Skip to content
2000
Volume 31, Issue 28
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Healthcare is rapidly leveraging machine learning to enhance patient care, streamline operations, and address complex medical issues. Though ethical issues, model efficiency, and algorithmic bias exist, the COVID-19 pandemic highlighted its usefulness in disease outbreak prediction and treatment optimization.

Aim

This article aims to discuss machine learning applications, benefits, and the ethical and practical challenges in healthcare.

Discussion

Machine learning assists in diagnosis, patient monitoring, and epidemic prediction but faces challenges like algorithmic bias and data quality. Overcoming these requires high-quality data, impartial algorithms, and model monitoring.

Conclusion

Machine learning might revolutionize healthcare by making it more efficient and better for patients. Full acceptance and the advancement of technologies to improve health outcomes on a global scale depend on resolving ethical, practical, and technological concerns.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128353371250119121315
2025-02-11
2025-10-26
Loading full text...

Full text loading...

References

  1. Ben-IsraelD. JacobsW.B. CashaS. LangS. RyuW.H. de Lotbiniere-BassettM. CadotteD.W. The impact of ML on patient care: A systematic review.N. Engl. J. Med.2016375131216121927682033
    [Google Scholar]
  2. CharD.S. AbràmoffM.D. FeudtnerC. Identifying ethical considerations for ML healthcare applications.Am. J. Bioeth.2020201171710.1080/15265161.2020.181946933103967
    [Google Scholar]
  3. AraújoF.H. SantanaA.M. de A Santos NetoP. Using machine learning to support healthcare professionals in making preauthorisation decisions.Int. J. Med. Inform.2016941710.1016/j.ijmedinf.2016.06.00727573306
    [Google Scholar]
  4. SaxenaS. VyasS. KumarB.S. GuptaS. Survey on online electronic paymentss security.2019 Amity International Conference on Artificial Intelligence (AICAI)Dubai, United Arab Emirates, 04-06 February 2019, pp. 756-75110.1109/AICAI.2019.8701353
    [Google Scholar]
  5. LiJ.P. HaqA.U. DinS.U. KhanJ. KhanA. SaboorA. Heart disease identification method using ML classification in e-healthcare.IEEE Access09 June 2020, vol. 8, pp. 107562-10758210.1109/ACCESS.2020.3001149
    [Google Scholar]
  6. RahaneW. DalviH. MagarY. KalaneA. JondhaleS. Lung cancer detection using image processing and ML healthcare.2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)Coimbatore, India, 01-03 March 2018, pp. 1-5
    [Google Scholar]
  7. AhmedZ. MohamedK. ZeeshanS. DongX. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine.Database20202020baaa01010.1093/database/baaa01032185396
    [Google Scholar]
  8. ChenP.H.C. LiuY. PengL. How to develop machine learning models for healthcare.Nat. Mater.201918541041410.1038/s41563‑019‑0345‑031000806
    [Google Scholar]
  9. CallahanA ShahNH ML in healthcare.Key Advances in Clinical InformaticsAcademic Press2017279291
    [Google Scholar]
  10. ShailajaK. SeetharamuluB. JabbarM.A. ML in healthcare: A review.2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA)Coimbatore, India, 29-31 March 2018, pp. 910-914
    [Google Scholar]
  11. ChenM. HaoY. HwangK. WangL. WangL. Disease prediction by machine learning over big data from healthcare communities.IEEE Access26 April 2017, vol. 5, pp. 8869-887910.1109/ACCESS.2017.2694446
    [Google Scholar]
  12. QayyumA. QadirJ. BilalM. Al-FuqahaA. Secure and robust ML for healthcare: A survey.IEEE Rev. Biomed. Eng.20211415618010.1109/RBME.2020.301348932746371
    [Google Scholar]
  13. MaityN.G. DasS. ML for improved diagnosis and prognosis in healthcare.2017 IEEE Aerospace ConferenceBig Sky, MT, USA, 04-11 March 2017, pp. 1-9
    [Google Scholar]
  14. DurgaS. NagR. DanielE. Survey on Machine Learning and Deep Learning Algorithms used in Internet of Things (IoT) Healthcare.2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) Erode, India, 2019, pp. 1018-1022
    [Google Scholar]
  15. JonesL.D. GolanD. HannaS.A. RamachandranM. Artificial intelligence, machine learning and the evolution of healthcare.Bone Joint Res.20187322322510.1302/2046‑3758.73.BJR‑2017‑0147.R129922439
    [Google Scholar]
  16. Ahamed F, Farid F. Applying internet of things and machine-learning for personalized healthcare: Issues and challenges. In 2018 International Conference on ML and Data Engineering (iCMLDE), IEEE 2018 (pp. 19-21).
