Skip to content
2000
Volume 31, Issue 32
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective

This review demonstrates the potential role of hydrogen in post-surgical adhesion prevention and calls for further investigation of its molecular pathways, as well as clinical studies to assess its efficacy and safety in a therapeutic setting.

Methods

PubMed and Google Scholar were extensively queried to investigate the potential role of hydrogen in preventing post-surgical adhesions and its underlying mechanisms.

Results

Molecular hydrogen exhibits selective antioxidant, anti-inflammatory, and anti-fibrotic properties, holding potential for the treatment and prevention of various disorders, including acute pancreatitis, respiratory diseases, and ischemia-reperfusion damage conditions, among others. Postoperative adhesion is associated with chronic pain, organ dysfunction, and acute complications, fundamentally rooted in inflammation, oxidative stress, and fibrosis. The surgical injury initiates an inflammatory response characterized by immune cell mobilization and an increase in pro-inflammatory cytokine levels, thereby promoting adhesion formation.

Conclusion

Hydrogen is demonstrated to attenuate the early inflammatory response by down-regulating pro-inflammatory cytokines alongside its anti-oxidative and anti-fibrotic effects. As a potential therapeutic agent for post-surgical adhesions, hydrogen warrants additional investigation to elucidate the exact molecular pathways responsible for its observed efficacy and safety.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128354067250211052237
2025-02-27
2025-10-22
Loading full text...

Full text loading...

References

  1. TianY. ZhangY. WangY. ChenY. FanW. ZhouJ. QiaoJ. WeiY. Hydrogen, a novel therapeutic molecule, regulates oxidative stress, inflammation, and apoptosis.Front. Physiol.20211278950710.3389/fphys.2021.78950734987419
    [Google Scholar]
  2. ZhouZ.Q. ZhongC.H. SuZ.Q. LiX.Y. ChenY. ChenX.B. TangC.L. ZhouL.Q. LiS.Y. Breathing hydrogen-oxygen mixture decreases inspiratory effort in patients with tracheal stenosis.Respiration2019971425110.1159/00049203130227423
    [Google Scholar]
  3. ZhangJ.Y. LiuC. ZhouL. QuK. WangR. TaiM. Lei LeiJ.W. WuQ.F. WangZ. A review of hydrogen as a new medical therapy.Hepatogastroenterology2012591161026103210.5754/hge1188322328284
    [Google Scholar]
  4. DoleM. WilsonF.R. FifeW.P. Hyperbaric hydrogen therapy: A possible treatment for cancer.Science1975190421015215410.1126/science.11663041166304
    [Google Scholar]
  5. OhsawaI. IshikawaM. TakahashiK. WatanabeM. NishimakiK. YamagataK. KatsuraK. KatayamaY. AsohS. OhtaS. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals.Nat. Med.200713668869410.1038/nm157717486089
    [Google Scholar]
  6. LiuZ. ChengS. GuC. PeiH. HongX. Effect of hydrogen-rich saline on postoperative intra-abdominal adhesion bands formation in mice.Med. Sci. Monit.2017235363537310.12659/MSM.90466929127274
    [Google Scholar]
  7. SatoC. KamijoY. YoshimuraK. NagakiT. YamayaT. AsakumaS. AsariY. Effects of hydrogen water on paraquat-induced pulmonary fibrosis in mice.Kitasato Med. J.2015451916
    [Google Scholar]
  8. AkhlaghiS. EbrahimniaM. NiakiD.S. SolhiM. RabbaniS. HaeriA. Recent advances in the preventative strategies for postoperative adhesions using biomaterial-based membranes and micro/nano- drug delivery systems.J. Drug Deliv. Sci. Technol.20238510453910.1016/j.jddst.2023.104539
    [Google Scholar]
  9. TangJ. XiangZ. BernardsM.T. ChenS. Peritoneal adhesions: Occurrence, prevention and experimental models.Acta Biomater.20201168410410.1016/j.actbio.2020.08.03632871282
