Skip to content
2000
Volume 31, Issue 21
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Long non-coding RNAs (lncRNAs) refer to RNA molecules that exceed 200 nucleotides in length. While lncRNAs do not possess the capacity to encode proteins, they play crucial roles in gene expression, chromatin remodeling, and protein relocation. PSMA3 antisense RNA 1 (PSMA3-AS1) is a newly discovered lncRNA located on human chromosome 14q23.1. Convincing evidence shows that it acts as a tumor-promoting factor in several forms of human cancers. Moreover, high expression of PSMA3-AS1 is linked to poor clinical and pathological features and adverse prognosis in eight types of cancer. The molecular mechanisms of PSMA3-AS1 are diverse and complex. Existing evidence demonstrates that PSMA3-AS1 is activated by two transcription factors, PAX5 and YY-1, and influences cancer cell growth, metastasis, apoptosis, drug resistance, oxidative stress, and autophagy by acting as a competing endogenous RNA, activating signaling pathways, directly interacting with RNA or proteins, as well as participating in the epithelial-mesenchymal transition process. Therefore, PSMA3-AS1 holds promise as a biomarker for cancer detection and prediction, as well as a novel therapeutic target. This review explores the expression features, biological roles, potential mechanisms, and clinical significance of PSMA3-AS1 in various human cancers and provides directions for future research.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128350406241223053744
2025-01-31
2025-09-05
Loading full text...

Full text loading...

References

  1. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  2. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  3. GatenbyR.A. BrownJ.S. The evolution and ecology of resistance in cancer therapy.Cold Spring Harb. Perspect. Med.20201011a04097210.1101/cshperspect.a040972
    [Google Scholar]
  4. GonçalvesA.C. RichiardoneE. JorgeJ. PolóniaB. XavierC.P.R. SalaroglioI.C. RigantiC. VasconcelosM.H. CorbetC. Sarmento-RibeiroA.B. Impact of cancer metabolism on therapy resistance – Clinical implications.Drug Resist. Updat.20215910079710.1016/j.drup.2021.10079734955385
    [Google Scholar]
  5. MercerT.R. DingerM.E. MattickJ.S. Long non-coding RNAs: Insights into functions.Nat. Rev. Genet.200910315515910.1038/nrg252119188922
    [Google Scholar]
  6. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  7. MattickJ.S. AmaralP.P. CarninciP. CarpenterS. ChangH.Y. ChenL.L. ChenR. DeanC. DingerM.E. FitzgeraldK.A. GingerasT.R. GuttmanM. HiroseT. HuarteM. JohnsonR. KanduriC. KapranovP. LawrenceJ.B. LeeJ.T. MendellJ.T. MercerT.R. MooreK.J. NakagawaS. RinnJ.L. SpectorD.L. UlitskyI. WanY. WiluszJ.E. WuM. Long non-coding RNAs: Definitions, functions, challenges and recommendations.Nat. Rev. Mol. Cell Biol.202324643044710.1038/s41580‑022‑00566‑836596869
    [Google Scholar]
  8. ZhangY. LiuH. ZhangQ. ZhangZ. Long noncoding RNA LINC01006 facilitates cell proliferation, migration, and epithelial-mesenchymal transition in lung adenocarcinoma via targeting the MicroRNA 129-2-3p/CTNNB1 axis and activating Wnt/ β -catenin signaling pathway.Mol. Cell. Biol.2021416e00380-2010.1128/MCB.00380‑2033753463
