Skip to content
2000
Volume 31, Issue 21
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers. These NPs can swell in response to large amounts of solvent, but their structural makeup prevents them from dissolving. Furthermore, in response to (i) physical stimuli like temperatures, ion strength, and magnetized or electrical fields; (ii) chemical stimuli like the pH level, molecules, or ions; (iii) biological stimuli like the enzymatic substrate or affinity ligand, they transform into a hard particle (collapsed form) from a polymer solution (swell form). Over the past decade, there has been a major advancement in the creation of “smart” NGs in applications related to therapeutics and diagnosis, involving nucleic acid and intracellular drug delivery, photodynamic/photothermal treatment, biological imaging, and its detection. The nanogels reviewed in this article rely only on temperatures, pH, light, magnetic fields, and combinations of those variables. Developing a targeted delivery vehicle will greatly benefit from the presented information, especially when used for Core-shell multi-sensitive photo-sensitive nanogels.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128353985241231111149
2025-01-29
2025-08-14
Loading full text...

Full text loading...

References

  1. QureshiM.A. KhatoonF. Different types of smart nanogel for targeted delivery.J. Sci. Adv. Mater. Devices20194220121210.3389/fbioe.2023.117407537449088
    [Google Scholar]
  2. El-HusseinyH.M. MadyE.A. El-DakrouryW.A. DoghishA.S. TanakaR. Stimuli-responsive hydrogels: Smart state of-the-art platforms for cardiac tissue engineering.Front. Bioeng. Biotechnol.202311117407510.3389/fbioe.2023.117407537449088
    [Google Scholar]
  3. ChakrabortyA. PacelliS. AlexanderS. HuayamaresS. RosenkransZ. VergelF.E. WuY. ChakravortyA. PaulA. Nanoparticle-reinforced tough hydrogel as a versatile platform for pharmaceutical drug delivery: Preparation and in vitro Characterization.Mol. Pharm.202320176777410.1021/acs.molpharmaceut.2c0056436322617
    [Google Scholar]
  4. RajarK. KarakusB. KocK. AlverogluE. One pot synthesis and characterization of Fe3O4 nanorod-PNIPA nanogel composite for protein adsorption.Mater. Sci. Eng. C201668596410.1016/j.msec.2016.05.09527523996
    [Google Scholar]
  5. SoniG. YadavK.S. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art.Saudi Pharm. J.201624213313910.1016/j.jsps.2014.04.00127013905
    [Google Scholar]
  6. Abd El-RehimH.A. HegazyE.S.A. HamedA.A. SwilemA.E. Controlling the size and swellability of stimuli-responsive polyvinylpyrrolidone–poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization.Eur. Polym. J.201349360161210.1016/j.eurpolymj.2012.12.002
    [Google Scholar]
  7. PremanN.K. JainS. JohnsonR.P. “Smart” polymer nanogels as pharmaceutical carriers: A versatile platform for programmed delivery and diagnostics.ACS Omega2021685075509010.1021/acsomega.0c0527633681548
    [Google Scholar]
  8. AltuntaşE. ÖzkanB. GüngörS. ÖzsoyY. Biopolymer-based nanogel approach in drug delivery: Basic concept and current developments.Pharmaceutics2023156164410.3390/pharmaceutics1506164437376092
    [Google Scholar]
  9. KumarN. SinghS. SharmaP. KumarB. KumarA. Single-, Dual-, and multi-stimuli-responsive nanogels for biomedical applications.Gels20241016110.3390/gels10010061
    [Google Scholar]
  10. SoniK.S. DesaleS.S. BronichT.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation.J. Control. Release201624010912610.1016/j.jconrel.2015.11.00926571000