    [Google Scholar]
  10. TavakkoliM. KhodashahiR. AliakbarianM. RahimiH. AshrafzadehK. FernsG. KhaleghiE. ArjmandM-H. Review of the role of metabolic factors in determining the post-surgical adhesion and its therapeutic implications, with a focus on extracellular matrix and oxidative stress.Curr. Mol. Pharmacol.202317e1876142924663610.2174/011876142924663623091912274537921142
    [Google Scholar]
  11. OkabayashiK. AshrafianH. ZacharakisE. HasegawaH. KitagawaY. AthanasiouT. DarziA. Adhesions after abdominal surgery: A systematic review of the incidence, distribution and severity.Surg. Today201444340542010.1007/s00595‑013‑0591‑823657643
    [Google Scholar]
  12. BrochhausenC. SchmittV.H. PlanckC.N.E. RajabT.K. HollemannD. TapprichC. KrämerB. WallwienerC. HierlemannH. ZehbeR. PlanckH. KirkpatrickC.J. Current strategies and future perspectives for intraperitoneal adhesion prevention.J. Gastrointest. Surg.20121661256127410.1007/s11605‑011‑1819‑922297658
    [Google Scholar]
  13. YangJ. BaiR. ChenB. SuoZ. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics.Adv. Funct. Mater.2020302190169310.1002/adfm.201901693
    [Google Scholar]
  14. YangY. ZhaoX. YuJ. ChenX. ChenX. CuiC. ZhangJ. ZhangQ. ZhangY. WangS. ChengY. H-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion application.ACS Appl. Mater. Interfaces20201230341613416910.1021/acsami.0c0775332631044
    [Google Scholar]
  15. WangY. LiL. MaY. TangY. ZhaoY. LiZ. PuW. HuangB. WenX. CaoX. ChenJ. ChenW. ZhouY. ZhangJ. Multifunctional supramolecular hydrogel for prevention of epidural adhesion after laminectomy.ACS Nano20201478202821910.1021/acsnano.0c0165832520519
    [Google Scholar]
  16. LiaoJ. LiX. FanY. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions.Bioact. Mater.20232638741210.1016/j.bioactmat.2023.02.02636969107
    [Google Scholar]
  17. MorisD. ChakedisJ. Rahnemai-AzarA.A. WilsonA. HennessyM.M. AthanasiouA. BealE.W. ArgyrouC. FelekourasE. PawlikT.M. Postoperative abdominal adhesions: Clinical significance and advances in prevention and management.J. Gastrointest. Surg.201721101713172210.1007/s11605‑017‑3488‑928685387
    [Google Scholar]
  18. BrüggmannD. TchartchianG. WallwienerM. MünstedtK. TinnebergH-R. HackethalA. Intra-abdominal adhesions: Definition, origin, significance in surgical practice, and treatment options.Dtsch. Arztebl. Int.20101074476977521116396
    [Google Scholar]
  19. diZeregaG.S. CampeauJ.D. Peritoneal repair and post-surgical adhesion formation.Hum. Reprod. Update20017654755510.1093/humupd/7.6.54711727863
    [Google Scholar]
  20. BraunK.M. DiamondM.P. The biology of adhesion formation in the peritoneal cavity.Seminars in pediatric surgeryElsevier2014
    [Google Scholar]
  21. IsikA. SoyturkM. SüleymanS. FiratD. PekerK. Yilmazİ. CelebiF. Correlation of bowel wall thickening seen using computerized tomography with colonoscopies: A preliminary study.Surg. Laparosc. Endosc. Percutan. Tech.201727315415710.1097/SLE.000000000000038928291060
    [Google Scholar]
  22. IsikA. GursulC. PekerK. AydınM. FıratD. Yılmazİ. Metalloproteinases and their inhibitors in patients with inguinal hernia.World J. Surg.20174151259126610.1007/s00268‑016‑3858‑628050662
    [Google Scholar]
  23. BolnickA. BolnickJ. DiamondM.P. Postoperative adhesions as a consequence of pelvic surgery.J. Minim. Invasive Gynecol.201522454956310.1016/j.jmig.2014.12.00925510980
    [Google Scholar]
  24. ParkH. BaekS. KangH. LeeD. Biomaterials to prevent post-operative adhesion.Materials (Basel)20201314305610.3390/ma1314305632650529
    [Google Scholar]