    [Google Scholar]
  9. HuJ. HuangH. XiZ. MaS. MingJ. DongF. GuoH. ZhangH. ZhaoE. YaoG. YangL. ZhangF. ZhengW. ChenH. HuangT. LiL. LncRNA SEMA3B-AS1 inhibits breast cancer progression by targeting miR-3940/KLLN axis.Cell Death Dis.202213980010.1038/s41419‑022‑05189‑736123344
    [Google Scholar]
  10. WuQ. ZhangH. YangD. MinQ. WangY. ZhangW. ZhanQ. The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma.Int. J. Biol. Sci.202218134824483610.7150/ijbs.7123435982900
    [Google Scholar]
  11. KangY.J. YangD.C. KongL. HouM. MengY.Q. WeiL. GaoG. CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features.Nucleic Acids Res.201745W1W12W1610.1093/nar/gkx42828521017
    [Google Scholar]
  12. XuH. HanH. SongS. YiN. QianC. QiuY. ZhouW. HongY. ZhuangW. LiZ. LiB. ZhuangW. Exosome-transmitted PSMA3 and PSMA3-AS1 promote proteasome inhibitor resistance in multiple myeloma.Clin. Cancer Res.20192561923193510.1158/1078‑0432.CCR‑18‑236330610101
    [Google Scholar]
  13. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑234385702
    [Google Scholar]
  14. LiF. YuL. ZhuJ. LncRNA PSMA3-AS1 promotes lung cancer growth and invasion via sponging MiR-4504.Cancer Manag. Res.2020125277528310.2147/CMAR.S25357532669876
    [Google Scholar]
  15. LiD. GuoJ. JiaR. Histone code reader SPIN1 is a promising target of cancer therapy.Biochimie2021191788610.1016/j.biochi.2021.09.00234492335
    [Google Scholar]
  16. WangL. WuL. PangJ. Long noncoding RNA PSMA3-AS1 functions as a microRNA-409-3p sponge to promote the progression of non-small cell lung carcinoma by targeting spindlin 1.Oncol. Rep.20204441550156010.3892/or.2020.769332945481
    [Google Scholar]
  17. ChenY. ZhouX. HuangC. LiL. QinY. TianZ. HeJ. LiuH. LncRNA PART1 promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-17-5p.J. Cell. Biochem.20211223-431532510.1002/jcb.2971433368623
    [Google Scholar]
  18. ZhangG. AnX. ZhaoH. ZhangQ. ZhaoH. Long non-coding RNA HNF1A-AS1 promotes cell proliferation and invasion via regulating miR-17-5p in non-small cell lung cancer.Biomed. Pharmacother.20189859459910.1016/j.biopha.2017.12.08029289833
    [Google Scholar]
  19. XuY. TanX. YangQ. FangZ. ChenW. LncRNA HCG11 enhances the chemosensitivity of non-small cell lung cancer cells to Gemcitabine via miR-17-5p/p21 axis.Expert Rev. Anticancer Ther.2024241-2819310.1080/14737140.2024.230535238230690
    [Google Scholar]
  20. YiM. ZhengX. NiuM. ZhuS. GeH. WuK. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions.Mol. Cancer20222112810.1186/s12943‑021‑01489‑235062949
    [Google Scholar]
  21. ChengG. LiY. LiuZ. SongX. lncRNA PSMA3-AS1 promotes the progression of non-small cell lung cancer through targeting miR-17-5p/PD-L1.Adv. Clin. Exp. Med.202130101043105010.17219/acem/13862434610219
    [Google Scholar]
  22. PastushenkoI. BlanpainC. EMT transition states during tumor progression and metastasis.Trends Cell Biol.201929321222610.1016/j.tcb.2018.12.00130594349
    [Google Scholar]