    [Google Scholar]
  11. ZhuL. TorchilinV.P. Stimulus-responsive nanopreparations for tumor targeting.Integr. Biol.2013519610710.1039/c2ib20135f22869005
    [Google Scholar]
  12. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules2717543636080203
    [Google Scholar]
  13. LeeW. Theranostics based on liposome: Looking back and forward.Nucl. Med. Mol. Imaging201953424224610.1007/s13139‑019‑00603‑z
    [Google Scholar]
  14. WaheedI. AliA. TabassumH. KhatoonN. LaiW.F. ZhouX. Lipid-based nanoparticles as drug delivery carriers for cancer therapy.Front. Oncol.202414129609110.3389/fonc.2024.129609138660132
    [Google Scholar]
  15. KowalczukA. TrzcinskaR. TrzebickaB. MüllerA.H.E. DworakA. TsvetanovC.B. Loading of polymer nanocarriers: Factors, mechanisms and applications.Prog. Polym. Sci.2014391438610.1016/j.progpolymsci.2013.10.004
    [Google Scholar]
  16. PérezE. MartínezA. TeijónC. TeijónJ.M. BlancoM.D. Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery.Int. J. Pharm.20144701-210711910.1016/j.ijpharm.2014.05.00224813784
    [Google Scholar]
  17. HajebiS. RabieeN. BagherzadehM. AhmadiS. RabieeM. Roghani-MamaqaniH. TahririM. TayebiL. HamblinM.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems.Acta Biomater.20199211810.1016/j.actbio.2019.05.01831096042
    [Google Scholar]
  18. BhaladhareS. BhattacharjeeS. Chemical, physical, and biological stimuli-responsive nanogels for biomedical applications (mechanisms, concepts, and advancements): A review.Int. J. Biol. Macromol.202322653555310.1016/j.ijbiomac.2022.12.07636521697
    [Google Scholar]
  19. ZhangH. Controlled/“living” radical precipitation polymerization: A versatile polymerization technique for advanced functional polymers.Eur. Polym. J.201349357960010.1016/j.eurpolymj.2012.12.016
    [Google Scholar]
  20. SarikaP.R. Anil KumarP.R. RajD.K. JamesN.R. Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: Synthesis and characterization.Carbohydr. Polym.201511911812510.1016/j.carbpol.2014.11.03725563951
    [Google Scholar]
  21. GrazonC. RiegerJ. SansonN. CharleuxB. Study of poly(N,N-diethylacrylamide) nanogel formation by aqueous dispersion polymerization of N,N-diethylacrylamide in the presence of poly(ethylene oxide)-b-poly(N,N-dimethylacrylamide) amphiphilic macromolecular RAFT agents.Soft Matter2011773482349010.1039/c0sm01181a
    [Google Scholar]
  22. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers 20221412251010.3390/polym1412251035746086
    [Google Scholar]
  23. CuiR. IcklerM. MarkovinaA. KanwalS. VogelN. KlingerD. Amphiphilic nanogels as versatile stabilizers for pickering emulsions.ACS Nano20241837254992551110.1021/acsnano.4c0514339228057
    [Google Scholar]
  24. SedighiM. ShresthaN. MahmoudiZ. KhademiZ. GhasempourA. DehghanH. TalebiS.F. ToolabiM. PréatV. ChenB. GuoX. ShahbaziM.A. Multifunctional self- assembled peptide hydrogels for biomedical applications.Polymers 2023155116010.3390/polym1505116036904404
    [Google Scholar]
  25. SawadaS. YukawaH. TakedaS. SasakiY. AkiyoshiK. Self- assembled nanogel of cholesterol-bearing xyloglucan as a drug delivery nanocarrier.J. Biomater. Sci. Polym. Ed.20172810-121183119810.1080/09205063.2017.132082728423990
    [Google Scholar]
  26. JamardM. HoareT. SheardownH. Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery.Drug Deliv. Transl. Res.20166664865910.1007/s13346‑016‑0337‑427807769
    [Google Scholar]