  17. HanT. Stone-WeissN. HuangJ. GoelA. KumarA. Machine learning as a tool to design glasses with controlled dissolution for healthcare applications.Acta Biomater.202010728629810.1016/j.actbio.2020.02.03732114183
    [Google Scholar]
  18. RajendranS. MathivananS.K. JayagopalP. Purushothaman JanakiK. Manickam BernardB.A.M. PandyS. Sorakaya SomanathanM. Emphasizing privacy and security of edge intelligence with machine learning for healthcare.Int. J. Intell. Comput. Cybern.20221519210910.1108/IJICC‑05‑2021‑0099
    [Google Scholar]
  19. SeneviratneM.G. ShahN.H. ChuL. Bridging the implementation gap of machine learning in healthcare.BMJ Innov.202062454710.1136/bmjinnov‑2019‑000359
    [Google Scholar]
  20. JadhavS. KasarR. LadeN. PatilM. KolteS. Disease prediction by ML from healthcare communities.Int. J. Sci. Res. Sci. Technol.201958869
    [Google Scholar]
  21. McCraddenM.D. JoshiS. AndersonJ.A. MazwiM. GoldenbergA. Zlotnik ShaulR. Patient safety and quality improvement: Ethical principles for a regulatory approach to bias in healthcare machine learning.J. Am. Med. Inform. Assoc.202027122024202710.1093/jamia/ocaa08532585698
    [Google Scholar]
  22. HaqA.U. LiJ.P. KhanJ. MemonM.H. NazirS. AhmadS. KhanG.A. AliA. Intelligent ML approach for effective recognition of diabetes in E-healthcare using clinical data.Sensors2020209264910.3390/s2009264932384737
    [Google Scholar]
  23. Kempa-LiehrA.W. LinC.Y.C. BrittenR. ArmstrongD. WallaceJ. MordauntD. O’SullivanM. Healthcare pathway discovery and probabilistic machine learning.Int. J. Med. Inform.202013710408710.1016/j.ijmedinf.2020.10408732126509
    [Google Scholar]
  24. VaishyaR. JavaidM. KhanI.H. HaleemA. Artificial Intelligence (AI) applications for COVID-19 pandemic.Diabetes Metab. Syndr.202014433733910.1016/j.dsx.2020.04.01232305024
    [Google Scholar]
  25. VyasD.A. EisensteinL.G. JonesD.S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms.N. Engl. J. Med.2020383987488210.1056/NEJMms200474032853499
    [Google Scholar]
  26. HolzingerA. Interactive machine learning for health informatics: When do we need the human-in-the-loop?Brain Inform.20163211913110.1007/s40708‑016‑0042‑627747607
    [Google Scholar]
  27. AphinyanaphongsY. WiltJ. ChiversC.J. SendakM. Translating, implementing, deploying, and evaluating clinical interventions using ML based predictive models: Illustrative case studies.AMIA2019
    [Google Scholar]
  28. HeroldR. van den BergN. DörrM. HoffmannW. Telemedical care and monitoring for patients with chronic heart failure has a positive effect on survival.Health Serv. Res.201853153255510.1111/1475‑6773.1266128138988
    [Google Scholar]
  29. ZhangJ. GoodeK.M. CuddihyP.E. ClelandJ.G.F. Predicting hospitalization due to worsening heart failure using daily weight measurement: Analysis of the Trans‐European network‐home‐care management system (TEN‐HMS) study.Eur. J. Heart Fail.200911442042710.1093/eurjhf/hfp03319252210
    [Google Scholar]
