Skip to content
2000
Volume 31, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Osteoporosis, a skeletal disorder marked by the disruption and degeneration of bone tissues, undermines the structural integrity of bones. Globally, one in three women and one in five men face osteoporotic fractures as a result, and the expenditure on treating osteoporotic fractures is projected to surpass $25 billion by 2025. In addition to conventional medications such as monoclonal antibodies and hormonal therapies, research endeavors into bone tissue engineering due to the adverse effects associated with the prolonged use of pharmaceutical medications have spurred researchers to explore natural therapeutic compounds as a potentially safer and efficacious approach to treat osteoporosis. PLGA (Poly (lactic-co-glycolic acid)) is a copolymer that has garnered attention as a foundational material in biomedical applications due to its biocompatibility, its capacity to modify surface properties, and its ability to enhance interactions with biological materials. When combined with phytocompounds, PLGA has been reported to improve stability and efficacy in treating osteoporotic disorders. Various classes of bio-active phyto-compounds, including terpenoids, phenolic acids, alkaloids, and other nitrogen-containing metabolites, are recognized for their ability to stimulate osteogenic activities in osteoporotic conditions. They exert their effects by modulating signaling cascades in conjunction with bone growth factors. In recent years, natural polymers derived from bio-active compounds have garnered growing interest owing to their wide-ranging applications in biomedicine. This review provides comprehensive insights into the role of phytocompounds in targeting genes involved in the bone regeneration process. Additionally, it highlights the potential of the synthetic polymer PLGA in improving treatments for osteoporotic conditions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128343852250311040459
2025-04-08
2025-09-02
Loading full text...

Full text loading...

References

  1. Florencio-SilvaR. SassoG.R.S. Sasso-CerriE. SimõesM.J. CerriP.S. Biology of bone tissue: Structure, function, and factors that influence bone cells.BioMed Res. Int.2015201511710.1155/2015/421746 26247020
    [Google Scholar]
  2. RachnerT.D. KhoslaS. HofbauerL.C. Osteoporosis: now and the future.Lancet201137797731276128710.1016/S0140‑6736(10)62349‑5 21450337
    [Google Scholar]
  3. WangL.T. ChenL.R. ChenK.H. Hormone-related and drug-induced osteoporosis: A cellular and molecular overview.Int. J. Mol. Sci.202324581410.3390/ijms24065814
    [Google Scholar]
  4. LinJ.T. LaneJ.M. Osteoporosis.Clin. Orthop. Relat. Res.200442542512613410.1097/01.blo.0000132404.30139.f2 15292797
    [Google Scholar]
  5. CrisenoS. Osteoporosis.Adv Pract Endocrinology Nursing. LlahanaS. FollinC. YedinakC. GrossmanA. ChamSpringer International Publishing20191005103510.1007/978‑3‑319‑99817‑6_53
    [Google Scholar]
  6. SözenT. ÖzışıkL. Calik BasaranN. An overview and management of osteoporosis.Eur. J. Rheumatol.201741465610.5152/eurjrheum.2016.048 28293453
    [Google Scholar]
  7. BinteS. MeemM. Fundamentals of osteoporosis and the associated developments in its diagnosis and treatment.Rev Sci2021112213110.31436/REVIVAL.V11I2.286
    [Google Scholar]
  8. KimH.Y. MohanS. Role and mechanisms of actions of thyroid hormone on the skeletal development.Bone Res.20131214616110.4248/BR201302004 26273499
    [Google Scholar]
  9. DayaN.R. FretzA. MartinS.S. Association between subclinical thyroid dysfunction and fracture risk.JAMA Netw. Open2022511e224082310.1001/jamanetworkopen.2022.40823 36346629