  23. ChaiA.W.Y. LimK.P. CheongS.C. Translational genomics and recent advances in oral squamous cell carcinoma.Semin. Cancer Biol.202061718310.1016/j.semcancer.2019.09.01131542510
    [Google Scholar]
  24. LiJ. ChenC. ChenB. GuoT. High FN1 expression correlates with gastric cancer progression.Pathol. Res. Pract.202223915417910.1016/j.prp.2022.15417936274380
    [Google Scholar]
  25. CaoX. LuanK. YangJ. HuangY. Targeting lncRNA PSMA3-AS1, a prognostic marker, suppresses malignant progression of oral squamous cell carcinoma.Dis. Markers2021202111010.1155/2021/313804634457087
    [Google Scholar]
  26. LiuX. ZhangM. YingS. ZhangC. LinR. ZhengJ. ZhangG. TianD. GuoY. DuC. ChenY. ChenS. SuX. JiJ. DengW. LiX. QiuS. YanR. XuZ. WangY. GuoY. CuiJ. ZhuangS. YuH. ZhengQ. MaromM. ShengS. ZhangG. HuS. LiR. SuM. Genetic alterations in esophageal tissues from squamous dysplasia to carcinoma.Gastroenterology2017153116617710.1053/j.gastro.2017.03.03328365443
    [Google Scholar]
  27. LiuK. ZhaoT. WangJ. ChenY. ZhangR. LanX. QueJ. Etiology, cancer stem cells and potential diagnostic biomarkers for esophageal cancer.Cancer Lett.2019458212810.1016/j.canlet.2019.05.01831125642
    [Google Scholar]
  28. ZengJ. ZhangJ. SunY. WangJ. RenC. BanerjeeS. OuyangL. WangY. Targeting EZH2 for cancer therapy: From current progress to novel strategies.Eur. J. Med. Chem.202223811441910.1016/j.ejmech.2022.11441935569264
    [Google Scholar]
  29. QiuB.Q. LinX.H. YeX.D. HuangW. PeiX. XiongD. LongX. ZhuS.Q. LuF. LinK. ZhangX.Q. XuJ.J. ShengL.L. ZhangX.M. ZhangP.F. WuY.B. Long non-coding RNA PSMA3-AS1 promotes malignant phenotypes of esophageal cancer by modulating the miR-101/EZH2 axis as a ceRNA.Aging20201221843185610.18632/aging.10271632005028
    [Google Scholar]
  30. SyllaiosA. GazouliM. VailasM. MylonasK.S. SakellariouS. SougioultzisS. KaravokyrosI. LiakakosT. SchizasD. The expression patterns and implications of MALAT1, MANCR, PSMA3-AS1 and miR-101 in esophageal adenocarcinoma.Int. J. Mol. Sci.20232519810.3390/ijms2501009838203269
    [Google Scholar]
  31. WeiL. SunJ. ZhangN. ZhengY. WangX. LvL. LiuJ. XuY. ShenY. YangM. Noncoding RNAs in gastric cancer: Implications for drug resistance.Mol. Cancer20201916210.1186/s12943‑020‑01185‑732192494
    [Google Scholar]
  32. BhattacharyyaA. ChattopadhyayR. MitraS. CroweS.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases.Physiol. Rev.201494232935410.1152/physrev.00040.201224692350
    [Google Scholar]
  33. GorriniC. HarrisI.S. MakT.W. Modulation of oxidative stress as an anticancer strategy.Nat. Rev. Drug Discov.2013121293194710.1038/nrd400224287781
    [Google Scholar]
  34. LobodaA. DamulewiczM. PyzaE. JozkowiczA. DulakJ. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism.Cell. Mol. Life Sci.201673173221324710.1007/s00018‑016‑2223‑027100828
    [Google Scholar]
  35. SongJ. LiH. LiuY. LiX. ShiQ. LeiQ.Y. HuW. HuangS. ChenZ. HeX. Aldolase A accelerates cancer progression by modulating mRNA translation and protein biosynthesis via noncanonical mechanisms.Adv. Sci.20231026230242510.1002/advs.20230242537431681
    [Google Scholar]