  30. Cuba GyllenstenI. BonomiA.G. GoodeK.M. ReiterH. HabethaJ. AmftO. ClelandJ.G.F. Early indication of decompensated heart failure in patients on home-telemonitoring: A comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance.JMIR Med. Inform.201641e310.2196/medinform.484226892844
    [Google Scholar]
  31. LarburuN. ArtetxeA. EscolarV. LozanoA. KerexetaJ. Artificial intelligence to prevent mobile heart failure patients decompensation in real time: Monitoring-based predictive model.Mob. Inf. Syst.2018201811110.1155/2018/1546210
    [Google Scholar]
  32. GilliamF.R. EwaldG.A. Feasibility of automated heart failure decompensation detection using remote patient monitoring: Results from the decompensation detection study.Innovat Cardiac Rhythm Manage20123110
    [Google Scholar]
  33. GaoY. CaiG.Y. FangW. LiH.Y. WangS.Y. ChenL. YuY. LiuD. XuS. CuiP.F. ZengS.Q. FengX.X. YuR.D. WangY. YuanY. JiaoX.F. ChiJ.H. LiuJ.H. LiR.Y. ZhengX. SongC.Y. JinN. GongW.J. LiuX.Y. HuangL. TianX. LiL. XingH. MaD. LiC.R. YeF. GaoQ.L. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19.Nat. Commun.2020111503310.1038/s41467‑020‑18684‑233024092
    [Google Scholar]
  34. SegalG. SegevA. BromA. LifshitzY. WasserstrumY. ZimlichmanE. Reducing drug prescription errors and adverse drug events by application of a probabilistic, machine-learning based clinical decision support system in an inpatient setting.J. Am. Med. Inform. Assoc.201926121560156510.1093/jamia/ocz13531390471
    [Google Scholar]
  35. De Ramón FernándezA. Ruiz FernándezD. Prieto SánchezM.T. A decision support system for predicting the treatment of ectopic pregnancies.Int. J. Med. Inform.201912919820410.1016/j.ijmedinf.2019.06.00231445255
    [Google Scholar]
  36. EstevaA KuprelB NovoaRA KoJ SwetterSM BlauHM ThrunS Dermatologist-level classification of skin cancer with deep neural networks.Nature20175427639115118
    [Google Scholar]
  37. DoupeP. FaghmousJ. BasuS. ML for health services researchers.Value Health201922780881510.1016/j.jval.2019.02.01231277828
    [Google Scholar]
  38. TruettJ. CornfieldJ. KannelW. A multivariate analysis of the risk of coronary heart disease in Framingham.J. Chronic Dis.196720751152410.1016/0021‑9681(67)90082‑36028270
    [Google Scholar]
  39. MorgensternJ.D. BuajittiE. O’NeillM. PiggottT. GoelV. FridmanD. KornasK. RosellaL.C. Predicting population health with machine learning: A scoping review.BMJ Open20201010e03786010.1136/bmjopen‑2020‑03786033109649
    [Google Scholar]
  40. BarakatN. BradleyA.P. BarakatM.N.H. Intelligible support vector machines for diagnosis of diabetes mellitus.IEEE Trans. Inf. Technol. Biomed.20101441114112010.1109/TITB.2009.203948520071261
    [Google Scholar]
  41. ZaouiatC.A. LatifA. Internet of things and ML convergence: The e-healthcare revolution.ICCWCS'17: Proceedings of the 2nd International Conference on Computing and Wireless Communication SystemsLarache, Morocco, 2017, pp. 1-5
    [Google Scholar]
  42. FeldmanK. FaustL. WuX. HuangC. ChawlaN.V. Beyond volume: The impact of complex healthcare data on the ML pipeline. InTowards Integrative ML and Knowledge ExtractionBIRS WorkshopBanff, AB, Canada, July 24-26, 2015, pp. 150-169150169Springer International Publishing.