  25. WaldronM.G. JudgeC. FarinaL. O’ShaughnessyA. O’HalloranM. Barrier materials for prevention of surgical adhesions: Systematic review.BJS Open202263zrac07510.1093/bjsopen/zrac07535661871
    [Google Scholar]
  26. HuQ. XiaX. KangX. SongP. LiuZ. WangM. GuanW. LiuS. LiuS. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion.Int. J. Biol. Sci.202117129830610.7150/ijbs.5440333390851
    [Google Scholar]
  27. ArjmandM.H. The association between visceral adiposity with systemic inflammation, oxidative stress, and risk of post-surgical adhesion.Arch. Physiol. Biochem.2022128486987410.1080/13813455.2020.173361732141779
    [Google Scholar]
  28. FortinC.N. SaedG.M. DiamondM.P. Predisposing factors to post- operative adhesion development.Hum. Reprod. Update201521453655110.1093/humupd/dmv02125935859
    [Google Scholar]
  29. ImudiaA.N. KumarS. SaedG.M. DiamondM.P. Pathogenesis of intra-abdominal and pelvic adhesion development.Semin Reprod Med.200826428929710.1055/s‑0028‑108238718756406
    [Google Scholar]
  30. FernsG.A. HassanianS.M. ArjmandM.H. Hyperglycaemia and the risk of post-surgical adhesion.Arch. Physiol. Biochem.202212861467147310.1080/13813455.2020.177633032536284
    [Google Scholar]
  31. López-NovoaJ.M. NietoM.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression.EMBO Mol. Med.200916-730331410.1002/emmm.20090004320049734
    [Google Scholar]
  32. TsaiJ.M. ShohamM. FernhoffN.B. GeorgeB.M. MarjonK.D. McCrackenM.N. KaoK.S. SinhaR. VolkmerA.K. MiyanishiM. SeitaJ. RinkevichY. WeissmanI.L. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation.Blood Adv.20193182713272110.1182/bloodadvances.201802402631519647
    [Google Scholar]
  33. AvanA. EnsanB. BathaeiP. NassiriM. KhazaeiM. HassanianS.M. AbdollahiA. GhorbaniH.R. AliakbarianM. FernsG.A. The therapeutic potential of targeting key signaling pathways as a novel approach to ameliorating post-surgical adhesions.Curr. Pharm. Des.202228453592361710.2174/138161282866622042209023835466868
    [Google Scholar]
  34. CheginiN. ZhaoY. KotseosK. MaC. BennettB. DiamondM.P. HolmdahlL. SkinnerK. Peritoneal Healing and Adhesion Multi University Study Group Differential expression of matrix metalloproteinase and tissue inhibitor of MMP in serosal tissue of intraperitoneal organs and adhesions.BJOG200210991041104910.1111/j.1471‑0528.2002.01334.x12269680
    [Google Scholar]
  35. FieldingC.A. JonesG.W. McLoughlinR.M. McLeodL. HammondV.J. UcedaJ. WilliamsA.S. LambieM. FosterT.L. LiaoC.T. RiceC.M. GreenhillC.J. ColmontC.S. HamsE. ColesB. Kift-MorganA. NewtonZ. CraigK.J. WilliamsJ.D. WilliamsG.T. DaviesS.J. HumphreysI.R. O’DonnellV.B. TaylorP.R. JenkinsB.J. TopleyN. JonesS.A. Interleukin-6 signaling drives fibrosis in unresolved inflammation.Immunity2014401405010.1016/j.immuni.2013.10.02224412616
    [Google Scholar]
  36. ChungJ.H. CosenzaM.J. RahbarR. MetsonR.B. Mitomycin C for the prevention of adhesion formation after endoscopic sinus surgery: A randomized, controlled study.Otolaryngol. Head Neck Surg.2002126546847410.1067/mhn.2002.12470512075219
    [Google Scholar]
  37. CannataA. PetrellaD. RussoC.F. BruschiG. FrattoP. GambacortaM. MartinelliL. Postsurgical intrapericardial adhesions: Mechanisms of formation and prevention.Ann. Thorac. Surg.20139551818182610.1016/j.athoracsur.2012.11.02023566646
    [Google Scholar]
  38. FlandersK. SatoM. OoshimaA. RussoA. RobertsA. Smad-3 as a mediator of the fibrotic response.Int. J. Exp. Pathol.2004851A1310.1111/j.0959‑9673.2004.0369n.x
    [Google Scholar]
  39. CheginiN. KotseosK. MaC. WilliamsR.S. DiamondM.P. HolmdahlL. SkinnerK. Peritoneal Healing and Adhesion MultiUniversity Study Group Differential expression of integrin αv and β3 in serosal tissue of human intraperitoneal organs and adhesion.Fertil. Steril.200175479179610.1016/S0015‑0282(00)01795‑711287036