  27. RaghupathiK. EronS.J. AnsonF. HardyJ.A. ThayumanavanS. Utilizing inverse emulsion polymerization to generate responsive nanogels for cytosolic protein delivery.Mol. Pharm.201714124515452410.1021/acs.molpharmaceut.7b0064329053277
    [Google Scholar]
  28. OhJ.K. SiegwartD.J. LeeH. SherwoodG. PeteanuL. HollingerJ.O. KataokaK. MatyjaszewskiK. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation.J. Am. Chem. Soc.2007129185939594510.1021/ja069150l17439215
    [Google Scholar]
  29. FleigeE. QuadirM.A. HaagR. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications.Adv. Drug Deliv. Rev.201264986688410.1016/j.addr.2012.01.02022349241
    [Google Scholar]
  30. AoyamaK. NakakiT. Glutathione in cellular redox homeostasis: Association with the excitatory amino acid carrier 1 (EAAC1).Molecules20152058742875810.3390/molecules20058742
    [Google Scholar]
  31. Al-ShaeliM. BenkhayaS. Al-JubooriR.A. KoyuncuI. VatanpourV. pH-responsive membranes: Mechanisms, fabrications, and applications.Sci. Total Environ.202494617386510.1016/j.scitotenv.2024.17386538880142
    [Google Scholar]
  32. SinghJ. NayakP. pH-responsive polymers for drug delivery: Trends and opportunities.J. Polym. Sci.202361222828285010.1002/pol.20230403
    [Google Scholar]
  33. DingL. JiangY. ZhangJ. KlokH.A. ZhongZ. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: Synthesis and targeted intracellular protein delivery to CD44 positive cancer cells.Biomacromolecules201819255556210.1021/acs.biomac.7b0166429284258
    [Google Scholar]
  34. NirmalG.R. LiaoC.C. LinZ.C. AlshetailiA. HwangE. YangS.C. FangJ.Y. Topically applied pH-responsive nanogels for alkyl radical-based therapy against psoriasiform hyperplasia.Drug Deliv.2023301224516910.1080/10717544.2023.224516937585684
    [Google Scholar]
  35. YangG. FuS. YaoW. WangX. ZhaQ. TangR. Hyaluronic acid nanogels prepared via ortho ester linkages show pH-triggered behavior, enhanced penetration and antitumor efficacy in 3-D tumor spheroids.J. Colloid Interface Sci.2017504253810.1016/j.jcis.2017.05.03328527297
    [Google Scholar]
  36. LiY. BuiQ.N. DuyL.T.M. YangH.Y. LeeD.S. One-step preparation of pH-responsive polymeric nanogels as intelligent drug delivery systems for tumor therapy.Biomacromolecules20181962062207010.1021/acs.biomac.8b0019529625005
    [Google Scholar]
  37. AltinbasakI. KocakS. SanyalR. SanyalA. Redox-responsive nanogels for drug-delivery: Thiol–maleimide and thiol–disulfide exchange chemistry as orthogonal tools for fabrication and degradation.Polym. Chem.202314343897390510.1039/D3PY00210A
    [Google Scholar]
  38. ElkassihS.A. KosP. XiongH. SiegwartD.J. Degradable redox-responsive disulfide-based nanogel drug carriers via dithiol oxidation polymerization.Biomater. Sci.20197260761710.1039/C8BM01120F30462102
    [Google Scholar]
  39. CalubaquibE.L. SoltantabarP. WangH. ShinH. FloresA. BiewerM.C. StefanM.C. Self-assembly behavior of oligo(ethylene glycol) substituted polycaprolactone homopolymers.Polym. Chem.202112243544355010.1039/D1PY00483B
    [Google Scholar]
  40. ZhangF. GongS. WuJ. LiH. OupickyD. SunM. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy.Biomacromolecules20171861793180210.1021/acs.biomac.7b0020828445650
    [Google Scholar]
  41. LeeP.Y. Tuan-MuH.Y. HsiaoL.W. HuJ.J. JanJ.S. Nanogels comprising reduction-cleavable polymers for glutathione-induced intracellular curcumin delivery.J. Polym. Res.20172456610.1007/s10965‑017‑1207‑6
    [Google Scholar]