    [Google Scholar]
  43. McWilliamsC.J. LawsonD.J. Santos-RodriguezR. GilchristI.D. ChampneysA. GouldT.H. ThomasM.J.C. BourdeauxC.P. Towards a decision support tool for intensive care discharge: Machine learning algorithm development using electronic healthcare data from MIMIC-III and Bristol, UK.BMJ Open201993e02592510.1136/bmjopen‑2018‑02592530850412
    [Google Scholar]
  44. ChatterjeeS. GoyalD. PrakashA. SharmaJ. Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application.J. Bus. Res.202113181582510.1016/j.jbusres.2020.10.043
    [Google Scholar]
  45. GuptaS. SedamkarR.R. Apply ML for Healthcare to enhance performance and identify informative features.2019 6th International Conference on Computing for Sustainable Global Development (INDIACom)New Delhi, India, 13-15 March 2019, pp. 368-3722019
    [Google Scholar]
  46. ChenJ.H. VergheseA. Planning for the known unknown: ML for human healthcare systems.Am. J. Bioeth.202020111310.1080/15265161.2020.182267433103968
    [Google Scholar]
  47. LiW. ChaiY. KhanF. JanS.R.U. VermaS. MenonV.G. KavitaF. LiX. A comprehensive survey on ML-based big data analytics for IoT-enabled smart healthcare system.Mob. Netw. Appl.202126123425210.1007/s11036‑020‑01700‑6
    [Google Scholar]
  48. JavaidM. HaleemA. VaishyaR. BahlS. SumanR. VaishA. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic.Diabetes Metab. Syndr.202014441942210.1016/j.dsx.2020.04.03232344370
    [Google Scholar]
  49. SehA.H. Al-AmriJ.F. SubahiA.F. AgrawalA. KumarR. KhanR.A. ML based framework for maintaining privacy of healthcare data.Intell. Autom. Soft Comput.202129369771210.32604/iasc.2021.018048
    [Google Scholar]
  50. MastoliM.M. PolU.R. PatilR.D. ML classification algorithms for predictive analysis in healthcare.Mach. Learn.201961212251229
    [Google Scholar]
  51. WatsonD.S. KrutzinnaJ. BruceI.N. GriffithsC.E.M. McInnesI.B. BarnesM.R. FloridiL. Clinical applications of machine learning algorithms: Beyond the black box.BMJ2019364l88610.1136/bmj.l88630862612
    [Google Scholar]
  52. ShuklaS. HassanM.F. JungL.T. AwangA. KhanM.K. A 3-Tier Architecture for Network Latency Reduction in Healthcare Internet-of-Things Using Fog Computing and Machine Learning.ICSCA '19: Proceedings of the 2019 8th International Conference on Software and Computer ApplicationsPenang, Malaysia, 2019, pp. 522–528
    [Google Scholar]
  53. ShahP. KendallF. KhozinS. GoosenR. HuJ. LaramieJ. RingelM. SchorkN. Artificial intelligence and machine learning in clinical development: A translational perspective.NPJ Digit. Med.2019216910.1038/s41746‑019‑0148‑331372505
    [Google Scholar]
  54. AazamM. ZeadallyS. FlushingE.F. Task offloading in edge computing for machine learning-based smart healthcare.Comput. Netw.202119110801910.1016/j.comnet.2021.108019
    [Google Scholar]
  55. BærøeK. JansenM. KerasidouA. ML in healthcare: Exceptional technologies require exceptional ethics.Am. J. Bioeth.20202011485110.1080/15265161.2020.182010333103974
    [Google Scholar]
  56. ArjunK.P. KumarK.S. ML-A neoteric medicine to healthcare.Int. J. Emerg. Technol.2020113195201
    [Google Scholar]
  57. QaisarS.M. HussainS.F. Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare.Comput. Methods Programs Biomed.202120310603410.1016/j.cmpb.2021.10603433744752