  36. KanL. YangM. ZhangH. Long noncoding RNA PSMA3-AS1 functions as a competing endogenous RNA to promote gastric cancer progression by regulating the miR-329-3p/ALDOA axis.Biol. Direct20231813610.1186/s13062‑023‑00392‑837403106
    [Google Scholar]
  37. LytleN.K. BarberA.G. ReyaT. Stem cell fate in cancer growth, progression and therapy resistance.Nat. Rev. Cancer2018181166968010.1038/s41568‑018‑0056‑x30228301
    [Google Scholar]
  38. ZaccaraS. RiesR.J. JaffreyS.R. Reading, writing and erasing mRNA methylation.Nat. Rev. Mol. Cell Biol.2019201060862410.1038/s41580‑019‑0168‑531520073
    [Google Scholar]
  39. CiY. ZhangY. ZhangX. Methylated lncRNAs suppress apoptosis of gastric cancer stem cells via the lncRNA–miRNA/protein axis.Cell. Mol. Biol. Lett.20242915110.1186/s11658‑024‑00568‑838600465
    [Google Scholar]
  40. BrindleyP.J. BachiniM. IlyasS.I. KhanS.A. LoukasA. SiricaA.E. TehB.T. WongkhamS. GoresG.J. Cholangiocarcinoma.Nat. Rev. Dis. Primers2021716510.1038/s41572‑021‑00300‑234504109
    [Google Scholar]
  41. SunD. LiF. LiuL. YuS. WangH. GaoX. LiuG. ZhaoY. QiuG. JiangX. PSMA3-AS1 induced by transcription factor PAX5 promotes cholangiocarcinoma proliferation, migration and invasion by sponging miR-376a-3p to up-regulate LAMC1.Aging202214150952510.18632/aging.20382835022330
    [Google Scholar]
  42. XuH. YuX. YangZ. SongQ. ChengS. HeZ. DaiL. PAX5-activated lncRNA ARRDC1-AS1 accelerates the autophagy and progression of DLBCL through sponging miR-2355-5p to regulate ATG5.Life Sci.202128611993210.1016/j.lfs.2021.11993234499929
    [Google Scholar]
  43. WuX. XiaoY. ZhouY. ZhouZ. YanW. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4.Cell Death Dis.201910747210.1038/s41419‑019‑1699‑631209207
    [Google Scholar]
  44. ZhangN. LiZ. BaiF. ZhangS. PAX5-induced upregulation of IDH1-AS1 promotes tumor growth in prostate cancer by regulating ATG5-mediated autophagy.Cell Death Dis.2019101073410.1038/s41419‑019‑1932‑331570703
    [Google Scholar]
  45. BaiJ. ZhaoY. ShiK. FanY. HaY. ChenY. LuoB. LuY. JieW. ShenZ. HIF-1α-mediated LAMC1 overexpression is an unfavorable predictor of prognosis for glioma patients: Evidence from pan-cancer analysis and validation experiments.J. Transl. Med.202422139110.1186/s12967‑024‑05218‑338678297
    [Google Scholar]
  46. WoodL.D. CantoM.I. JaffeeE.M. SimeoneD.M. Pancreatic cancer: Pathogenesis, screening, diagnosis, and treatment.Gastroenterology20221632386402.e110.1053/j.gastro.2022.03.05635398344
    [Google Scholar]
  47. YangJ. LuC. WeiJ. GuoY. LiuW. LuoL. FischG. LiX. Inhibition of KPNA4 attenuates prostate cancer metastasis.Oncogene201736202868287810.1038/onc.2016.44027941876
    [Google Scholar]
  48. BiJ. LiangW. WangY. TianW. CaoS. LiuP. Long noncoding RNA PSMA3 antisense RNA 1 promotes cell proliferation, migration, and invasion in pancreatic ductal adenocarcinoma via targeting MicroRNA-154-5p to positively modulate karyopherin subunit alpha 4.Pancreas20225181037104610.1097/MPA.000000000000213636607951
    [Google Scholar]
  49. DeDeckerL. CoppedgeB. Avelar-BarraganJ. KarnesW. WhitesonK. Microbiome distinctions between the CRC carcinogenic pathways.Gut Microbes202113111210.1080/19490976.2020.185464133446008