    [Google Scholar]
  40. KouL. JiangX. XiaoS. ZhaoY.Z. YaoQ. ChenR. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions.J. Control. Release2020318253710.1016/j.jconrel.2019.12.00731830539
    [Google Scholar]
  41. HuangC.S. KawamuraT. ToyodaY. NakaoA. Recent advances in hydrogen research as a therapeutic medical gas.Free Radic. Res.201044997198210.3109/10715762.2010.50032820815764
    [Google Scholar]
  42. AhmadA. BaigA.A. HussainM. SaeedM.U. BilalM. AhmedN. ChopraH. HassanM. RachamallaM. PutnalaS.K. KhaliqM. TahirZ. KamalM.A. Narrative on hydrogen therapy and its clinical applications: Safety and efficacy.Curr. Pharm. Des.202228312519253710.2174/138161282866622072810420035909288
    [Google Scholar]
  43. CameronE. PaulingL. LeibovitzB. Ascorbic acid and cancer: A review.Cancer Res.1979393663681371790
    [Google Scholar]
  44. NakaoA. ToyodaY. SharmaP. EvansM. GuthrieN. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study.J. Clin. Biochem. Nutr.201046214014910.3164/jcbn.09‑10020216947
    [Google Scholar]
  45. Kucharska-PieturaK. MortimerA. Can antipsychotics improve social cognition in patients with schizophrenia?CNS Drugs201327533534310.1007/s40263‑013‑0047‑023533009
    [Google Scholar]
  46. MuramatsuY. ItoM. OshimaT. KojimaS. OhnoK. Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats.Pediatr. Pulmonol.201651992893510.1002/ppul.2338626845501
    [Google Scholar]
  47. QiL.S. YaoL. LiuW. DuanW.X. WangB. ZhangL. ZhangZ.M. Sirtuin type 1 mediates the retinal protective effect of hydrogen-rich saline against light-induced damage in rats.Invest. Ophthalmol. Vis. Sci.201556138268827910.1167/iovs.15‑1703426720481
    [Google Scholar]
  48. OkamotoA. KohamaK. Aoyama-IshikawaM. YamashitaH. FujisakiN. YamadaT. YumotoT. NosakaN. NaitoH. TsukaharaK. IidaA. SatoK. KotaniJ. NakaoA. Intraperitoneally administered, hydrogen-rich physiologic solution protects against postoperative ileus and is associated with reduced nitric oxide production.Surgery2016160362363110.1016/j.surg.2016.05.02627425040
    [Google Scholar]
  49. NishimakiK. AsadaT. OhsawaI. NakajimaE. IkejimaC. YokotaT. KamimuraN. OhtaS. Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment.Curr. Alzheimer Res.201815548249210.2174/156720501466617110614501729110615
    [Google Scholar]
  50. OhtaS. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine.Pharmacol. Ther.2014144111110.1016/j.pharmthera.2014.04.00624769081
    [Google Scholar]
  51. XiaY. ZhuY.Z. XuC. Hydrogen sulfide prevents postoperative adhesion in a rat uterine horn model.Taiwan. J. Obstet. Gynecol.2017561465010.1016/j.tjog.2016.09.00428254225
    [Google Scholar]
  52. ZhongG. ChenF. ChengY. TangC. DuJ. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase.J. Hypertens.200321101879188510.1097/00004872‑200310000‑0001514508194
    [Google Scholar]
  53. AliM.Y. PingC.Y. MokY-Y.P. LingL. WhitemanM. BhatiaM. MooreP.K. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide?Br. J. Pharmacol.2006149662563410.1038/sj.bjp.070690617016507
    [Google Scholar]
  54. QuK. ChenC.P.L.H. HalliwellB. MooreP.K. WongP.T.H. Hydrogen sulfide is a mediator of cerebral ischemic damage.Stroke200637388989310.1161/01.STR.0000204184.34946.4116439695
    [Google Scholar]
  55. ZhaoW. ZhangJ. LuY. WangR. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener.EMBO J.200120216008601610.1093/emboj/20.21.600811689441
    [Google Scholar]
  56. YangG. SunX. WangR. Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3.FASEB J.200418141782178410.1096/fj.04‑2279fje15371330
