Skip to content
2000
Volume 31, Issue 21
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The increasing global prevalence of obesity (OB) calls for the development of effective treatments. Traditional Chinese Medicine (TCM) offers a promising approach by modulating gut microbiota (GM) to enhance the production of short-chain fatty acids (SCFAs). Research has demonstrated that SCFAs can regulate appetite and energy expenditure the Central Nervous System (CNS), underscoring the role of the gut-brain axis in maintaining energy balance. A comprehensive review of the literature was conducted using databases, such as ScienceDirect, Google Scholar, and PubMed. The focus was on the impact of TCM on SCFA production and its influence on appetite regulation and energy expenditure through the CNS. This review indicates that TCM enhances the production of SCFAs, which suppress appetite and increase energy expenditure through their interaction with the CNS, particularly the gut-brain axis. TCM demonstrates promise as a therapeutic strategy for obesity by enhancing the production of SCFAs and regulating energy balance. This approach presents a novel avenue for obesity treatment through the modulation of the microbiome.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128354909241213070313
2025-01-24
2025-09-18
Loading full text...

Full text loading...

References

  1. MurrayC.J.L. AravkinA.Y. ZhengP. AbbafatiC. AbbasK.M. Abbasi-KangevariM. Abd-AllahF. AbdelalimA. AbdollahiM. AbdollahpourI. AbegazK.H. AbolhassaniH. AboyansV. AbreuL.G. AbrigoM.R.M. AbualhasanA. Abu-RaddadL.J. AbushoukA.I. AdabiM. AdekanmbiV. AdeoyeA.M. AdetokunbohO.O. AdhamD. AdvaniS.M. AgarwalG. AghamirS.M.K. AgrawalA. AhmadT. AhmadiK. AhmadiM. AhmadiehH. AhmedM.B. AkaluT.Y. AkinyemiR.O. AkinyemijuT. AkombiB. AkunnaC.J. AlahdabF. Al-AlyZ. AlamK. AlamS. AlamT. AlaneziF.M. AlanziT.M. AlemuB. AlhabibK.F. AliM. AliS. AlicandroG. AliniaC. AlipourV. AlizadeH. AljunidS.M. AllaF. AllebeckP. Almasi-HashianiA. Al-MekhlafiH.M. AlonsoJ. AltirkawiK.A. Amini-RaraniM. AmiriF. AmugsiD.A. AncuceanuR. AnderliniD. AndersonJ.A. AndreiC.L. AndreiT. AngusC. AnjomshoaM. AnsariF. Ansari-MoghaddamA. AntonazzoI.C. AntonioC.A.T. AntonyC.M. AntriyandartiE. AnvariD. AnwerR. AppiahS.C.Y. ArablooJ. Arab-ZozaniM. ArianiF. ArmoonB. ÄrnlövJ. ArzaniA. Asadi-AliabadiM. Asadi-PooyaA.A. AshbaughC. AssmusM. AtafarZ. AtnafuD.D. AtoutM.M.W. AusloosF. AusloosM. Ayala QuintanillaB.P. AyanoG. AyanoreM.A. AzariS. AzarianG. AzeneZ.N. BadawiA. BadiyeA.D. BahramiM.A. BakhshaeiM.H. BakhtiariA. BakkannavarS.M. BaldasseroniA. BallK. BallewS.H. BalziD. BanachM. BanerjeeS.K. BanteA.B. BarakiA.G. Barker-ColloS.L. BärnighausenT.W. BarreroL.H. BarthelemyC.M. BaruaL. BasuS. BauneB.T. BayatiM. BeckerJ.S. BediN. BeghiE. BéjotY. BellM.L. BennittF.B. BensenorI.M. BerheK. BermanA.E. BhagavathulaA.S. BhageerathyR. BhalaN. BhandariD. BhattacharyyaK. BhuttaZ.A. BijaniA. BikbovB. Bin SayeedM.S. BiondiA. BirihaneB.M. BisignanoC. BiswasR.K. BitewH. BohlouliS. BohluliM. Boon-DooleyA.S. BorgesG. BorzìA.M. BorzoueiS. BosettiC. BoufousS. BraithwaiteD. BreitbordeN.J.K. BreitnerS. BrennerH. BriantP.S. BrikoA.N. BrikoN.I. BrittonG.B. BryazkaD. BumgarnerB.R. BurkartK. BurnettR.T. Burugina NagarajaS. ButtZ.A. Caetano dos SantosF.L. CahillL.E. CámeraL.L.A.A. Campos-NonatoI.R. CárdenasR. CarrerasG. CarreroJ.J. CarvalhoF. Castaldelli-MaiaJ.M. Castañeda-OrjuelaC.A. CastelpietraG. CastroF. CauseyK. CederrothC.R. CercyK.M. CerinE. ChandanJ.S. ChangK-L. CharlsonF.J. ChattuV.K. ChaturvediS. CherbuinN. Chimed-OchirO. ChoD.Y. ChoiJ-Y.J. ChristensenH. ChuD-T. ChungM.T. ChungS-C. CicuttiniF.M. CiobanuL.G. CirilloM. ClassenT.K.D. CohenA.J. ComptonK. CooperO.R. CostaV.M. CousinE. CowdenR.G. CrossD.H. CruzJ.A. DahlawiS.M.A. DamascenoA.A.M. DamianiG. DandonaL. DandonaR. DangelW.J. DanielssonA-K. DarganP.I. DarweshA.M. DaryaniA. DasJ.K. Das GuptaR. das NevesJ. Dávila-CervantesC.A. DavitoiuD.V. De LeoD. DegenhardtL. DeLangM. DellavalleR.P. DemekeF.M. DemozG.T. DemsieD.G. Denova-GutiérrezE. DervenisN. DhunganaG.P. DianatinasabM. Dias da SilvaD. DiazD. Dibaji ForooshaniZ.S. DjalaliniaS. DoH.T. DokovaK. DorostkarF. DoshmangirL. DriscollT.R. DuncanB.B. DuraesA.R. EaganA.W. EdvardssonD. El NahasN. El SayedI. El