    [Google Scholar]
  10. HsuC.Y. ChenL.R. ChenK.H. Osteoporosis in patients with chronic kidney diseases: A systemic review.Int. J. Mol. Sci.20202118684610.3390/ijms21186846 32961953
    [Google Scholar]
  11. ClynesM.A. HarveyN.C. CurtisE.M. FuggleN.R. DennisonE.M. CooperC. The epidemiology of osteoporosis.Br. Med. Bull.20201331ldaa00510.1093/bmb/ldaa005 32282039
    [Google Scholar]
  12. HarveyN. DennisonE. CooperC. Osteoporosis: Impact on health and economics.Nat. Rev. Rheumatol.2010629910510.1038/nrrheum.2009.260 20125177
    [Google Scholar]
  13. JonesA.R. HerathM. EbelingP.R. TeedeH. VincentA.J. Models of care for osteoporosis: A systematic scoping review of efficacy and implementation characteristics.E Clin Med20213810102210.1016/j.eclinm.2021.101022 34345811
    [Google Scholar]
  14. LiuZ. WangQ. ZhangJ. QiS. DuanY. LiC. The mechanotransduction signaling pathways in the regulation of osteogenesis.Int. J. Mol. Sci.202324181432610.3390/ijms241814326 37762629
    [Google Scholar]
  15. MithalA. BansalB. KyerC. EbelingP. The asia-pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: A report of international osteoporosis foundation.Indian J. Endocrinol. Metab.201418444945410.4103/2230‑8210.137485 25143898
    [Google Scholar]
  16. PlaweckiK. Chapman-NovakofskiK. Bone health nutrition issues in aging.Nutrients20102111086110510.3390/nu2111086 22253999
    [Google Scholar]
  17. DrakeM.T. ClarkeB.L. KhoslaS. Bisphosphonates: Mechanism of action and role in clinical practice.Mayo Clin. Proc.20088391032104510.4065/83.9.1032 18775204
    [Google Scholar]
  18. LuckmanS.P. HughesD.E. CoxonF.P. RussellR.G.G. DrM.J. Rogers, “nitrogen-containing biphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of gtp-binding proteins, including ras,”.J. Bone Miner. Res.20052071265127410.1359/jbmr.2005.20.7.1265 16050006
    [Google Scholar]
  19. ChiarellaE. NisticòC. Di VitoA. MorroneH.L. MesuracaM. Targeting of mevalonate-isoprenoid pathway in acute myeloid leukemia cells by bisphosphonate drugs.Biomedicines2022105114610.3390/biomedicines10051146 35625883
    [Google Scholar]
  20. FogartyE.A. MatulisC.K. KrausW.L. Activation of estrogen receptor α by raloxifene through an activating protein-1-dependent tethering mechanism in human cervical epithelial cancer cells: A role for c-Jun N-terminal kinase.Mol. Cell. Endocrinol.2012348133133810.1016/j.mce.2011.09.032 21964465
    [Google Scholar]
  21. ChiuY.G. RitchlinC.T. Denosumab: Targeting the rankl pathway to treat rheumatoid arthritis.Expert Opin. Biol. Ther.201717111912810.1080/14712598.2017.1263614 27871200
    [Google Scholar]
  22. MillerP.D. Denosumab: Anti-rankl antibody.Curr. Osteoporos. Rep.200971182210.1007/s11914‑009‑0004‑5 19239825
    [Google Scholar]
  23. ReyJ.R.C. CervinoE.V. RenteroM.L. CrespoE.C. ÁlvaroA.O. CasillasM. Raloxifene: Mechanism of action, effects on bone tissue, and applicability in clinical traumatology practice.Open Orthop. J.200931142110.2174/1874325000903010014 19516920
    [Google Scholar]
  24. GuptaV. ChengM.L. Teriparatide - Indications beyond osteoporosis.Indian J. Endocrinol. Metab.201216334334810.4103/2230‑8210.95661 22629497
    [Google Scholar]
  25. GossetA. PouillèsJ.M. TrémollieresF. Menopausal hormone therapy for the management of osteoporosis.Best Pract. Res. Clin. Endocrinol. Metab.202135610155110.1016/j.beem.2021.101551 34119418
    [Google Scholar]
  26. BoyceB.F. XingL. Functions of rankl/rank/opg in bone modeling and remodeling.Arch. Biochem. Biophys.2008473213914610.1016/j.abb.2008.03.018 18395508
    [Google Scholar]