    [Google Scholar]
  57. Lo FaroM.L. FoxB. WhatmoreJ.L. WinyardP.G. WhitemanM. Hydrogen sulfide and nitric oxide interactions in inflammation.Nitric Oxide201441384710.1016/j.niox.2014.05.01424929214
    [Google Scholar]
  58. WhitemanM. WinyardP.G. Hydrogen sulfide and inflammation: The good, the bad, the ugly and the promising.Expert Rev. Clin. Pharmacol.201141133210.1586/ecp.10.13422115346
    [Google Scholar]
  59. SzabóC. Hydrogen sulphide and its therapeutic potential.Nat. Rev. Drug Discov.200761191793510.1038/nrd242517948022
    [Google Scholar]
  60. ZhangS. PanC. ZhouF. YuanZ. WangH. CuiW. ZhangG. Hydrogen sulfide as a potential therapeutic target in fibrosis.Oxid. Med. Cell. Longev.20152015111210.1155/2015/59340726078809
    [Google Scholar]
  61. CuevasantaE. MöllerM.N. AlvarezB. Biological chemistry of hydrogen sulfide and persulfides.Arch. Biochem. Biophys.201761792510.1016/j.abb.2016.09.01827697462
    [Google Scholar]
  62. ShenQ. QinZ. LuA. Preventive effect of exogenous hydrogen sulfide on hepatic fibrosis in rats.Zhong Nan Da Xue Xue Bao Yi Xue Ban201237991191510.3969/j.issn.1672‑7347.2012.09.00923000765
    [Google Scholar]
  63. FiorucciS. AntonelliE. MencarelliA. OrlandiS. RengaB. RizzoG. DistruttiE. ShahV. MorelliA. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis.Hepatology200542353954810.1002/hep.2081716108046
    [Google Scholar]
  64. TanG. PanS. LiJ. DongX. KangK. ZhaoM. JiangX. KanwarJ.R. QiaoH. JiangH. SunX. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats.PLoS One2011610e2594310.1371/journal.pone.002594322022478
    [Google Scholar]
  65. ManiS. CaoW. WuL. WangR. Hydrogen sulfide and the liver.Nitric Oxide201441627110.1016/j.niox.2014.02.00624582857
    [Google Scholar]
  66. ŁowickaE. BełtowskiJ. Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists.Pharmacol Rep.200759142417377202
    [Google Scholar]
  67. YalamanchiliC. SmithM.D. Acute hydrogen sulfide toxicity due to sewer gas exposure.Am J Emerg Med.2008264518.e5518.e710.1016/j.ajem.2007.08.02518410836
    [Google Scholar]
  68. ReiffensteinR.J. HulbertW.C. RothS.H. Toxicology of hydrogen sulfide.Annu. Rev. Pharmacol. Toxicol.199232110913410.1146/annurev.pa.32.040192.0005451605565
    [Google Scholar]
  69. WangY. ZhaoX. JinH. WeiH. LiW. BuD. TangX. RenY. TangC. DuJ. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice.Arterioscler. Thromb. Vasc. Biol.200929217317910.1161/ATVBAHA.108.17933318988885
    [Google Scholar]
  70. OhG.S. PaeH.O. LeeB.S. KimB.N. KimJ.M. KimH.R. JeonS.B. JeonW.K. ChaeH.J. ChungH.T. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide.Free Radic. Biol. Med.200641110611910.1016/j.freeradbiomed.2006.03.02116781459
    [Google Scholar]
  71. WangF. YuG. LiuS.Y. LiJ.B. WangJ.F. BoL.L. QianL.R. SunX.J. DengX.M. Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats.J. Surg. Res.20111672e339e34410.1016/j.jss.2010.11.00521392793
    [Google Scholar]
  72. LeferD.J. A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide.Proc. Natl. Acad. Sci. USA200710446179071790810.1073/pnas.070901010417991773
    [Google Scholar]
  73. AdachW. BłaszczykM. OlasB. Carbon monoxide and its donors - Chemical and biological properties.Chem. Biol. Interact.202031810897310.1016/j.cbi.2020.10897332035862
    [Google Scholar]
  74. KramkowskiK. LeszczynskaA. MogielnickiA. ChlopickiS. FedorowiczA. GrochalE. MannB. BrzoskaT. UranoT. MotterliniR. BuczkoW. Antithrombotic properties of water-soluble carbon monoxide-releasing molecules.Arterioscler. Thromb. Vasc. Biol.20123292149215710.1161/ATVBAHA.112.25398922772756
    [Google Scholar]