  42. BergueiroJ. GlitscherE.A. CalderónM. A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy.Biomaterials Advances202213721284210.1016/j.bioadv.2022.21284235929271
    [Google Scholar]
  43. Vicario-de-la-TorreM. ForcadaJ. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy.Gels2017321610.3390/gels302001630920515
    [Google Scholar]
  44. KajornpraiT. SeejuntuekA. SuppakarnN. PrayoonpokarachS. TrongsatitkulT. Synthesis of thermoresponsive PNIPAm nanogel adsorbent by microwave-assisted polymerization for wastewater treatment application.Mater. Today Proc.202310.1016/j.matpr.2023.05.445
    [Google Scholar]
  45. RamosJ. ForcadaJ. Hidalgo-AlvarezR. Cationic polymer nanoparticles and nanogels: From synthesis to biotechnological applications.Chem. Rev.2014114136742810.1021/cr300264324003911
    [Google Scholar]
  46. MarsiliL. Dal BoM. EiseleG. DonatiI. BertiF. ToffoliG. Characterization of thermoresponsive Poly-N-Vinylcaprolactam polymers for biological applications.Polymers 20211316263910.3390/polym1316263934451180
    [Google Scholar]
  47. KaszaG. StumphauserT. BisztránM. SzarkaG. HegedüsI. NagyE. IvánB. Thermoresponsive poly(N,N-diethylacrylamide-co-glycidyl methacrylate) copolymers and its catalytically active α-chymotrypsin bioconjugate with enhanced enzyme stability.Polymers202113698710.3390/polym13060987
    [Google Scholar]
  48. YuanY. RahejaK. MilbrandtN.B. BeilharzS. TeneS. OshabaheebwaS. GurkanU.A. SamiaA.C.S. KarayilanM. Thermoresponsive polymers with LCST transition: Synthesis, characterization, and their impact on biomedical frontiers.RSC Applied Polymers20231215818910.1039/D3LP00114H
    [Google Scholar]
  49. ZavgorodnyaO. Carmona-MoranC.A. KozlovskayaV. LiuF. WickT.M. KharlampievaE. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery.J. Colloid Interface Sci.201750658960210.1016/j.jcis.2017.07.08428759859
    [Google Scholar]
  50. DeshpandeS. SharmaS. KoulV. SinghN. Core–shell nanoparticles as an efficient, sustained, and triggered drug-delivery system.ACS Omega20172106455646310.1021/acsomega.7b0101630023520
    [Google Scholar]
  51. LeP.N. NguyenN.H. NguyenC.K. TranN.Q. Smart dendrimer-based nanogel for enhancing 5-fluorouracil loading efficiency against MCF7 cancer cell growth.Bull. Mater. Sci.20163961493150010.1007/s12034‑016‑1274‑z
    [Google Scholar]
  52. Fernandes StefanelloT. Szarpak-JankowskaA. AppaixF. LouageB. HamardL. De GeestB.G. van der SandenB. NakamuraC.V. Auzély-VeltyR. Thermoresponsive hyaluronic acid nanogels as hydrophobic drug carrier to macrophages.Acta Biomater.201410114750475810.1016/j.actbio.2014.07.03325110287
    [Google Scholar]
  53. SeoS. LeeC.S. JungY.S. NaK. Thermo-sensitivity and triggered drug release of polysaccharide nanogels derived from pullulan-g-poly(l-lactide) copolymers.Carbohydr. Polym.20128721105111110.1016/j.carbpol.2011.08.061
    [Google Scholar]
  54. EcheverriaC. LópezD. MijangosC. UCST responsive microgels of poly(acrylamide−acrylic acid) copolymers: Structure and viscoelastic properties.Macromolecules200942229118912310.1021/ma901316k
    [Google Scholar]
  55. LeeH. MokH. LeeS. OhY.K. ParkT.G. Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels.J. Control. Release2007119224525210.1016/j.jconrel.2007.02.01117408798
    [Google Scholar]
  56. SchaferF.Q. BuettnerG.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.Free Radic. Biol. Med.200130111191121210.1016/S0891‑5849(01)00480‑411368918
    [Google Scholar]