  27. ChoiR.J. ChunJ. KhanS. KimY.S. Desoxyrhapontigenin, a potent anti-inflammatory phytochemical, inhibits LPS-induced inflammatory responses via suppressing NF-κB and MAPK pathways in RAW 264.7 cells.Int. Immunopharmacol.201418118219010.1016/j.intimp.2013.11.022 24295651
    [Google Scholar]
  28. ChenJ.R. LazarenkoO.P. WuX. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling.J. Bone Miner. Res.201025112399241110.1002/jbmr.137 20499363
    [Google Scholar]
  29. Muñoz-TorresM AlonsoG RayaPM Calcitonin therapy in osteoporosis. Treat Endocrinol201232117321574310710.2165/00024677‑200403020‑00006
    [Google Scholar]
  30. JiJ.D. Park-MinK.H. ShenZ. Inhibition of rank expression and osteoclastogenesis by TLRs and IFN-γ in human osteoclast precursors.J. Immunol.2009183117223723310.4049/jimmunol.0900072 19890054
    [Google Scholar]
  31. KohliS. KohliV. Role of rankl-rank/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications.Indian J. Endocrinol. Metab.201115317518110.4103/2230‑8210.83401 21897893
    [Google Scholar]
  32. OnoT. HayashiM. SasakiF. NakashimaT. RANKL biology: Bone metabolism, the immune system, and beyond.Inflamm. Regen.2020401210.1186/s41232‑019‑0111‑3 32047573
    [Google Scholar]
  33. ChenG. DengC. LiY.P. TGF-β and BMP signaling in osteoblast differentiation and bone formation.Int. J. Biol. Sci.20128227228810.7150/ijbs.2929 22298955
    [Google Scholar]
  34. SolheimE. Growth factors in bone.Int. Orthop.199822641041610.1007/s002640050290 10093814
    [Google Scholar]
  35. MurugaiyanK. AmirthalingamS. HwangN.S.Y. JayakumarR. Role of fgf-18 in bone regeneration.J. Funct. Biomater.20231413610.3390/jfb14010036 36662083
    [Google Scholar]
  36. MalnouC.E. SalemT. BrocklyF. WodrichH. PiechaczykM. Jariel-EncontreI. Heterodimerization with Jun family members regulates c-Fos nucleocytoplasmic traffic.J. Biol. Chem.200728242310463105910.1074/jbc.M702833200 17681951
    [Google Scholar]
  37. KimJ.H. KimN. Regulation of nfatc1 in osteoclast differentiation.J. Bone Metab.201421423324110.11005/jbm.2014.21.4.233 25489571
    [Google Scholar]
  38. TsaiS.Y. HuangY.L. YangW.H. TangC.H. Hepatocyte growth factor-induced bmp-2 expression is mediated by c-met receptor, fak, jnk, runx2, and p300 pathways in human osteoblasts.Int. Immunopharmacol.201213215616210.1016/j.intimp.2012.03.026 22504529
    [Google Scholar]
  39. Rodríguez-CarballoE. GámezB. VenturaF. P38 mapk signaling in osteoblast differentiation.Front. Cell Dev. Biol.201644010.3389/fcell.2016.00040 27200351
    [Google Scholar]
  40. PoniatowskiŁ.A. WojdasiewiczP. GasikR. SzukiewiczD. Transforming growth factor beta family: Insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications.Mediators Inflamm.20152015113782310.1155/2015/137823 25709154
    [Google Scholar]
  41. JannJ. GasconS. RouxS. FaucheuxN. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions.Int. J. Mol. Sci.20202120759710.3390/ijms21207597 33066607
    [Google Scholar]
  42. SilvaB.C. BilezikianJ.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton.Curr. Opin. Pharmacol.201522415010.1016/j.coph.2015.03.005 25854704
    [Google Scholar]
  43. WeinM.N. KronenbergH.M. Regulation of bone remodeling by parathyroid hormone.Cold Spring Harb. Perspect. Med.201888a03123710.1101/cshperspect.a031237 29358318
    [Google Scholar]
  44. NohJ.Y. YangY. JungH. Molecular mechanisms and emerging therapeutics for osteoporosis.Int. J. Mol. Sci.20202120762310.3390/ijms21207623 33076329
    [Google Scholar]
  45. KanakarisN.K. PetsatodisG. TagilM. GiannoudisP.V. Is there a role for bone morphogenetic proteins in osteoporotic fractures?Injury200940Suppl. 3S21S2610.1016/S0020‑1383(09)70007‑5 20082786