  75. Deni̇zR. BaykuşY. UzunerM.B. AdaliY. The effects of ozone therapy on postoperative adhesions and ovarian functions: An experimental study.J Surg Med202041667010.28982/josam.681999
    [Google Scholar]
  76. KhanS.A. SmithN.L. WilsonA.L. GandhiJ. VatsiaS. Ozone therapy: An overview of pharmacodynamics, current research, and clinical utility.Med. Gas Res.20177321221910.4103/2045‑9912.21575229152215
    [Google Scholar]
  77. AnzaliB.C. GoliR. TorabzadehA. KianiA. RasouliM. BalanejiS.M. Healing refractory diabetic foot ulcers (DFUs) by ozone therapy and silver dressing: A case report.Int. J. Surg. Case Rep.202310510797010.1016/j.ijscr.2023.10797036924601
    [Google Scholar]
  78. ElvisA.M. EktaJ.S. Ozone therapy: A clinical review.J. Nat. Sci. Biol. Med.201121667010.4103/0976‑9668.8231922470237
    [Google Scholar]
  79. IzadiM. KheirjouR. MohammadpourR. AliyoldashiM.H. MoghadamS.J. KhorvashF. JafariN.J. ShirvaniS. khaliliN. Efficacy of comprehensive ozone therapy in diabetic foot ulcer healing.Diabetes Metab. Syndr.201913182282510.1016/j.dsx.2018.11.06030641815
    [Google Scholar]
  80. FarajiN. GoliR. ChoobianzaliB. BahramiS. SadeghianA. SepehrniaN. GhalandariM. Ozone therapy as an alternative method for the treatment of diabetic foot ulcer: A case report.J. Med. Case Rep.202115123410.1186/s13256‑021‑02829‑y33980300
    [Google Scholar]
  81. MerhiZ. GargB. Moseley-LaRueR. MoseleyA. SmithA. ZhangJ. Ozone therapy: A potential therapeutic adjunct for improving female reproductive health.Med. Gas Res.20199210110510.4103/2045‑9912.26065231249259
    [Google Scholar]
  82. ChenM. ZhangJ. ChenY. QiuY. LuoZ. ZhaoS. DuL. TianD. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses.Sci. Rep.201881800410.1038/s41598‑018‑26335‑229789753
    [Google Scholar]
  83. WangX. YuP. YongYang LiuX. JiangJ. LiuD. XueG. Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation.Burns201541237938510.1016/j.burns.2014.07.01225440852
    [Google Scholar]
  84. LinC.P. ChuangW.C. LuF.J. ChenC.Y. Anti-oxidant and anti-inflammatory effects of hydrogen-rich water alleviate ethanol-induced fatty liver in mice.World J. Gastroenterol.201723274920493410.3748/wjg.v23.i27.492028785146
    [Google Scholar]
  85. TanY.C. XieF. ZhangH.L. ZhuY.L. ChenK. TanH.M. HuB.S. YangJ.M. TanJ.W. Hydrogen-rich saline attenuates postoperative liver failure after major hepatectomy in rats.Clin. Res. Hepatol. Gastroenterol.201438333734510.1016/j.clinre.2013.11.00724502885
    [Google Scholar]
  86. KaiboriM. KosakaH. Effect of hydrogen gas inhalation on patient QOL after hepatectomy: protocol for a randomized controlled trial.Trials202122172710.1186/s13063‑021‑05697‑534674744
    [Google Scholar]
  87. WongP.C. AuT.Y. A potential clinical application of hydrogen-rich saline in postoperative care.J. Pediatr. Surg.202358359910.1016/j.jpedsurg.2022.09.04136307299
    [Google Scholar]
  88. HuY. FengX. ChenJ. WuY. ShenL. Hydrogen-rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO-1 signaling pathway after traumatic brain injury.Exp. Ther. Med.202123212610.3892/etm.2021.1104934970349
    [Google Scholar]
  89. JiX. TianY. XieK. LiuW. QuY. FeiZ. Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress.J. Surg. Res.20121781e9e1610.1016/j.jss.2011.12.03822475349
    [Google Scholar]
  90. LiT. DengS. LeiW. LiZ. WuW. ZhangT. DongZ. Hydrogen water alleviates paraquat-induced lung fibroblast injury in vitro by enhancing Nrf2 expression.Nan Fang Yi Ke Da Xue Xue Bao202040223323910.12122/j.issn.1673‑4254.2020.02.1532376537
    [Google Scholar]
  91. IshibashiT. Molecular hydrogen: New antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases.Curr. Pharm. Des.201319356375638110.2174/1381612811319999050723859555
