ÖztaşE. ÖzsoyY. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach.J. Drug Deliv. Sci. Technol.20195410135810.1016/j.jddst.2019.101358
    [Google Scholar]
  76. GiacomeliR. IzotonJ.C. dos SantosR.B. BoeiraS.P. JesseC.R. HaasS.E. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice.Brain Res.2019172114632510.1016/j.brainres.2019.14632531325424
    [Google Scholar]
  77. SoodS. JainK. GowthamarajanK. Intranasal delivery of curcumin–/INS;donepezil nanoemulsion for brain targeting in Alzheimer’s disease.J. Neurol. Sci.2013333e316e31710.1016/j.jns.2013.07.1182
    [Google Scholar]
  78. KhatriD.K. JuvekarA.R. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease.Pharmacol. Biochem. Behav.2016150-151394710.1016/j.pbb.2016.09.00227619637
    [Google Scholar]
  79. MohajeriM. SadeghizadehM. NajafiF. JavanM. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair.Neuropharmacology20159915616710.1016/j.neuropharm.2015.07.01326211978
    [Google Scholar]
  80. LiS.Y. WangX.B. KongL.Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease.Eur. J. Med. Chem.201471364510.1016/j.ejmech.2013.10.06824269515
    [Google Scholar]
  81. SapkalN.P. DaudA.S. Advancements in delivery of herbal drugs for cognitive disorders.Nutraceuticals in Brain Health and Beyond GoshD. Elsevier Inc.202134335510.1016/B978‑0‑12‑820593‑8.00024‑0
    [Google Scholar]
  82. BaggaP. ChuganiA.N. PatelA.B. Neuroprotective effects of caffeine in MPTP model of Parkinson’s disease: A 13 C NMR study.Neurochem. Int.201692253410.1016/j.neuint.2015.11.00626626997
    [Google Scholar]
  83. ChuY.F. ChangW.H. BlackR.M. LiuJ.R. SompolP. ChenY. WeiH. ZhaoQ. ChengI.H. Crude caffeine reduces memory impairment and amyloid β1–42 levels in an Alzheimer’s mouse model.Food Chem.201213532095210210.1016/j.foodchem.2012.04.14822953961
    [Google Scholar]
  84. PatelP.A. PatilS.C. KalariaD.R. KaliaY.N. PatravaleV.B. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A.Int. J. Pharm.20134461-2162310.1016/j.ijpharm.2013.02.01423410989
    [Google Scholar]
  85. GiacomeliR. de GomesM.G. ReolonJ.B. HaasS.E. ColoméL.M. JesseC.R. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid1-42 in aged female mice.Behav. Brain Res.202039011269610.1016/j.bbr.2020.11269632417280
    [Google Scholar]
  86. AugustinS. RimbachG. AugustinK. SchliebsR. WolfframS. CermakR. Effect of a short- and long-term treatment with Ginkgo biloba extract on Amyloid Precursor Protein Levels in a transgenic mouse model relevant to Alzheimer’s disease.Arch. Biochem. Biophys.2009481217718210.1016/j.abb.2008.10.03218996078
    [Google Scholar]
  87. ChangX. RongC. ChenY. YangC. HuQ. MoY. ZhangC. GuX. ZhangL. HeW. ChengS. HouX. SuR. LiuS. DunW. WangQ. FangS. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer׳s disease model mice by upregulating neprilysin expression.Exp. Cell Res.2015334113614510.1016/j.yexcr.2015.04.00425882496
    [Google Scholar]
  88. SerafiniM.M. CatanzaroM. RosiniM. RacchiM. LanniC. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule?Pharmacol. Res.201712414615510.1016/j.phrs.2017.08.00428811228
    [Google Scholar]
  89. KomorowskaJ. WątrobaM. SzukiewiczD. Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer’s disease.Adv. Med. Sci.202065241542310.1016/j.advms.2020.08.00232871321
    [Google Scholar]
  90. KakarlaR. KaruturiP. SiakabingaQ. Kasi ViswanathM. DumalaN. GuntupalliC. NalluriB.N. VenkateswarluK. PrasannaV.S. GuttiG. YadagiriG. GujjariL. Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases.Phytother. Res.20243831381139910.1002/ptr.812238217095
    [Google Scholar]
  91. BeikA. JoukarS. NajafipourH. A review on plants and herbal components with antiarrhythmic activities and their interaction with current cardiac drugs.J. Tradit. Complement. Med.202010327528710.1016/j.jtcme.2020.03.00232670823
    [Google Scholar]
  92. XuT. QinG. JiangW. ZhaoY. XuY. LvX. 6-Gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the PI3K/Akt-dependent mechanism in rats.Evid. Based Complement. Alternat. Med.201820181620967910.1155/2018/620967930519268
    [Google Scholar]