    [Google Scholar]
  46. ChristianJ. A tale of two receptors: Bmp heterodimers recruit two type I receptors but use the kinase activity of only one.Proc. Natl. Acad. Sci. USA202111819e210474511810.1073/pnas.2104745118 33893177
    [Google Scholar]
  47. MarieP.J. Fibroblast growth factor signaling controlling osteoblast differentiation.Gene2003316233210.1016/S0378‑1119(03)00748‑0 14563548
    [Google Scholar]
  48. NgL. KaurP. BunnagN. WNT signaling in disease.Cells20198882610.3390/cells8080826 31382613
    [Google Scholar]
  49. LiuL. MuH. PangY. Caffeic acid treatment augments the cell proliferation, differentiation, and calcium mineralization in the human osteoblast-like MG-63 cells.Pharmacogn. Mag.202117733810.4103/pm.pm_186_20
    [Google Scholar]
  50. MacDonaldB.T. TamaiK. HeX. Wnt/β-catenin signaling: Components, mechanisms, and diseases.Dev. Cell200917192610.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  51. StamosJ.L. WeisW.I. The β-catenin destruction complex.Cold Spring Harb. Perspect. Biol.201351a007898a810.1101/cshperspect.a007898 23169527
    [Google Scholar]
  52. LammiJ. AarnisaloP. FGF-8 stimulates the expression of NR4A orphan nuclear receptors in osteoblasts.Mol. Cell. Endocrinol.20082951-2879310.1016/j.mce.2008.08.023 18809462
    [Google Scholar]
  53. ChenM. ZhongK. TanJ. Baicalein is a novel TLR4-targeting therapeutics agent that inhibits TLR4/HIF-1α/VEGF signaling pathway in colorectal cancer.Clin. Transl. Med.20211111e56410.1002/ctm2.564 34841696
    [Google Scholar]
  54. LiuX. DiaoL. ZhangY. Piperlongumine inhibits titanium particles-induced osteolysis, osteoclast formation, and rankl-induced signaling pathways.Int. J. Mol. Sci.2022235286810.3390/ijms23052868 35270008
    [Google Scholar]
  55. BaiY. NiuY. QinS. MaG. A new biomaterial derived from Aloe vera—acemannan from basic studies to clinical application.Pharmaceutics2023157191310.3390/pharmaceutics15071913 37514099
    [Google Scholar]
  56. MartiniakovaM. BabikovaM. OmelkaR. Pharmacological agents and natural compounds: Available treatments for osteoporosis.J. Physiol. Pharmacol.202071330732010.26402/jpp.2020.3.01 32991310
    [Google Scholar]
  57. GongW. ZhangN. ChengG. Rehmannia glutinosa libosch extracts prevent bone loss and architectural deterioration and enhance osteoblastic bone formation by regulating the igf-1/pi3k/mtor pathway in streptozotocin-induced diabetic rats.Int. J. Mol. Sci.20192016396410.3390/ijms20163964 31443143
    [Google Scholar]
  58. JingW. LiuC. SuC. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs.Front. Immunol.202314110767010.3389/fimmu.2023.1107670 36845127
    [Google Scholar]
  59. SantosP.H.N. SilvaH.L. MartinezE.F. JolyJ.C. DemasiA.P.D. de Castro RaucciL.M.S. TeixeiraL.N. Low concentrations of caffeic acid phenethyl ester stimulate osteogenesis in vitro.Tissue Cell20217310161810.1016/j.tice.2021.101618 34391938
    [Google Scholar]
  60. ChenK. LvZ. ChengP. Boldine ameliorates estrogen deficiency-induced bone loss via inhibiting bone resorption.Front. Pharmacol.20189104610.3389/fphar.2018.01046 30271347
    [Google Scholar]
  61. HuB. SunX. YangY. Tomatidine suppresses osteoclastogenesis and mitigates estrogen deficiency‐induced bone mass loss by modulating TRAF6‐mediated signaling.FASEB J.20193322574258610.1096/fj.201800920R 30285579
    [Google Scholar]
  62. SuvarnaV. SarkarM. ChaubeyP. Bone health and natural products- An insight.Front. Pharmacol.2018998110.3389/fphar.2018.00981 30283334
    [Google Scholar]
  63. BorlinghausJ. AlbrechtF. GruhlkeM. NwachukwuI. SlusarenkoA. Allicin: Chemistry and biological properties.Molecules2014198125911261810.3390/molecules190812591 25153873