    [Google Scholar]
  92. LiJ. HuangG. WangJ. WangS. YuY. Hydrogen regulates ulcerative colitis by affecting the intestinal redox environment.J. Inflamm. Res.20241793394510.2147/JIR.S44515238370464
    [Google Scholar]
  93. PeiM. LiP. GuoX. WenM. GongY. WangP. FanZ. WangL. WangX. RenW. Sustained release of hydrogen and magnesium ions mediated by a foamed gelatin-methacryloyl hydrogel for the repair of bone defects in diabetes.ACS Biomater. Sci. Eng.20241074411442410.1021/acsbiomaterials.4c0016238913499
    [Google Scholar]
  94. GaoL. JiangD. GengJ. DongR. DaiH. Hydrogen inhalation attenuated bleomycin-induced pulmonary fibrosis by inhibiting transforming growth factor-β1 and relevant oxidative stress and epithelial-to-mesenchymal transition.Exp. Physiol.2019104121942195110.1113/EP08802831535412
    [Google Scholar]
  95. AokageT. SeyaM. HirayamaT. NojimaT. IketaniM. IshikawaM. TerasakiY. TaniguchiA. MiyaharaN. NakaoA. OhsawaI. NaitoH. The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury.BMC Pulm. Med.202121133910.1186/s12890‑021‑01712‑234719405
    [Google Scholar]
  96. LiuL. ShiQ. LiuX. LiY. LiX. Attenuation of myocardial fibrosis using molecular hydrogen by inhibiting the TGF-β signaling pathway in spontaneous hypertensive rats.Am. J. Hypertens.202235215616310.1093/ajh/hpab15934618887
    [Google Scholar]
  97. KoyamaY. TauraK. HatanoE. TanabeK. YamamotoG. NakamuraK. YamanakaK. KitamuraK. NaritaM. NagataH. YanagidaA. IidaT. IwaisakoK. FujinawaH. UemotoS. Effects of oral intake of hydrogen water on liver fibrogenesis in mice.Hepatol. Res.201444666367710.1111/hepr.1216523682614
    [Google Scholar]
  98. QianL. LiuJ. MaW. LiuY. WangX. LiuD. Hydrogen-rich water ameliorates murine chronic graft "versus" host disease through antioxidation.Oxid. Med. Cell. Longev.202120211116592810.1155/2021/116592834691352
    [Google Scholar]
  99. SiY. LiuL. ChengJ. ZhaoT. ZhouQ. YuJ. ChenW. Oral hydrogen-rich water alleviates oxalate-induced kidney injury by suppressing oxidative stress, inflammation, and fibrosis.Front Med (Lausanne)2021871353610.3389/fmed.2021.71353634490303
    [Google Scholar]
  100. ZouR. NieC. PanS. WangB. HongX. XiS. BaiJ. YuM. LiuJ. YangW. Co-administration of hydrogen and metformin exerts cardioprotective effects by inhibiting pyroptosis and fibrosis in diabetic cardiomyopathy.Free Radic. Biol. Med.2022183355010.1016/j.freeradbiomed.2022.03.01035304269
    [Google Scholar]
  101. AtiakshinD. KostinA. AlekhnovichA. VolodkinA. IgnatyukM. KlabukovI. BaranovskiiD. BuchwalowI. TiemannM. ArtemievaM. MedvedevaN. LeBaronT.W. NodaM. MedvedevO. The role of mast cells in the remodeling effects of molecular hydrogen on the lung local tissue microenvironment under simulated pulmonary hypertension.Int. J. Mol. Sci.202425201101010.3390/ijms25201101039456794
    [Google Scholar]
  102. CaiJ. KangZ. LiuW.W. LuoX. QiangS. ZhangJ.H. OhtaS. SunX. XuW. TaoH. LiR. Hydrogen therapy reduces apoptosis in neonatal hypoxia–ischemia rat model.Neurosci. Lett.2008441216717210.1016/j.neulet.2008.05.07718603371
    [Google Scholar]
  103. ChenH. SunY.P. HuP.F. LiuW.W. XiangH.G. LiY. YanR.L. SuN. RuanC.P. SunX.J. WangQ. The effects of hydrogen-rich saline on the contractile and structural changes of intestine induced by ischemia-reperfusion in rats.J. Surg. Res.2011167231632210.1016/j.jss.2009.07.04519932899
    [Google Scholar]
  104. HongY. ShaoA. WangJ. ChenS. WuH. McBrideD.W. WuQ. SunX. ZhangJ. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: Possible role of the Akt/GSK3β signaling pathway.PLoS One201494e9621210.1371/journal.pone.009621224763696
    [Google Scholar]