TantawiM. ElbaraziI. ElgendyI.Y. El-JaafaryS.I. ElyazarI.R.F. Emmons-BellS. ErskineH.E. EskandariehS. EsmaeilnejadS. EsteghamatiA. EstepK. EtemadiA. EtissoA.E. FanzoJ. FarahmandM. FareedM. FaridniaR. FarioliA. FaroA. FaruqueM. FarzadfarF. FattahiN. FazlzadehM. FeiginV.L. FeldmanR. FereshtehnejadS-M. FernandesE. FerraraG. FerrariA.J. FerreiraM.L. FilipI. FischerF. FisherJ.L. FlorL.S. FoigtN.A. FolayanM.O. FomenkovA.A. ForceL.M. ForoutanM. FranklinR.C. FreitasM. FuW. FukumotoT. FurtadoJ.M. GadM.M. GakidouE. GallusS. Garcia-BasteiroA.L. GardnerW.M. GeberemariyamB.S. GebreslassieA.A.A.A. GeremewA. Gershberg HayoonA. GethingP.W. GhadimiM. GhadiriK. GhaffarifarF. GhafourifardM. GhamariF. GhashghaeeA. GhiasvandH. GhithN. GholamianA. GhoshR. GillP.S. GinindzaT.G.G. GiussaniG. GnedovskayaE.V. GoharinezhadS. GopalaniS.V. GoriniG. GoudarziH. GoulartA.C. GreavesF. GrivnaM. GrossoG. GubariM.I.M. GugnaniH.C. GuimarãesR.A. GuledR.A. GuoG. GuoY. GuptaR. GuptaT. HaddockB. Hafezi-NejadN. HafizA. Haj-MirzaianA. Haj-MirzaianA. HallB.J. HalvaeiI. HamadehR.R. HamidiS. HammerM.S. HankeyG.J. HaririanH. HaroJ.M. HasaballahA.I. HasanM.M. HasanpoorE. HashiA. HassanipourS. HassankhaniH. HavmoellerR.J. HayS.I. HayatK. HeidariG. Heidari-SoureshjaniR. HenriksonH.J. HerbertM.E. HerteliuC. HeydarpourF. HirdT.R. HoekH.W. HollaR. HoogarP. HosgoodH.D. HossainN. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HsairiM. HsiehV.C. HuG. HuK. HudaT.M. HumayunA. HuynhC.K. HwangB-F. IannucciV.C. IbitoyeS.E. IkedaN. IkutaK.S. IlesanmiO.S. IlicI.M. IlicM.D. InbarajL.R. IppolitoH. IqbalU. IrvaniS.S.N. IrvineC.M.S. IslamM.M. IslamS.M.S. IsoH. IversR.Q. IwuC.C.D. IwuC.J. IyamuI.O. JaafariJ. JacobsenK.H. JafariH. JafariniaM. JahaniM.A. JakovljevicM. JalilianF. JamesS.L. JanjaniH. JavaheriT. JavidniaJ. JeemonP. JenabiE. JhaR.P. JhaV. JiJ.S. JohanssonL. JohnO. John-AkinolaY.O. JohnsonC.O. JonasJ.B. JoukarF. JozwiakJ.J. JürissonM. KabirA. KabirZ. KalaniH. KalaniR. KalankeshL.R. KalhorR. KanchanT. KapoorN. Karami MatinB. KarchA. KarimM.A. KassaG.M. KatikireddiS.V. KayodeG.A. Kazemi KaryaniA. KeiyoroP.N. KellerC. KemmerL. KendrickP.J. KhalidN. KhammarniaM. KhanE.A. KhanM. KhatabK. KhaterM.M. KhatibM.N. KhayamzadehM. KhazaeiS. KielingC. KimY.J. KimokotiR.W. KisaA. KisaS. KivimäkiM. KnibbsL.D. KnudsenA.K.S. KocarnikJ.M. KochharS. KopecJ.A. KorshunovV.A. KoulP.A. KoyanagiA. KraemerM.U.G. KrishanK. KrohnK.J. KromhoutH. Kuate DefoB. KumarG.A. KumarV. KurmiO.P. KusumaD. La VecchiaC. LaceyB. LalD.K. LallooR. LallukkaT. LamiF.H. LandiresI. LangJ.J. LanganS.M. LarssonA.O. LasradoS. LauriolaP. LazarusJ.V. LeeP.H. LeeS.W.H. LeGrandK.E. LeighJ. LeonardiM. LescinskyH. LeungJ. LeviM. LiS. LimL-L. LinnS. LiuS. LiuS. LiuY. LoJ. LopezA.D. LopezJ.C.F. LopukhovP.D. LorkowskiS. LotufoP.A. LuA. LugoA. MaddisonE.R. MahashaP.W. MahdaviM.M. MahmoudiM. MajeedA. MalekiA. MalekiS. MalekzadehR. MaltaD.C. MamunA.A. MandaA.L. ManguerraH. Mansour-GhanaeiF. MansouriB. MansourniaM.A. Mantilla HerreraA.M. MaravillaJ.C. MarksA. MartinR.V. MartiniS. Martins-MeloF.R. MasakaA. MasoumiS.Z. MathurM.R. MatsushitaK. MaulikP.K. McAlindenC. McGrathJ.J. McKeeM. MehndirattaM.M. MehriF. MehtaK.M. MemishZ.A. MendozaW. MenezesR.G. MengeshaE.W. MerekeA. MeretaS.T. MeretojaA. MeretojaT.J. MestrovicT. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MillsE.J. MiniG.K. MiriM. MiricaA. MirrakhimovE.M. MirzaeiH. MirzaeiM. MirzaeiR. Mirzaei-AlavijehM. MisganawA.T. MithraP. MoazenB. MohammadD.K. MohammadY. Mohammad Gholi MezerjiN. Mohammadian-HafshejaniA. MohammadifardN. MohammadpourhodkiR. MohammedA.S. MohammedH. MohammedJ.A. MohammedS. MokdadA.H. MolokhiaM. MonastaL. MooneyM.D. MoradiG. MoradiM. Moradi-LakehM. MoradzadehR. MoragaP. MorawskaL. Morgado-da-CostaJ. MorrisonS.D. MosapourA. MosserJ.F. MouodiS. MousaviS.M. Mousavi KhaneghahA. MuellerU.O. MukhopadhyayS. MullanyE.C. MusaK.I. MuthupandianS. NabhanA.F. NaderiM. NagarajanA.J. NagelG. NaghaviM. NaghshtabriziB. NaimzadaM.D. NajafiF. NangiaV. NansseuJ.R. NaserbakhtM. NayakV.C. NegoiI. NgunjiriJ.W. NguyenC.T. NguyenH.L.T. NguyenM. NigatuY.T. NikbakhshR. NixonM.R. NnajiC.A. NomuraS. NorrvingB. NoubiapJ.J. NowakC. Nunez-SamudioV. OţoiuA. OanceaB. OdellC.M. OgboF.A. OhI-H. OkungaE.W. OladnabiM. OlagunjuA.T. OlusanyaB.O. OlusanyaJ.O. OmerM.O. OngK.L. OnwujekweO.E. OrpanaH.M. OrtizA. OsarenotorO. OseiF.B. OstroffS.M. OtstavnovN. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PadubidriJ.R. PalladinoR. Panda-JonasS. PandeyA. ParryC.D.H. PasovicM. PasupulaD.K. PatelS.K. PathakM. PattenS.B. PattonG.C. Pazoki ToroudiH. PedenA.E. PenniniA. PepitoV.C.F. PeprahE.K. PereiraD.M. PesudovsK. PhamH.Q. PhillipsM.R. PiccinelliC. PilzT.M. PiradovM.A. PirsahebM. PlassD. PolinderS. PolkinghorneK.R. PondC.D. PostmaM.J. PourjafarH. PourmalekF. PoznańskaA. PradaS.I. PrakashV. PribadiD.R.A. PupilloE. Quazi SyedZ. RabieeM. RabieeN. RadfarA. RafieeA. RaggiA. RahmanM.A. Rajabpour-SanatiA. RajatiF. RakovacI. RamP. RamezanzadehK. RanabhatC.L. RaoP.C. RaoS.J. RashediV. RathiP. RawafD.L. RawafS. RawalL. RawassizadehR. RawatR. RazoC. RedfordS.B. ReinerR.C.Jr ReitsmaM.B. RemuzziG. RenjithV. RenzahoA.M.N. ResnikoffS. RezaeiN. RezaeiN. RezapourA. RhinehartP-A. RiahiS.M. RibeiroD.C. RibeiroD. RickardJ. RiveraJ.A. RobertsN.L.S. Rodríguez-RamírezS. RoeverL. RonfaniL. RoomR. RoshandelG. RothG.A. RothenbacherD. RubagottiE. RwegereraG.M. SabourS. SachdevP.S. SaddikB. SadeghiE. SadeghiM. SaeediR. Saeedi MoghaddamS. SafariY. SafiS. SafiriS. SagarR. SahebkarA. SajadiS.M. SalamN. SalamatiP. SalemH. SalemM.R.R. SalimzadehH. SalmanO.M. SalomonJ.A. SamadZ. Samadi KafilH. SambalaE.Z. SamyA.M. SanabriaJ. Sánchez-PimientaT.G. SantomauroD.F. SantosI.S. SantosJ.V. Santric-MilicevicM.M. SaraswathyS.Y.I. Sarmiento-SuárezR. SarrafzadeganN. SartoriusB. SarveazadA. SathianB. SathishT. SattinD. SaxenaS. SchaefferL.E. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SchwebelD.C. SchwendickeF. SenbetaA.M. SenthilkumaranS. SepanlouS.G. SerdarB. SerreM.L. ShadidJ. ShafaatO. ShahabiS. ShaheenA.A. ShaikhM.A. ShalashA.S. Shams-BeyranvandM. ShamsizadehM. SharafiK. SheikhA. SheikhtaheriA. ShibuyaK. ShieldK.D. ShigematsuM. ShinJ.I. ShinM-J. ShiriR. ShirkoohiR. ShuvalK. SiabaniS. SierpinskiR. SigfusdottirI.D. SigurvinsdottirR. SilvaJ.P. SimpsonK.E. SinghJ.A. SinghP. SkiadaresiE. SkouS.T. SkryabinV.Y. SmithE.U.R. SoheiliA. SoltaniS. SoofiM. SorensenR.J.D. SorianoJ.B. SorrieM.B. SoshnikovS. SoyiriI.N. SpencerC.N. SpotinA. SreeramareddyC.T. SrinivasanV. StanawayJ.D. SteinC. SteinD.J. SteinerC. StockfeltL. StokesM.A. StraifK. StubbsJ.L. SufiyanM.B. SuleriaH.A.R. Suliankatchi AbdulkaderR. SuloG. SultanI. SzumowskiŁ. Tabarés-SeisdedosR. TabbK.M. TabuchiT. TaherkhaniA. TajdiniM. TakahashiK. TakalaJ.S. TamiruA.T. TaveiraN. Tehrani-BanihashemiA. TemsahM-H. TesemaG.A. TessemaZ.T. ThurstonG.D. TitovaM.V. TohidinikH.R. TonelliM. Topor-MadryR. TopouzisF. TorreA.E. TouvierM. Tovani-PaloneM.R.R. TranB.X. TravillianR. TsatsakisA. Tudor CarL. TyrovolasS. UddinR. UmeokonkwoC.D. UnnikrishnanB. UpadhyayE. VacanteM. ValdezP.R. van DonkelaarA. VasankariT.J. VasseghianY. VeisaniY. VenketasubramanianN. ViolanteF.S. VlassovV. VollsetS.E. VosT. VukovicR. WaheedY. WallinM.T. WangY. WangY-P. WatsonA. WeiJ. WeiM.Y.W. WeintraubR.G. WeissJ. WerdeckerA. WestJ.J. WestermanR. WhisnantJ.L. WhitefordH.A. WiensK.E. WolfeC.D.A. WozniakS.S. WuA-M. WuJ. Wulf HansonS. XuG. XuR. YadgirS. Yahyazadeh JabbariS.H. YamagishiK. YaminfiroozM. YanoY. YayaS. Yazdi-FeyzabadiV. YeheyisT.Y. YilgwanC.S. YilmaM.T. YipP. YonemotoN. YounisM.Z. YounkerT.P. YousefiB. YousefiZ. YousefinezhadiT. YousufA.Y. YuC. YusefzadehH. Zahirian MoghadamT. ZamaniM. ZamanianM. ZandianH. ZastrozhinM.S. ZhangY. ZhangZ-J. ZhaoJ.T. ZhaoX-J.G. ZhaoY. ZhouM. ZiapourA. ZimsenS.R.M. BrauerM. AfshinA. LimS.S. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019.Lancet2020396102581223124910.1016/S0140‑6736(20)30752‑233069327
    [Google Scholar]
  2. OkunogbeA. NugentR. SpencerG. PowisJ. RalstonJ. WildingJ. Economic impacts of overweight and obesity: current and future estimates for 161 countries.BMJ Glob. Health202279e00977310.1136/bmjgh‑2022‑00977336130777
    [Google Scholar]
  3. LinX. LiH. Obesity: epidemiology, pathophysiology, and therapeutics.Front. Endocrinol.20211270697810.3389/fendo.2021.70697834552557
    [Google Scholar]
  4. ZengQ. LiN. PanX.F. ChenL. PanA. Clinical management and treatment of obesity in China.Lancet Diabetes Endocrinol.20219639340510.1016/S2213‑8587(21)00047‑434022157
    [Google Scholar]
  5. PerdomoC.M. CohenR.V. SumithranP. ClémentK. FrühbeckG. Contemporary medical, device, and surgical therapies for obesity in adults.Lancet2023401103821116113010.1016/S0140‑6736(22)02403‑536774932
    [Google Scholar]
  6. GarveyW.T. MechanickJ.I. BrettE.M. GarberA.J. HurleyD.L. JastreboffA.M. NadolskyK. Pessah-PollackR. PlodkowskiR. American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity.Endocr. Pract.201622Suppl. 3120310.4158/EP161365.GL27219496
    [Google Scholar]
  7. ChenM. LiuJ. Effects of Traditional Chinese Medicines on weight management among adults with overweight or obesity: A systematic review and network meta-analysis.Obes. Sci. Pract.2024103e76310.1002/osp4.76338863737