    [Google Scholar]
  50. LiJ.H. LiuS. ZhouH. QuL.H. YangJ.H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data.Nucleic Acids Res.201442D1D92D9710.1093/nar/gkt124824297251
    [Google Scholar]
  51. PengP. WangY. WangB.L. SongY.H. FangY. JiH. HuangfuC.N. WangK.M. ZhengQ. LncRNA PSMA3-AS1 promotes colorectal cancer cell migration and invasion via regulating miR-4429.Eur. Rev. Med. Pharmacol. Sci.20202422115941160133275226
    [Google Scholar]
  52. DyrskjøtL. HanselD.E. EfstathiouJ.A. KnowlesM.A. GalskyM.D. TeohJ. TheodorescuD. Bladder cancer.Nat. Rev. Dis. Primers2023915810.1038/s41572‑023‑00468‑937884563
    [Google Scholar]
  53. ZhangM. XuY. YinS. QiuF. YY1-induced long non-coding RNA PSMA3 antisense RNA 1 functions as a competing endogenous RNA for microRNA 214-5p to expedite the viability and restrict the apoptosis of bladder cancer cells via regulating programmed cell death-ligand 1.Bioengineered20211229150916110.1080/21655979.2021.199490734720049
    [Google Scholar]
  54. WuY. ChenW. XuZ.P. GuW. PD-L1 distribution and perspective for cancer immunotherapy—blockade, knockdown, or inhibition.Front. Immunol.201910202210.3389/fimmu.2019.0202231507611
    [Google Scholar]
  55. ZhangR. SiuM.K.Y. NganH.Y.S. ChanK.K.L. Molecular biomarkers for the early detection of ovarian cancer.Int. J. Mol. Sci.202223191204110.3390/ijms23191204136233339
    [Google Scholar]
  56. LiuB. PanS. XiaoY. LiuQ. XuJ. JiaL. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway.J. Exp. Clin. Cancer Res.201837131610.1186/s13046‑018‑0994‑x30547804
    [Google Scholar]
  57. XuZ. JinH. DuanX. LiuH. ZhaoX. FanS. WangY. YaoT. LncRNA PSMA3-AS1 promotes cell proliferation, migration, and invasion in ovarian cancer by activating the PI3K/Akt pathway via the miR-378a-3p/GALNT3 axis.Environ. Toxicol.202136122562257710.1002/tox.2337034520102
    [Google Scholar]
  58. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. Moradi-KalbolandiS. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  59. SoJ.Y. OhmJ. LipkowitzS. YangL. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options.Pharmacol. Ther.202223710825310.1016/j.pharmthera.2022.10825335872332
    [Google Scholar]
  60. DongC. GuoY. YangY. GeX. Comprehensive analysis of PSME3: From pan-cancer analysis to experimental validation.Front. Immunol.202415129569310.3389/fimmu.2024.129569338312840
    [Google Scholar]
  61. Mei Peng Hao Yuan LncRNA PSMA3-AS1 activates the progression of triple-negative breast cancer cells by blocking miR-186-5p-mediated PSME3 inhibition.Cell. Mol. Biol.20236914818710.14715/cmb/2023.69.14.1338279473
    [Google Scholar]
  62. HeY.S. YangX.K. HuY.Q. XiangK. PanH.F. Emerging role of Fli1 in autoimmune diseases.Int. Immunopharmacol.20219010712710.1016/j.intimp.2020.10712733234418
    [Google Scholar]
  63. ChenZ. AraiE. KhanO. ZhangZ. NgiowS.F. HeY. HuangH. ManneS. CaoZ. BaxterA.E. CaiZ. FreilichE. AliM.A. GilesJ.R. WuJ.E. GreenplateA.R. HakeemM.A. ChenQ. KurachiM. NzinghaK. EkshyyanV. MathewD. WenZ. SpeckN.A. BattleA. BergerS.L. WherryE.J. ShiJ. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer.Cell2021184512621280.e2210.1016/j.cell.2021.02.01933636129