  57. Zha LS, Zhang Y, Yang WL, Fu SK. Monodisperse temperature-sensitive microcontainers. Adv Mater 2002; 14(15): 1090-2.
  58. XiaoR. ZhouG. WenY. YeJ. LiX. WangX. Recent advances on stimuli-responsive biopolymer-based nanocomposites for drug delivery.Compos., Part B Eng.202326611101810.1016/j.compositesb.2023.111018
    [Google Scholar]
  59. LeeY. ParkS.Y. KimC. ParkT.G. Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death.J. Control. Release20091351899510.1016/j.jconrel.2008.12.00819154762
    [Google Scholar]
  60. PatnaikS. SharmaA.K. GargB.S. GandhiR.P. GuptaK.C. Photoregulation of drug release in azo-dextran nanogels.Int. J. Pharm.20073421-218419310.1016/j.ijpharm.2007.04.03817574354
    [Google Scholar]
  61. TangY. WangG. NIR light-responsive nanocarriers for controlled release.J. Photochem. Photobiol. Photochem. Rev.20214710042010.1016/j.jphotochemrev.2021.100420
    [Google Scholar]
  62. SungB. KimM.H. AbelmannL. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications.Bioeng. Transl. Med.202161e1019010.1002/btm2.1019033532590
    [Google Scholar]
  63. YaoC. YuanY. YangD. Magnetic DNA nanogels for targeting delivery and multistimuli-triggered release of anticancer drugs.ACS Appl. Bio Mater.2018162012202010.1021/acsabm.8b0051634996263
    [Google Scholar]
  64. ZhaoX. WangT. LiuW. WangC. WangD. ShangT. ShenL. RenL. Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment.J. Mater. Chem.201121207240724710.1039/c1jm10277j
    [Google Scholar]
  65. HasegawaU. NomuraS.M. KaulS.C. HiranoT. AkiyoshiK. Nanogel-quantum dot hybrid nanoparticles for live cell imaging.Biochem. Biophys. Res. Commun.2005331491792110.1016/j.bbrc.2005.03.22815882965
    [Google Scholar]
  66. PikabeaA. RamosJ. PapachristosN. StamopoulosD. ForcadaJ. Synthesis and characterization of PDEAEMA-based magneto- nanogels: Preliminary results on the biocompatibility with cells of human peripheral blood.J. Polym. Sci. A Polym. Chem.201654111479149410.1002/pola.27996
    [Google Scholar]
  67. JeongW.Y. KwonM. ChoiH.E. KimK.S. Recent advances in transdermal drug delivery systems: A review.Biomater. Res.20212512410.1186/s40824‑021‑00226‑634321111
    [Google Scholar]
  68. FanC.H. LinC.Y. LiuH.L. YehC.K. Ultrasound targeted CNS gene delivery for Parkinson’s disease treatment.J. Control. Release201726124626210.1016/j.jconrel.2017.07.00428690161
    [Google Scholar]
  69. ChenM. LiangX. GaoC. ZhaoR. ZhangN. WangS. ChenW. ZhaoB. WangJ. DaiZ. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer.ACS Nano20181277312732610.1021/acsnano.8b0367429901986
    [Google Scholar]
  70. QiaoL. WangX. GaoY. WeiQ. HuW. WuL. LiP. ZhuR. WangQ. Laccase-mediated formation of mesoporous silica nanoparticle based redox stimuli-responsive hybrid nanogels as a multifunctional nanotheranostic agent.Nanoscale2016839172411724910.1039/C6NR05943K27722385
    [Google Scholar]
  71. El-SherbinyI.M. SmythH.D.C. Smart magnetically responsive hydrogel nanoparticles prepared by a novel aerosol-assisted method for biomedical and drug delivery applications.J. Nanomater.20112011201111310.1155/2011/91053921808638
    [Google Scholar]
  72. SalehiR. RasouliS. HamishehkarH. Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate.Int. J. Pharm.20154871-227428410.1016/j.ijpharm.2015.04.05125895723
    [Google Scholar]
  73. ChiangW.H. HoV.T. HuangW.C. HuangY.F. ChernC.S. ChiuH.C. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release.Langmuir20122842150561506410.1021/la302903v23036055
    [Google Scholar]
  74. JinX. WangQ. SunJ. PanezailH. WuX. BaiS. Dual temperature- and pH-responsive ibuprofen delivery from poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles and their fractal features.Polym. Bull.20177493619363810.1007/s00289‑017‑1915‑4