    [Google Scholar]
  8. DuanH. WangL. HuangfuM. LiH. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials.Biomed. Pharmacother.202316511527610.1016/j.biopha.2023.11527637542852
    [Google Scholar]
  9. ZhangK. WangY. CuiX. WangW. LiY. Features of metabolite changes in disease evolution in cholecystolithiasis.Dig. Dis. Sci.202469127528810.1007/s10620‑023‑08134‑637943386
    [Google Scholar]
  10. CummingsJ.H. PomareE.W. BranchW.J. NaylorC.P. MacfarlaneG.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood.Gut198728101221122710.1136/gut.28.10.12213678950
    [Google Scholar]
  11. SasakiH. HayashiK. ImamuraM. HirotaY. HosokiH. NittaL. FurutaniA. ShibataS. Combined resistant dextrin and low-dose Mg oxide administration increases short-chain fatty acid and lactic acid production by gut microbiota.J. Nutr. Biochem.202312010942010.1016/j.jnutbio.2023.10942037516314
    [Google Scholar]
  12. Nabavi-RadA. SadeghiA. Asadzadeh AghdaeiH. YadegarA. SmithS.M. ZaliM.R. The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management.Gut Microbes2022141210865510.1080/19490976.2022.210865535951774
    [Google Scholar]
  13. CongJ. ZhouP. ZhangR. Intestinal microbiota-derived short chain fatty acids in host health and disease.Nutrients2022149197710.3390/nu1409197735565943
    [Google Scholar]
  14. Martin-GallausiauxC. MarinelliL. BlottièreH.M. LarraufieP. LapaqueN. SCFA: mechanisms and functional importance in the gut.Proc. Nutr. Soc.2021801374910.1017/S002966512000691632238208
    [Google Scholar]
  15. HillJ.H. RoundJ.L. SnapShot: Microbiota effects on host physiology.Cell20211841027962796.e110.1016/j.cell.2021.04.02633989551
    [Google Scholar]
  16. O’BrienP.D. HinderL.M. CallaghanB.C. FeldmanE.L. Neurological consequences of obesity.Lancet Neurol.201716646547710.1016/S1474‑4422(17)30084‑428504110
    [Google Scholar]
  17. YangQ. WangJ. WangM. ZhangS. HeQ.Q. Stratified analysis of the association between anti-obesity medications and digestive adverse events: a real-world study based on the FDA adverse event reporting system database.BMC Pharmacol. Toxicol.20242516410.1186/s40360‑024‑00789‑939267168
    [Google Scholar]
  18. LenharoM. How anti-obesity drugs cause nausea: finding offers hope for better drugs.Nature2024631802149349410.1038/d41586‑024‑02254‑338987338
    [Google Scholar]
  19. ZhangH.Y. TianJ.X. LianF.M. LiM. LiuW.K. ZhenZ. LiaoJ.Q. TongX.L. Therapeutic mechanisms of Traditional Chinese Medicine to improve metabolic diseases via the gut microbiota.Biomed. Pharmacother.202113311085710.1016/j.biopha.2020.11085733197760
    [Google Scholar]
  20. FaldutoM. SmedileF. ZhangM. ZhengT. ZhuJ. HuangQ. WeeksR. ErmakovA.M. ChikindasM.L. Anti-obesity effects of Chenpi: an artificial gastrointestinal system study.Microb. Biotechnol.202215387488510.1111/1751‑7915.1400535170866
    [Google Scholar]
  21. TianP. WuL. KudoM. HayashiM. QinL. GaoM. XuA. LiuT. TangNaiKang, herbal formulation, alleviates obesity in diabetic SHR/cp rats through modulation of gut microbiota and related metabolic functions.Pharm. Biol.20226012002201010.1080/13880209.2022.209607536226871
    [Google Scholar]
  22. HeymsfieldS.B. WaddenT.A. Mechanisms, pathophysiology, and management of obesity.N. Engl. J. Med.2017376325426610.1056/NEJMra151400928099824
    [Google Scholar]
  23. ZhangL. ChenN. ZhanL. BiT. ZhouW. ZhangL. ZhuL. Erchen Decoction alleviates obesity-related hepatic steatosis via modulating gut microbiota-drived butyric acid contents and promoting fatty acid β-oxidation.J. Ethnopharmacol.202331711681110.1016/j.jep.2023.11681137336336
    [Google Scholar]
  24. WangX. ShiL. WangX. FengY. WangY. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis.Int. J. Biol. Macromol.20191411013102110.1016/j.ijbiomac.2019.09.00731491513
    [Google Scholar]
  25. ChenY. LiuT. TeiaF.K.F. XieM. Exploring the underlying mechanisms of obesity and diabetes and the potential of Traditional Chinese Medicine: an overview of the literature.Front. Endocrinol.202314121888010.3389/fendo.2023.121888037600709
    [Google Scholar]
  26. ZhangY. ZhangL. LiZ. LiuX. HeP. GuY. LiuL. JinY. ChengS. ZhouF. JiaY. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice.Phytomedicine202413215532010.1016/j.phymed.2023.15532038901285
    [Google Scholar]