    [Google Scholar]
  58. KhanM.I. JanM.A. MuhammadY. DoD.T. RehmanA.U. MavromoustakisC.X. PallisE. Tracking vital signs of a patient using channel state information and ML for a smart healthcare system.Neural Comput. Appl.202115
    [Google Scholar]
  59. BirkheadG.S. KlompasM. ShahN.R. Uses of electronic health records for public health surveillance to advance public health.Annu. Rev. Public Health201536134535910.1146/annurev‑publhealth‑031914‑12274725581157
    [Google Scholar]
  60. KolachalamaV.B. GargP.S. Machine learning and medical education.NPJ Digit. Med.2018115410.1038/s41746‑018‑0061‑131304333
    [Google Scholar]
  61. RajpurkarP. ChenE. BanerjeeO. TopolE.J. AI in health and medicine.Nat. Med.2022281313810.1038/s41591‑021‑01614‑035058619
    [Google Scholar]
  62. PriceW.N.II GerkeS. CohenI.G. Potential liability for physicians using artificial intelligence.JAMA2019322181765176610.1001/jama.2019.1506431584609
    [Google Scholar]
  63. LeeC ZameW YoonJ Van Der SchaarM. Deephit: A deep learning approach to survival analysis with competing risks.AAAI Conference on Artificial IntelligencePalo Alto, California USA, 2018 AAAI Press10.1609/aaai.v32i1.11842
    [Google Scholar]
  64. RothG.A. JohnsonC. AbajobirA. Abd-AllahF. AberaS.F. AbyuG. AhmedM. AksutB. AlamT. AlamK. AllaF. Alvis-GuzmanN. AmrockS. AnsariH. ÄrnlövJ. AsayeshH. AteyT.M. Avila-BurgosL. AwasthiA. BanerjeeA. BaracA. BärnighausenT. BarregardL. BediN. Belay KetemaE. BennettD. BerheG. BhuttaZ. BitewS. CarapetisJ. CarreroJ.J. MaltaD.C. Castañeda-OrjuelaC.A. Castillo-RivasJ. Catalá-LópezF. ChoiJ.Y. ChristensenH. CirilloM. CooperL.Jr CriquiM. CundiffD. DamascenoA. DandonaL. DandonaR. DavletovK. DharmaratneS. DorairajP. DubeyM. EhrenkranzR. El Sayed ZakiM. FaraonE.J.A. EsteghamatiA. FaridT. FarvidM. FeiginV. DingE.L. FowkesG. GebrehiwotT. GillumR. GoldA. GonaP. GuptaR. HabtewoldT.D. Hafezi-NejadN. HailuT. HailuG.B. HankeyG. HassenH.Y. AbateK.H. HavmoellerR. HayS.I. HorinoM. HotezP.J. JacobsenK. JamesS. JavanbakhtM. JeemonP. JohnD. JonasJ. KalkondeY. KarimkhaniC. KasaeianA. KhaderY. KhanA. KhangY.H. KheraS. KhojaA.T. KhubchandaniJ. KimD. KolteD. KosenS. KrohnK.J. KumarG.A. KwanG.F. LalD.K. LarssonA. LinnS. LopezA. LotufoP.A. El RazekH.M.A. MalekzadehR. MazidiM. MeierT. MelesK.G. MensahG. MeretojaA. MezgebeH. MillerT. MirrakhimovE. MohammedS. MoranA.E. MusaK.I. NarulaJ. NealB. NgalesoniF. NguyenG. ObermeyerC.M. OwolabiM. PattonG. PedroJ. QatoD. QorbaniM. RahimiK. RaiR.K. RawafS. RibeiroA. SafiriS. SalomonJ.A. SantosI. Santric MilicevicM. SartoriusB. SchutteA. SepanlouS. ShaikhM.A. ShinM.J. ShishehborM. ShoreH. SilvaD.A.S. SobngwiE. StrangesS. SwaminathanS. Tabarés-SeisdedosR. Tadele AtnafuN. TesfayF. ThakurJ.S. ThriftA. Topor-MadryR. TruelsenT. TyrovolasS. UkwajaK.N. UthmanO. VasankariT. VlassovV. VollsetS.E. WakayoT. WatkinsD. WeintraubR. WerdeckerA. WestermanR. WiysongeC.S. WolfeC. WorkichoA. XuG. YanoY. YipP. YonemotoN. YounisM. YuC. VosT. NaghaviM. MurrayC. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015.J. Am. Coll. Cardiol.201770112510.1016/j.jacc.2017.04.05228527533
    [Google Scholar]