  105. LiJ. HongZ. LiuH. ZhouJ. CuiL. YuanS. ChuX. YuP. Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and anti-inflammation.Front. Pharmacol.2016710610.3389/fphar.2016.0010627148060
    [Google Scholar]
  106. ChoiK.S. KimH.J. DoS.H. HwangS.J. YiH.J. Neuroprotective effects of hydrogen inhalation in an experimental rat intracerebral hemorrhage model.Brain Res. Bull.201814212212810.1016/j.brainresbull.2018.07.00630016724
    [Google Scholar]
  107. YaoL. ChenH. WuQ. XieK. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R-injury via PINK-mediated autophagy.Int. J. Mol. Med.20194431048106210.3892/ijmm.2019.426431524220
    [Google Scholar]
  108. LuH. WangW. KangX. LinZ. PanJ. ChengS. ZhangJ. Hydrogen (H2) alleviates osteoarthritis by inhibiting apoptosis and inflammation via the JNK signaling pathway.J. Inflamm. Res.2021141387140210.2147/JIR.S29762233880054
    [Google Scholar]
  109. ChenS. YuY. XieS. LiangD. ShiW. ChenS. LiG. TangW. LiuC. HeQ. Local H2 release remodels senescence microenvironment for improved repair of injured bone.Nat. Commun.2023141778310.1038/s41467‑023‑43618‑z38012166
    [Google Scholar]
  110. MengJ. YuP. TongJ. SunW. JiangH. WangY. XueK. XieF. QianH. LiuN. ZhaoJ. BaoN. Hydrogen treatment reduces tendon adhesion and inflammatory response.J. Cell. Biochem.201912021610161910.1002/jcb.2744130367509
    [Google Scholar]
  111. ZhuZ. HanW. DingH. KangZ. LiuQ. Effect of hydrogen molecule on the formation of pelvic and abdominal adhesions in dogs and its mechanism.J. Chin. Physician202012529534
    [Google Scholar]
  112. GongC. LiB. WangY. WangP. XieQ. LiuE. FanJ. Novel use of magnesium hydride to prevent peritoneal adhesions by regulating inflammation and oxidative stress.Advanced Therapeutics202581240031910.1002/adtp.202400319
    [Google Scholar]
  113. MeiR. SunJ. CaoS. ShiM. SongZ. HuaF. ZhouG. ZhangM. LiuJ. Hydrogen-releasing magnesium hydrogel mitigates post laminectomy epidural fibrosis through inhibition of neutrophil extracellular traps.Acta Biomater.202418842043110.1016/j.actbio.2024.09.00639260811
    [Google Scholar]
  114. ZhangE. YangJ. WangK. SongB. ZhuH. HanX. ShiY. YangC. ZengZ. CaoZ. Biodegradable zwitterionic cream gel for effective prevention of postoperative adhesion.Adv. Funct. Mater.20213110200943110.1002/adfm.20200943133708034
    [Google Scholar]
  115. ZhaoX. YangJ. LiuY. GaoJ. WangK. LiuW. An injectable and antifouling self-fused supramolecular hydrogel for preventing postoperative and recurrent adhesions.Chem. Eng. J.202140412709610.1016/j.cej.2020.127096
    [Google Scholar]
  116. YuJ. WangK. FanC. ZhaoX. GaoJ. JingW. ZhangX. LiJ. LiY. YangJ. LiuW. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion.Adv. Mater.20213316200839510.1002/adma.20200839533734513
    [Google Scholar]
  117. WeiX. CuiC. FanC. WuT. LiY. ZhangX. WangK. PangY. YaoP. YangJ. Injectable hydrogel based on dodecyl- modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy.Int. J. Biol. Macromol.202219940141210.1016/j.ijbiomac.2021.12.19334999041
    [Google Scholar]
  118. WangK. ChenD. WangZ. YangJ. LiuW. An injectable and antifouling supramolecular polymer hydrogel with microenvironment- regulatory function to prevent peritendinous adhesion and promote tendon repair.Macromol. Biosci.20232310230014210.1002/mabi.20230014237317041
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128354067250211052237
Loading
/content/journals/cpd/10.2174/0113816128354067250211052237
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): fibrosis; hydrogen; inflammation; oxidative stress; peritoneal; Post-surgical adhesion; tendon
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test