  27. HuR. Grifola frondosa may play an anti-obesity role by affecting intestinal microbiota to increase the production of short-chain fatty acids.Front. Endocrinol. (Lausanne)202313110507310.3389/fendo.2022.110507336733799
    [Google Scholar]
  28. SohnJ.W. Network of hypothalamic neurons that control appetite.BMB Rep.201548422923310.5483/BMBRep.2015.48.4.27225560696
    [Google Scholar]
  29. DimitriP. Treatment of acquired hypothalamic obesity: now and the future.Front. Endocrinol.20221384688010.3389/fendo.2022.84688035464063
    [Google Scholar]
  30. SewaybrickerL.E. HuangA. ChandrasekaranS. MelhornS.J. SchurE.A. The significance of hypothalamic inflammation and gliosis for the pathogenesis of obesity in humans.Endocr. Rev.202344228129610.1210/endrev/bnac02336251886
    [Google Scholar]
  31. JaisA. BrüningJ.C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus.Endocr. Rev.202243231432810.1210/endrev/bnab02534490882
    [Google Scholar]
  32. WangS.Z. YuY.J. AdeliK. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis.Microorganisms20208452710.3390/microorganisms804052732272588
    [Google Scholar]
  33. VohraM.S. BenchoulaK. SerpellC.J. HwaW.E. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity.Eur. J. Pharmacol.202291517461110.1016/j.ejphar.2021.17461134798121
    [Google Scholar]
  34. MehayD. SilbermanY. ArnoldA.C. The arcuate nucleus of the hypothalamus and metabolic regulation: an emerging role for renin-angiotensin pathways.Int. J. Mol. Sci.20212213705010.3390/ijms2213705034208939
    [Google Scholar]
  35. LiM.M. MadaraJ.C. StegerJ.S. KrashesM.J. BalthasarN. CampbellJ.N. ReschJ.M. ConleyN.J. GarfieldA.S. LowellB.B. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits.Neuron20191023653667.e610.1016/j.neuron.2019.02.02830879785
    [Google Scholar]
  36. Haddad-TóvolliR. MorariJ. BarbizanR. BóbboV.C. CarraroR.S. SolonC. DraganoN.R. TorsoniM.A. AraujoE.P. VellosoL.A. Maternal obesity damages the median eminence blood-brain barrier structure and function in the progeny: the beneficial impact of cross-fostering by lean mothers.Am. J. Physiol. Endocrinol. Metab.20233242E154E16610.1152/ajpendo.00268.202236598900
    [Google Scholar]
  37. Porniece KumarM. CremerA.L. KlemmP. SteuernagelL. SundaramS. JaisA. HausenA.C. TaoJ. SecherA. PedersenT.Å. SchwaningerM. WunderlichF.T. LowellB.B. BackesH. BrüningJ.C. Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity.Nat. Metab.20213121662167910.1038/s42255‑021‑00499‑034931084
    [Google Scholar]
  38. KimS.K. TranL.T. NamKoongC. ChoiH.J. ChunH.J. LeeY. CheonM. ChungC. HwangJ. LimH.H. ShinD.M. ChoiY.H. KimK.W. Mitochondria-derived peptide SHLP2 regulates energy homeostasis through the activation of hypothalamic neurons.Nat. Commun.2023141432110.1038/s41467‑023‑40082‑737468558
    [Google Scholar]
  39. MachadoM.M.F. PereiraJ.P. HirataB.K.S. JúlioV.S. BaninR.M. AndradeH.M. RibeiroE.B. CeruttiS.M. TellesM.M. A single dose of ginkgo biloba extract induces gene expression of hypothalamic anorexigenic effectors in male rats.Brain Sci.20211112160210.3390/brainsci1112160234942904
    [Google Scholar]
  40. QuartaC. ClaretM. ZeltserL.M. WilliamsK.W. YeoG.S.H. TschöpM.H. DianoS. BrüningJ.C. CotaD. POMC neuronal heterogeneity in energy balance and beyond: an integrated view.Nat. Metab.20213329930810.1038/s42255‑021‑00345‑333633406
    [Google Scholar]
  41. RohE. SongD.K. KimM.S. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.Exp. Mol. Med.2016483e21610.1038/emm.2016.426964832
    [Google Scholar]
  42. QuartaC. FisetteA. XuY. ColldénG. LegutkoB. TsengY.T. ReimA. WiererM. De RosaM.C. KlausV. RauschR. ThakerV.V. GrafE. StromT.M. PoherA.L. GruberT. Le ThucO. Cebrian-SerranoA. KabraD. BellocchioL. WoodsS.C. PflugfelderG.O. NogueirasR. ZeltserL. Grunwald KadowI.C. MoonA. García-CáceresC. MannM. TreierM. DoegeC.A. TschöpM.H. Functional identity of hypothalamic melanocortin neurons depends on Tbx3.Nat. Metab.20191222223510.1038/s42255‑018‑0028‑132694784
    [Google Scholar]
  43. ChenZ. ChenG. ZhongJ. JiangS. LaiS. XuH. DengX. LiF. LuS. ZhouK. LiC. LiuZ. ZhangX. ZhuY. A circuit from lateral septum neurotensin neurons to tuberal nucleus controls hedonic feeding.Mol. Psychiatry202227124843486010.1038/s41380‑022‑01742‑036028570
    [Google Scholar]
  44. FachiJ.L. SéccaC. RodriguesP.B. MatoF.C.P. Di LucciaB. FelipeJ.S. PralL.P. RungueM. RochaV.M. SatoF.T. SampaioU. ClericiM.T.P.S. RodriguesH.G. CâmaraN.O.S. ConsonniS.R. VieiraA.T. OliveiraS.C. MackayC.R. LaydenB.T. BortoluciK.R. ColonnaM. VinoloM.A.R. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2.J. Exp. Med.20202173e2019048910.1084/jem.2019048931876919