  93. LiuT. LiuX. LiW. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy.Oncotarget2016726408004081510.18632/oncotarget.831527027348
    [Google Scholar]
  94. ZhangTJ. Tetrandrine cardioprotection in ischemia-reperfusion (I/R) injury via JAK3/STAT3/Hexokinase II.Eur J Pharmacol.2017813153160
    [Google Scholar]
  95. MajewskiM. Allium sativum: facts and myths regarding human health.Rocz. Panstw. Zakl. Hig.20146511824964572
    [Google Scholar]
  96. LiuS. HeY. ShiJ. LiuL. MaH. HeL. GuoY. Allicin attenuates myocardial ischemia reperfusion injury in rats by inhibition of inflammation and oxidative stress.Transplant. Proc.20195162060206510.1016/j.transproceed.2019.04.03931399184
    [Google Scholar]
  97. HoJ. HongC.Y. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects.J. Biomed. Sci.20121917010.1186/1423‑0127‑19‑7022849814
    [Google Scholar]
  98. LeeY.M. HsiaoG. ChenH.R. ChenY.C. SheuJ.R. YenM.H. Magnolol reduces myocardial ischemia/reperfusion injury via neutrophil inhibition in rats.Eur. J. Pharmacol.20014221-315916710.1016/S0014‑2999(01)01069‑X11430926
    [Google Scholar]
  99. DaciA. NeziriB. KrasniqiS. CavolliR. AlajR. NorataG.D. BerettaG. Arctigenin improves vascular tone and decreases inflammation in human saphenous vein.Eur. J. Pharmacol.2017810515610.1016/j.ejphar.2017.06.00428603045
    [Google Scholar]
  100. HuangB. YouJ. QiaoY. WuZ. LiuD. YinD. HeH. HeM. Tetramethylpyrazine attenuates lipopolysaccharide-induced cardiomyocyte injury via improving mitochondrial function mediated by 14-3-3γ.Eur. J. Pharmacol.2018832677410.1016/j.ejphar.2018.05.01929782860
    [Google Scholar]
  101. ParisellaM.L. AngeloneT. GattusoA. CerraM.C. PellegrinoD. Glycyrrhizin and glycyrrhetinic acid directly modulate rat cardiac performance.J. Nutr. Biochem.2012231697510.1016/j.jnutbio.2010.10.01121414764
    [Google Scholar]
  102. LohS.H. TsaiY.T. LeeC.Y. ChangC.Y. TsaiC.S. ChengT.H. LinC.I. Antiarrhythmic effects of dehydroevodiamine in isolated human myocardium and cardiomyocytes.J. Ethnopharmacol.2014153375376210.1016/j.jep.2014.03.04324680993
    [Google Scholar]
  103. SongQ. ChuX. ZhangX. BaoY. ZhangY. GuoH. LiuY. LiuH. ZhangJ. ZhangY. ChuL. Mechanisms underlying the cardioprotective effect of Salvianic acid A against isoproterenol-induced myocardial ischemia injury in rats: Possible involvement of L-type calcium channels and myocardial contractility.J. Ethnopharmacol.201618915716410.1016/j.jep.2016.05.03827211016
    [Google Scholar]
  104. GaoQ. YangM. ZuoZ. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L.Acta Pharmacol. Sin.201839578780110.1038/aps.2018.3229698388
    [Google Scholar]
  105. TangT.Y. LiF. AfsethJ. Review of the regulations for clinical research in herbal medicines in USA.Chin. J. Integr. Med.2014201288389310.1007/s11655‑014‑2024‑y25428336
    [Google Scholar]
  106. World Health Organization (WHO). Operational guidance: Information needed to support clinical trials of herbal products.2005
    [Google Scholar]
  107. MachinD. DayS. GreenS. Textbook of Clinical Trials. Textb. Clin. Trials.2nd edWest SussexJohn Wiley & Sons Ltd.200410.1002/0470020245
    [Google Scholar]
  108. WalkerL.G. AndersonJ. Testing complementary and alternative therapies within a research protocol.Eur. J. Cancer199935111614161810.1016/S0959‑8049(99)00199‑910673971
    [Google Scholar]
  109. CritchleyJ.A.J.H. ZhangY. SuthisisangC.C. ChanT.Y.K. TomlinsonB. Alternative therapies and medical science: designing clinical trials of alternative/complementary medicines--is evidence-based traditional Chinese medicine attainable?J. Clin. Pharmacol.200040546246710.1177/0091270002200922410806598
    [Google Scholar]
  110. AhmadS. ParveenA. ParveenB. ParveenR. Challenges and guidelines for clinical trial of herbal drugs.J. Pharm. Bioallied Sci.20157432933310.4103/0975‑7406.16803526681895
    [Google Scholar]
  111. Research guidelines for evaluating the safety and efficacy of herbal medicines. Geneva: World Health Organization (WHO).1993
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128346715250120074519
Loading
/content/journals/cpd/10.2174/0113816128346715250120074519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test