    [Google Scholar]
  75. PikabeaA. RamosJ. ForcadaJ. Production of cationic nanogels with potential use in controlled drug delivery.Part. Part. Syst. Charact.201431110110910.1002/ppsc.201300265
    [Google Scholar]
  76. AguirreG. Villar-AlvarezE. GonzálezA. RamosJ. TaboadaP. ForcadaJ. Biocompatible stimuli-responsive nanogels for controlled antitumor drug delivery.J. Polym. Sci. A Polym. Chem.201654121694170510.1002/pola.28025
    [Google Scholar]
  77. FormanH.J. ZhangH. RinnaA. Glutathione: Overview of its protective roles, measurement, and biosynthesis.Mol. Aspects Med.2009301-211210.1016/j.mam.2008.08.00618796312
    [Google Scholar]
  78. LianH. DuY. ChenX. DuanL. GaoG. XiaoC. ZhuangX. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery.J. Colloid Interface Sci.201749620121010.1016/j.jcis.2017.02.03228232293
    [Google Scholar]
  79. ZuoY. KongM. MuY. FengC. ChenX. Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin.Int. J. Biol. Macromol.2017104A15716410.1016/j.ijbiomac.2017.06.020
    [Google Scholar]
  80. HowS.C. ChenY.F. HsiehP.L. WangS.S.S. JanJ.S. Cell-targeted, dual reduction- and pH-responsive saccharide/lipoic acid-modified poly(L-lysine) and poly(acrylic acid) polyionic complex nanogels for drug delivery.Colloids Surf. B Biointerfaces201715324425210.1016/j.colsurfb.2017.02.03228267669
    [Google Scholar]
  81. YoshiiE. Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity.J. Biomed. Mater. Res.1997374517524
    [Google Scholar]
  82. KadlubowskiS. Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)-A review.Radiat. Phys. Chem.2014102293910.1016/j.radphyschem.2014.04.016
    [Google Scholar]
  83. El-FekyG.S. El-BannaS.T. El-BahyG.S. AbdelrazekE.M. KamalM. Alginate coated chitosan nanogel for the controlled topical delivery of Silver sulfadiazine.Carbohydr. Polym.201717719420210.1016/j.carbpol.2017.08.10428962758
    [Google Scholar]
  84. JinB. ZhouX. LiX. LinW. ChenG. QiuR. Self-assembled modified soy protein/dextran nanogel induced by ultrasonication as a delivery vehicle for riboflavin.Molecules201621328210.3390/molecules2103028226999081
    [Google Scholar]
  85. SavageD.T. HiltJ.Z. DziublaT.D. In vitro methods for assessing nanoparticle toxicity.Methods Mol. Biol.2019189412910.1007/978‑1‑4939‑8916‑4_130547452
    [Google Scholar]
  86. MaishaN. CoombsT. LavikE. Development of a sensitive assay to screen nanoparticles in vitro for complement activation.ACS Biomater. Sci. Eng.2020694903491510.1021/acsbiomaterials.0c0072233313396
    [Google Scholar]
  87. KohlY. Rundén-PranE. MariussenE. HeslerM. El YamaniN. LonghinE.M. DusinskaM. Genotoxicity of nanomaterials: Advanced in vitro models and high throughput methods for human hazard assessment-A review.Nanomaterials 20201010191110.3390/nano1010191132992722
    [Google Scholar]
  88. XuanL. JuZ. SkoniecznaM. ZhouP.K. HuangR. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models.MedComm202344e32710.1002/mco2.32737457660
    [Google Scholar]
  89. SuhailM. RosenholmJ.M. MinhasM.U. BadshahS.F. NaeemA. KhanK.U. FahadM. Nanogels as drug-delivery systems: A comprehensive overview.Ther. Deliv.2019101169771710.4155/tde‑2019‑001031789106
    [Google Scholar]
  90. Brianna AnwarA. TeowS-Y. WuY.S. Nanogel-based drug delivery system as a treatment modality for diverse diseases: Are we there yet?J. Drug Deliv. Sci. Technol.20249110522410.1016/j.jddst.2023.105224
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128353985241231111149
Loading
/content/journals/cpd/10.2174/0113816128353985241231111149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test