    [Google Scholar]
  64. DingG. ZhaoJ. JiangD. Allicin inhibits oxidative stress-induced mitochondrial dysfunction and apoptosis by promoting PI3K/AKT and CREB/ERK signaling in osteoblast cells.Exp. Ther. Med.20161162553256010.3892/etm.2016.3179 27284348
    [Google Scholar]
  65. ZhaiW. LuH. ChenL. Silicate bioceramics induce angiogenesis during bone regeneration.Acta Biomater.20128134134910.1016/j.actbio.2011.09.008 21964215
    [Google Scholar]
  66. XueD. ChenE. ZhangW. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration.Oncotarget2017813210312104310.18632/oncotarget.15473 28423500
    [Google Scholar]
  67. JiY. WangL. WattsD.C. Controlled-release naringin nanoscaffold for osteoporotic bone healing.Dent. Mater.201430111263127310.1016/j.dental.2014.08.381 25238705
    [Google Scholar]
  68. ChandranS.V. VairamaniM. SelvamuruganN. Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells.Sci. Rep.2019911190010.1038/s41598‑019‑48429‑1 31417150
    [Google Scholar]
  69. BiL. CaoZ. HuY. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering.J. Mater. Sci. Mater. Med.2011221516210.1007/s10856‑010‑4177‑3 21052794
    [Google Scholar]
  70. PerikamanaS.K.M. LeeS.M. LeeJ. Oxidative epigallocatechin gallate coating on polymeric substrates for bone tissue regeneration.Macromol. Biosci.2019194180039210.1002/mabi.201800392 30645050
    [Google Scholar]
  71. ZhaoL. LiG. ZhouG.Q. SOX9 directly binds CREB as a novel synergism with the PKA pathway in BMP-2-induced osteochondrogenic differentiation.J. Bone Miner. Res.200924582683610.1359/jbmr.081236 19113914
    [Google Scholar]
  72. LiD. LiangH. LiY. ZhangJ. QiaoL. LuoH. Allicin alleviates lead-induced bone loss by preventing oxidative stress and osteoclastogenesis via sirt1/foxo1 pathway in mice.Biol. Trace Elem. Res.2021199123724310.1007/s12011‑020‑02136‑5 32314144
    [Google Scholar]
  73. de WildeA. LieberherrM. ColinC. PointillartA. A low dose of daidzein acts as an ERβ‐selective agonist in trabecular osteoblasts of young female piglets.J. Cell. Physiol.2004200225326210.1002/jcp.20008 15174095
    [Google Scholar]
  74. SunM.Y. YeY. XiaoL. RahmanK. XiadW. ZhangH. Daidzein: A review of pharmacological effects.Afr. J. Tradit. Complement. Altern. Med.201613311713210.21010/ajtcam.v13i3.15
    [Google Scholar]
  75. SunJ. SunW.J. LiZ.Y. Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells.Int. Immunopharmacol.201640324010.1016/j.intimp.2016.08.014 27576059
    [Google Scholar]
  76. LiJ. XinZ. CaiM. The role of resveratrol in bone marrow‐derived mesenchymal stem cells from patients with osteoporosis.J. Cell. Biochem.201912010166341664210.1002/jcb.28922 31106448
    [Google Scholar]
  77. KimJ.M. LinC. StavreZ. GreenblattM.B. ShimJ.H. Osteoblast-osteoclast communication and bone homeostasis.Cells202099207310.3390/cells9092073 32927921
    [Google Scholar]
  78. RohanizadehR. DengY. VerronE. Therapeutic actions of curcumin in bone disorders.Bonekey Rep.2016579310.1038/bonekey.2016.20 26962450
    [Google Scholar]
  79. TroyE. TilburyM.A. PowerA.M. WallJ.G. Nature-based biomaterials and their application in biomedicine.Polymers (Basel)20211319332110.3390/polym13193321 34641137
    [Google Scholar]
  80. KimB.S. BaezC.E. AtalaA. Biomaterials for tissue engineering.World J. Urol.20001812910.1007/s003450050002 10766037
    [Google Scholar]
  81. JinS. XiaX. HuangJ. Recent advances in PLGA-based biomaterials for bone tissue regeneration.Acta Biomater.2021127567910.1016/j.actbio.2021.03.067 33831569
    [Google Scholar]