    [Google Scholar]
  64. ParthymosI. LiamisG. DounousiE. PentheroudakisG. MauriD. ZarkavelisG. FlorentinM. Metabolic consequences of immune checkpoint inhibitors: A new challenge in clinical practice.Crit. Rev. Oncol. Hematol.202015110297910.1016/j.critrevonc.2020.10297932480349
    [Google Scholar]
  65. PeiJ. PengY. MaK. LanC. ZhangT. LiY. ChenX. GaoH. Integrated analysis reveals FLi1 regulates the tumor immune microenvironment via its cell-type-specific expression and transcriptional regulation of distinct target genes of immune cells in breast cancer.BMC Genomics202425125010.1186/s12864‑024‑10174‑938448802
    [Google Scholar]
  66. YasinjanF. XingY. GengH. GuoR. YangL. LiuZ. WangH. Immunotherapy: A promising approach for glioma treatment.Front. Immunol.202314125561110.3389/fimmu.2023.125561137744349
    [Google Scholar]
  67. LiL. WangY. SongG. ZhangX. GaoS. LiuH. HOX cluster-embedded antisense long non-coding RNAs in lung cancer.Cancer Lett.2019450142110.1016/j.canlet.2019.02.03630807784
    [Google Scholar]
  68. HuangT. ChenY. ZengY. XuC. HuangJ. HuW. ChenX. FuH. Long non-coding RNA PSMA3-AS1 promotes glioma progression through modulating the miR-411-3p/HOXA10 pathway.BMC Cancer202121184410.1186/s12885‑021‑08465‑534294084
    [Google Scholar]
  69. MinnieS.A. HillG.R. Immunotherapy of multiple myeloma.J. Clin. Invest.202013041565157510.1172/JCI12920532149732
    [Google Scholar]
  70. NarayananS. CaiC.Y. AssarafY.G. GuoH.Q. CuiQ. WeiL. HuangJ.J. AshbyC.R.Jr ChenZ.S. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance.Drug Resist. Updat.20204810066310.1016/j.drup.2019.10066331785545
    [Google Scholar]
  71. McDonaldM.M. FairfieldH. FalankC. ReaganM.R. Adipose, bone, and myeloma: Contributions from the microenvironment.Calcif. Tissue Int.2017100543344810.1007/s00223‑016‑0162‑227343063
    [Google Scholar]
  72. RoccaroA.M. SaccoA. MaisoP. AzabA.K. TaiY.T. ReaganM. AzabF. FloresL.M. CampigottoF. WellerE. AndersonK.C. ScaddenD.T. GhobrialI.M. BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression.J. Clin. Invest.201312341542155510.1172/JCI6651723454749
    [Google Scholar]
  73. KayserS. LevisM.J. The clinical impact of the molecular landscape of acute myeloid leukemia.Haematologica2023108230832010.3324/haematol.2022.28080136722402
    [Google Scholar]
  74. Castaño-BonillaT. Alonso-DominguezJ.M. BarragánE. Rodríguez-VeigaR. SargasC. GilC. ChillónC. VidrialesM.B. GarcíaR. Martínez-LópezJ. AyalaR. LarrayozM.J. AnguitaE. CuelloR. CantalapiedraA. CarrilloE. Soria-SaldiseE. LabradorJ. RecioI. AlgarraL. Rodríguez-MedinaC. Bilbao-SyeiroC. López-LópezJ.A. SerranoJ. De CaboE. SayasM.J. OlaveM.T. Sánchez-GarcíaJ. MateosM. BlasC. López-LorenzoJ.L. Lainez-GonzalezD. SerranoJ. Martínez-CuadrónD. SanzM.A. MontesinosP. Prognostic significance of FLT3-ITD length in AML patients treated with intensive regimens.Sci. Rep.20211112074510.1038/s41598‑021‑00050‑x34671057
    [Google Scholar]
  75. BurchertA. Maintenance therapy for FLT3-ITD-mutated acute myeloid leukemia.Haematologica2021106366467010.3324/haematol.2019.24074733472354