    [Google Scholar]
  45. MizutaK. SasakiH. ZhangY. MatobaA. EmalaC.W.Sr The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle.Am. J. Physiol. Lung Cell. Mol. Physiol.20203186L1248L126010.1152/ajplung.00357.201932209026
    [Google Scholar]
  46. FrostG. SleethM.L. Sahuri-ArisoyluM. LizarbeB. CerdanS. BrodyL. AnastasovskaJ. GhourabS. HankirM. ZhangS. CarlingD. SwannJ.R. GibsonG. ViardotA. MorrisonD. Louise ThomasE. BellJ.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism.Nat. Commun.201451361110.1038/ncomms461124781306
    [Google Scholar]
  47. SilvaR.S. MendonçaI.P. PaivaI.H.R. SouzaJ.R.B. PeixotoC.A. Fructooligosaccharides and galactooligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation.Int. J. Food Sci. Nutr.202374776078010.1080/09637486.2023.226277937771001
    [Google Scholar]
  48. PerryR.J. PengL. BarryN.A. ClineG.W. ZhangD. CardoneR.L. PetersenK.F. KibbeyR.G. GoodmanA.L. ShulmanG.I. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome.Nature2016534760621321710.1038/nature1830927279214
    [Google Scholar]
  49. LarraufieP. Martin-GallausiauxC. LapaqueN. DoreJ. GribbleF.M. ReimannF. BlottiereH.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells.Sci. Rep.2018817410.1038/s41598‑017‑18259‑029311617
    [Google Scholar]
  50. LiZ. YiC.X. KatiraeiS. KooijmanS. ZhouE. ChungC.K. GaoY. van den HeuvelJ.K. MeijerO.C. BerbéeJ.F.P. HeijinkM. GieraM. Willems van DijkK. GroenA.K. RensenP.C.N. WangY. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit.Gut20186771269127910.1136/gutjnl‑2017‑31405029101261
    [Google Scholar]
  51. SzentirmaiÉ. MillicanN.S. MassieA.R. KapásL. Butyrate, a metabolite of intestinal bacteria, enhances sleep.Sci. Rep.201991703510.1038/s41598‑019‑43502‑131065013
    [Google Scholar]
  52. ChenM. LiaoZ. LuB. WangM. LinL. ZhangS. LiY. LiuD. LiaoQ. XieZ. Huang-lian-jie-du-decoction ameliorates hyperglycemia and insulin resistant in association with gut microbiota modulation.Front. Microbiol.20189238010.3389/fmicb.2018.0238030349514
    [Google Scholar]
  53. WeiX. TaoJ. XiaoS. JiangS. ShangE. ZhuZ. QianD. DuanJ. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota.Sci. Rep.201881368510.1038/s41598‑018‑22094‑229487347
    [Google Scholar]
  54. XiaoS. ZhangZ. ChenM. ZouJ. JiangS. QianD. DuanJ. Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism.J. Ethnopharmacol.201924111203210.1016/j.jep.2019.11203231220598
    [Google Scholar]
  55. HuQ. HouS. XiongB. WenY. WangJ. ZengJ. MaX. WangF. Therapeutic effects of baicalin on diseases related to gut-brain axis dysfunctions.Molecules20232818650110.3390/molecules2818650137764277
    [Google Scholar]
  56. NeyrinckA.M. SánchezC.R. RodriguezJ. CaniP.D. BindelsL.B. DelzenneN.M. Prebiotic effect of berberine and curcumin is associated with the improvement of obesity in mice.Nutrients2021135143610.3390/nu1305143633923174
    [Google Scholar]
  57. LinN. CaiD.L. JinD. ChenY. ShiJ.J. Ginseng panaxoside Rb1 reduces body weight in diet-induced obese mice.Cell Biochem. Biophys.201468118919410.1007/s12013‑013‑9688‑323733675
    [Google Scholar]
  58. ZhiN. ChangX. WangX. GuoJ. ChenJ. GuiS. Recent advances in the extraction, purification, structural-property correlations, and antiobesity mechanism of traditional Chinese medicine-derived polysaccharides: a review.Front. Nutr.202410134158310.3389/fnut.2023.134158338299183
    [Google Scholar]
  59. DengZ. MengC. HuangH. SongS. FuL. FuZ. The different effects of psyllium husk and orlistat on weight control, the amelioration of hypercholesterolemia and non-alcohol fatty liver disease in obese mice induced by a high-fat diet.Food Funct.202213178829884910.1039/D2FO01161A35920178
    [Google Scholar]
  60. HalestrapA.P. MeredithD. The SLC16 gene family?from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond.Pflugers Arch.2004447561962810.1007/s00424‑003‑1067‑212739169
    [Google Scholar]
  61. OhtaniN. HaraE. Gut-liver axis-mediated mechanism of liver cancer: A special focus on the role of gut microbiota.Cancer Sci.2021112114433444310.1111/cas.1514234533882
    [Google Scholar]
  62. LiL. HeM. XiaoH. LiuX. WangK. ZhangY. Acetic acid influences brl-3a cell lipid metabolism via the ampk signalling pathway.Cell. Physiol. Biochem.20184552021203010.1159/00048798029529605
    [Google Scholar]