  82. XuY. KimC.S. SaylorD.M. KooD. Polymer degradation and drug delivery in PLGA‐based drug-polymer applications: A review of experiments and theories.J. Biomed. Mater. Res. B Appl. Biomater.201710561692171610.1002/jbm.b.33648 27098357
    [Google Scholar]
  83. ChavanY.R. TambeS.M. JainD.D. KhairnarS.V. AminP.D. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery.Ann. Pharm. Fr.202280560361610.1016/j.pharma.2021.11.009 34896382
    [Google Scholar]
  84. SamavediS. PoindexterL.K. Van DykeM. GoldsteinA.S. Synthetic biomaterials for regenerative medicine applications.In: Regener Med Appl Organ Transpl.Elsevier2014819910.1016/B978‑0‑12‑398523‑1.00007‑0
    [Google Scholar]
  85. KırımlıoğluY.G. History, introduction, and properties of PLGA as a drug delivery carrier.In: Micro and Nano Technologies Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery. KesharwaniP. Elsevier202332510.1016/B978‑0‑323‑91215‑0.00001‑7
    [Google Scholar]
  86. GentileP. ChionoV. CarmagnolaI. HattonP. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.Int. J. Mol. Sci.20141533640365910.3390/ijms15033640 24590126
    [Google Scholar]
  87. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier.Polymers (Basel)2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  88. MengZ.X. ZhengW. LiL. ZhengY.F. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/] chitosan nanofibrous scaffold.Mater. Chem. Phys.2011125360661110.1016/j.matchemphys.2010.10.010
    [Google Scholar]
  89. JoseM. ThomasV. JohnsonK. DeanD. NyairoE. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering.Acta Biomater.20095130531510.1016/j.actbio.2008.07.019 18778977
    [Google Scholar]
  90. SordiM.B. da CruzA.C.C. AragonesÁ. CordeiroM.M.R. de Souza MaginiR. PLGA+HA/βTCP scaffold incorporating simvastatin: A promising biomaterial for bone tissue engineering.J. Oral Implantol.20214729310110.1563/aaid‑joi‑D‑19‑00148 32699891
    [Google Scholar]
  91. RasoulianboroujeniM. FahimipourF. ShahP. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications.Mater. Sci. Eng. C20199610511310.1016/j.msec.2018.10.077 30606516
    [Google Scholar]
  92. JoseM.V. ThomasV. DeanD.R. NyairoE. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds.Polymer (Guildf.)200950153778378510.1016/j.polymer.2009.05.035
    [Google Scholar]
  93. JeonY.H. ChoiJ.H. SungJ.K. KimT.K. ChoB.C. ChungH.Y. Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering.J. Craniofac. Surg.20071861249125810.1097/scs.0b013e3181577b55 17993865
    [Google Scholar]
  94. LaoL. WangY. ZhuY. ZhangY. GaoC. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.J. Mater. Sci. Mater. Med.20112281873188410.1007/s10856‑011‑4374‑8 21681656
    [Google Scholar]
  95. LaiY. LiY. CaoH. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.Biomaterials201919720721910.1016/j.biomaterials.2019.01.013 30660996
    [Google Scholar]
  96. FernandesK.R. MagriA.M.P. KidoH.W. Characterization and biological evaluation of the introduction of PLGA into Biosilicate®.J. Biomed. Mater. Res. B Appl. Biomater.201710551063107410.1002/jbm.b.33654 26987304
    [Google Scholar]
  97. KumarA. NirmalP. KumarM. Major phytochemicals: Recent advances in health benefits and extraction method.Molecules202328288710.3390/molecules28020887 36677944
    [Google Scholar]
  98. LuZ. LiP. ChenZ. ZhangL. Co-encapsulation of combinatorial flavonoids in biodegradable polymeric nanoparticles for improved anti-osteoporotic activity in ovariectomized rats.Environ. Technol. Innov.20212410207910.1016/j.eti.2021.102079
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128343852250311040459
Loading
/content/journals/cpd/10.2174/0113816128343852250311040459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test