    [Google Scholar]
  76. DaverN. VenugopalS. RavandiF. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm.Blood Cancer J.202111510410.1038/s41408‑021‑00495‑334045454
    [Google Scholar]
  77. WuS. WengS. ZhouW. ChenY. LiuZ. METTL3 affects FLT3-ITD+ acute myeloid leukemia by mediating autophagy by regulating PSMA3-AS1 stability.Cell Cycle202322101232124510.1080/15384101.2023.220477037088992
    [Google Scholar]
  78. ZengC. HuangW. LiY. WengH. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting.J. Hematol. Oncol.202013111710.1186/s13045‑020‑00951‑w32854717
    [Google Scholar]
  79. SmitsV.A.J. CabreraE. FreireR. GillespieD.A. Claspin – Checkpoint adaptor and DNA replication factor.FEBS J.2019286344145510.1111/febs.1459429931808
    [Google Scholar]
  80. ShiY. WangY. NiuK. ZhangW. LvQ. ZhangY. How CLSPN could demystify its prognostic value and potential molecular mechanism for hepatocellular carcinoma: A crosstalk study.Comput. Biol. Med.202417210826010.1016/j.compbiomed.2024.10826038492457
    [Google Scholar]
  81. KangJ. YaoP. TangQ. WangY. ZhouY. HuangJ. Systematic analysis of competing endogenous rna networks in diffuse large B-cell lymphoma and hodgkin’s lymphoma.Front. Genet.20201158668810.3389/fgene.2020.58668833193722
    [Google Scholar]
  82. WelchH.G. BergmarkR. Cancer screening, incidental detection, and over diagnosis.Clin. Chem.202470117918910.1093/clinchem/hvad12737757858
    [Google Scholar]
  83. KelleyK.D. AronowitzP. Cancer.Med. Clin. North Am.2022106341142210.1016/j.mcna.2021.12.00635491062
    [Google Scholar]
  84. HuiD. MoL. PaivaC.E. The importance of prognostication: Impact of prognostic predictions, disclosures, awareness, and acceptance on patient outcomes.Curr. Treat. Options Oncol.20212221210.1007/s11864‑020‑00810‑333432524
    [Google Scholar]
  85. YangQ. FuY. WangJ. YangH. ZhangX. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer.J. Zhejiang Univ. Sci. B202324121123114010.1631/jzus.B230006738057269
    [Google Scholar]
  86. SzilágyiM. PösO. MártonÉ. BuglyóG. SoltészB. KeserűJ. PenyigeA. SzemesT. NagyB. Circulating cell-free nucleic acids: Main characteristics and clinical application.Int. J. Mol. Sci.20202118682710.3390/ijms2118682732957662
    [Google Scholar]
  87. BashraheelS.S. DomlingA. GodaS.K. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine.Biomed. Pharmacother.202012511000910.1016/j.biopha.2020.11000932106381
    [Google Scholar]
  88. KaurR. BhardwajA. GuptaS. Cancer treatment therapies: Traditional to modern approaches to combat cancers.Mol. Biol. Rep.202350119663967610.1007/s11033‑023‑08809‑337828275
    [Google Scholar]
  89. KaraG. CalinG.A. OzpolatB. RNAi-based therapeutics and tumor targeted delivery in cancer.Adv. Drug Deliv. Rev.202218211411310.1016/j.addr.2022.11411335063535
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128350406241223053744
Loading
/content/journals/cpd/10.2174/0113816128350406241223053744
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; carcinoma cell; diagnosis; LncRNA; prognosis; PSMA3-AS1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test