  63. LiJ. JiangR. CongX. ZhaoY. UCP 2 gene polymorphisms in obesity and diabetes, and the role of UCP 2 in cancer.FEBS Lett.2019593182525253410.1002/1873‑3468.1354631330574
    [Google Scholar]
  64. ShadelG.S. HorvathT.L. Mitochondrial ROS signaling in organismal homeostasis.Cell2015163356056910.1016/j.cell.2015.10.00126496603
    [Google Scholar]
  65. AndrewsZ.B. LiuZ.W. WalllingfordN. ErionD.M. BorokE. FriedmanJ.M. TschöpM.H. ShanabroughM. ClineG. ShulmanG.I. CoppolaA. GaoX.B. HorvathT.L. DianoS. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals.Nature2008454720684685110.1038/nature0718118668043
    [Google Scholar]
  66. Al DulaimiD. Recent advances in oesophageal diseases.Gastroenterol. Hepatol. Bed Bench20147318618925120902
    [Google Scholar]
  67. DemineS. RenardP. ArnouldT. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases.Cells20198879510.3390/cells808079531366145
    [Google Scholar]
  68. JockenJ.W.E. González HernándezM.A. HoebersN.T.H. van der BeekC.M. EssersY.P.G. BlaakE.E. CanforaE.E. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model.Front. Endocrinol. (Lausanne)2018837210.3389/fendo.2017.0037229375478
    [Google Scholar]
  69. GoffredoM. MassK. ParksE.J. WagnerD.A. McClureE.A. GrafJ. SavoyeM. PierpontB. ClineG. SantoroN. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth.J. Clin. Endocrinol. Metab.2016101114367437610.1210/jc.2016‑179727648960
    [Google Scholar]
  70. KimJ.G. SuyamaS. KochM. JinS. Argente-ArizonP. ArgenteJ. LiuZ.W. ZimmerM.R. JeongJ.K. Szigeti-BuckK. GaoY. Garcia-CaceresC. YiC.X. SalmasoN. VaccarinoF.M. ChowenJ. DianoS. DietrichM.O. TschöpM.H. HorvathT.L. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding.Nat. Neurosci.201417790891010.1038/nn.372524880214
    [Google Scholar]
  71. HuangW. ManY. GaoC. ZhouL. GuJ. XuH. WanQ. LongY. ChaiL. XuY. XuY. Short-chain fatty acids ameliorate diabetic nephropathy via gpr43-mediated inhibition of oxidative stress and nf-kappab signaling.Oxid. Med. Cell. Longev.2020202012110.1155/2020/407483232831998
    [Google Scholar]
  72. DucaF.A. WaiseT.M.Z. PepplerW.T. LamT.K.T. The metabolic impact of small intestinal nutrient sensing.Nat. Commun.202112190310.1038/s41467‑021‑21235‑y33568676
    [Google Scholar]
  73. ZhaoT. ZhanL. ZhouW. ChenW. LuoJ. ZhangL. WengZ. ZhaoC. LiuS. The effects of erchen decoction on gut microbiota and lipid metabolism disorders in zucker diabetic fatty rats.Front. Pharmacol.20211264752910.3389/fphar.2021.64752934366839
    [Google Scholar]
  74. YaoZ. GuoJ. DuB. HongL. ZhuY. FengX. HouY. ShiA. Effects of Shenling Baizhu powder on intestinal microflora metabolites and liver mitochondrial energy metabolism in nonalcoholic fatty liver mice.Front. Microbiol.202314114706710.3389/fmicb.2023.114706737538846
    [Google Scholar]
  75. HeG. ChenT. HuangL. ZhangY. FengY. LiuQ. YinX. QuS. YangC. WanJ. LiangL. YanJ. LiuW. Tibetan tea reduces obesity brought on by a high-fat diet and modulates gut flora in mice.Food Sci. Nutr.202311106582659510.1002/fsn3.360737823111
    [Google Scholar]
  76. WangY. FeiY. LiuL. XiaoY. PangY. KangJ. WangZ. Polygonatum odoratum polysaccharides modulate gut microbiota and mitigate experimentally induced obesity in rats.Int. J. Mol. Sci.20181911358710.3390/ijms1911358730428630
    [Google Scholar]
  77. WangZ. YaoW. SunY. HanY. ChenX. GongP. ZhaiP. PeiS. XieJ. BaQ. WangH. Eucommia bark/leaf extract improves lipid metabolism disorders by affecting intestinal microbiota and microbiome-host interaction in HFD mice.J. Agric. Food Chem.20237173297331410.1021/acs.jafc.2c0723936753681
    [Google Scholar]
  78. FordA.C. VannerS. KashyapP.C. NasserY. Chronic visceral pain: new peripheral mechanistic insights and resulting treatments.Gastroenterology2024166697699410.1053/j.gastro.2024.01.04538325759
    [Google Scholar]
  79. de VosW.M. TilgH. Van HulM. CaniP.D. Gut microbiome and health: mechanistic insights.Gut20227151020103210.1136/gutjnl‑2021‑32678935105664
    [Google Scholar]
  80. YinY. SichlerA. EckerJ. LaschingerM. LiebischG. HöringM. BasicM. BleichA. ZhangX.J. KübelsbeckL. PlaggeJ. SchererE. WohlleberD. WangJ. WangY. SteffaniM. StupakovP. GärtnerY. LohöferF. MoglerC. FriessH. HartmannD. HolzmannB. HüserN. JanssenK.P. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis.J. Hepatol.202378482083510.1016/j.jhep.2022.12.02836681162
    [Google Scholar]
  81. DuanJ. LiuH. ZhaoF. YuanQ. JiY. CaiX. HeX. LiX. LiJ. WuK. GaoT. ZhuS. LinS. WangM.W. ChengX. YinW. JiangY. YangD. XuH.E. GPCR activation and GRK2 assembly by a biased intracellular agonist.Nature2023620797467668110.1038/s41586‑023‑06395‑937532940
    [Google Scholar]
  82. TangG. DuY. GuanH. JiaJ. ZhuN. ShiY. RongS. YuanW. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals.Br. J. Pharmacol.2022179115917810.1111/bph.1569334638162
    [Google Scholar]
  83. FujikawaT. ChuangJ.C. SakataI. RamadoriG. CoppariR. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice.Proc. Natl. Acad. Sci. USA201010740173911739610.1073/pnas.100802510720855609
    [Google Scholar]
  84. FujikawaT. BerglundE.D. PatelV.R. RamadoriG. ViannaC.R. VongL. ThorelF. CheraS. HerreraP.L. LowellB.B. ElmquistJ.K. BaldiP. CoppariR. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin.Cell Metab.201318343144410.1016/j.cmet.2013.08.00424011077
    [Google Scholar]
  85. LiJ. ZhaoJ. TianC. DongL. KangZ. WangJ. ZhaoS. LiM. TongX. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids.Nutr. Metab. (Lond.)20242114910.1186/s12986‑024‑00829‑539026248
    [Google Scholar]
  86. StarlingS. Exploring the regulation of glucagon secretion.Nat. Rev. Endocrinol.20221826910.1038/s41574‑021‑00617‑834880405
    [Google Scholar]
  87. LuoP. LednovichK. XuK. NnyamahC. LaydenB.T. XuP. Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis.Transl. Res.202224812815010.1016/j.trsl.2022.06.00335688319
    [Google Scholar]
  88. HongJ. JiaY. PanS. JiaL. LiH. HanZ. CaiD. ZhaoR. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice.Oncotarget2016735560715608210.18632/oncotarget.1126727528227
    [Google Scholar]
  89. YiZ. ChenL. WangY. HeD. ZhaoD. ZhangS. YuR. HuangJ. The potential mechanism of Liu- Wei-Di-Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism.Acta Diabetol.202259101295130810.1007/s00592‑022‑01922‑y35857109
    [Google Scholar]
  90. CaoY. YaoG. ShengY. YangL. WangZ. YangZ. ZhuangP. ZhangY. Jinqi jiangtang tablet regulates gut microbiota and improve insulin sensitivity in type 2 diabetes mice.J. Diabetes Res.2019201911210.1155/2019/187213430733971
    [Google Scholar]
  91. ZhangZ. ZhangH. ChenT. ShiL. WangD. TangD. Regulatory role of short-chain fatty acids in inflammatory bowel disease.Cell Commun. Signal.20222016410.1186/s12964‑022‑00869‑535546404
    [Google Scholar]
  92. YaoY. YanL. ChenH. WuN. WangW. WangD. Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids.Phytomedicine20207715326810.1016/j.phymed.2020.15326832663709
    [Google Scholar]
  93. ZhangX. ZhaoY. XuJ. XueZ. ZhangM. PangX. ZhangX. ZhaoL. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats.Sci. Rep.2015511440510.1038/srep1440526396057
    [Google Scholar]
  94. ZhangC. ZhangM. PangX. ZhaoY. WangL. ZhaoL. Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations.ISME J.20126101848185710.1038/ismej.2012.2722495068
    [Google Scholar]
  95. YangY. ChangY. WuY. LiuH. LiuQ. KangZ. WuM. YinH. DuanJ. A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota.Int. J. Biol. Macromol.20211832074208710.1016/j.ijbiomac.2021.05.20934097961
    [Google Scholar]
  96. WatsonC.J. LydicR. BaghdoyanH.A. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.J. Neurochem.2011118457158010.1111/j.1471‑4159.2011.07350.x21679185
    [Google Scholar]
  97. DamianiF. CornutiS. TogniniP. The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders.Neuropharmacology202323110949110.1016/j.neuropharm.2023.10949136924923
    [Google Scholar]
  98. ChenY. XuJ. ChenY. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders.Nutrients2021136209910.3390/nu1306209934205336
    [Google Scholar]
  99. DalileB. Van OudenhoveL. VervlietB. VerbekeK. The role of short-chain fatty acids in microbiota–gut–brain communication.Nat. Rev. Gastroenterol. Hepatol.201916846147810.1038/s41575‑019‑0157‑331123355
    [Google Scholar]
  100. LiQ. HuJ. NieQ. ChangX. FangQ. XieJ. LiH. NieS. Hypoglycemic mechanism of polysaccharide from Cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration.Sci. China Life Sci.202164111713210.1007/s11427‑019‑1647‑632562054
    [Google Scholar]
  101. YanJ. HerzogJ.W. TsangK. BrennanC.A. BowerM.A. GarrettW.S. SartorB.R. AliprantisA.O. CharlesJ.F. Gut microbiota induce IGF-1 and promote bone formation and growth.Proc. Natl. Acad. Sci. USA201611347E7554E756310.1073/pnas.160723511327821775
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128354909241213070313
Loading
/content/journals/cpd/10.2174/0113816128354909241213070313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test