  65. BertsimasD. BjarnadóttirM.V. KaneM.A. KryderJ.C. PandeyR. VempalaS. WangG. Algorithmic prediction of health-care costs.Oper. Res.20085661382139210.1287/opre.1080.0619
    [Google Scholar]
  66. RoyP.M. MeyerG. VielleB. Le GallC. VerschurenF. CarpentierF. LeveauP. FurberA. Appropriateness of diagnostic management and outcomes of suspected pulmonary embolism.Ann. Intern. Med.2006144315716410.7326/0003‑4819‑144‑3‑200602070‑0000316461959
    [Google Scholar]
  67. TsegaS. ChoH.J. Prediction and prevention using deep learning.JAMA Netw. Open201927e19744710.1001/jamanetworkopen.2019.744731322685
    [Google Scholar]
  68. CohenA.T. HarringtonR.A. GoldhaberS.Z. HullR.D. WiensB.L. GoldA. HernandezA.F. GibsonC.M. Extended thromboprophylaxis with betrixaban in acutely ill medical patients.N. Engl. J. Med.2016375653454410.1056/NEJMoa160174727232649
    [Google Scholar]
  69. RahimianF. Salimi-KhorshidiG. PayberahA.H. TranJ. Ayala SolaresR. RaimondiF. NazarzadehM. CanoyD. RahimiK. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records.PLoS Med.20181511e100269510.1371/journal.pmed.100269530458006
    [Google Scholar]
  70. KurtI. TureM. KurumA.T. Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease.Expert Syst. Appl.200834136637410.1016/j.eswa.2006.09.004
    [Google Scholar]
  71. CarrollR.J. EylerA.E. DennyJ.C. Naïve electronic health record phenotype identification for rheumatoid arthritis.AMIA Annu Symp Proc.201120111891962011
    [Google Scholar]
  72. Hippisley-CoxJ. CouplandC. Predicting risk of emergency admission to hospital using primary care data: Derivation and validation of QAdmissions score.BMJ Open201338e00348210.1136/bmjopen‑2013‑00348223959760
    [Google Scholar]
  73. MiottoR. LiL. KiddB.A. DudleyJ.T. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records.Sci. Rep.2016612609410.1038/srep2609427185194
    [Google Scholar]
  74. KangH. The prevention and handling of the missing data.Korean J. Anesthesiol.201364540240610.4097/kjae.2013.64.5.40223741561
    [Google Scholar]
  75. LiuY. ChenP.C. KrauseJ. PengL. How to read articles that use ML: Users guides to the medical literature.JAMA2019322181806181610.1001/jama.2019.1648931714992
    [Google Scholar]
  76. JohnsonA.E.W. PollardT.J. ShenL. LehmanL.H. FengM. GhassemiM. MoodyB. SzolovitsP. Anthony CeliL. MarkR.G. MIMIC-III, a freely accessible critical care database.Sci. Data20163116003510.1038/sdata.2016.3527219127
    [Google Scholar]
  77. LiuH MotodaH Feature selection for knowledge discovery and data mining.Springer Science+Business Media, LLC2012
    [Google Scholar]
  78. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  79. RifaiogluA.S. AtasH. MartinM.J. Cetin-AtalayR. AtalayV. DoğanT. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases.Brief. Bioinform.20192051878191210.1093/bib/bby06130084866
    [Google Scholar]
  80. DuggerS.A. PlattA. GoldsteinD.B. Drug development in the era of precision medicine.Nat. Rev. Drug Discov.201817318319610.1038/nrd.2017.22629217837
    [Google Scholar]
  81. Francesco P, Anna B, Massimo B. et al. Next generation diagnostic algorithm in non-small cell lung cancer predictive molecular pathology: The KWAY Italian multicenter cost evaluation study.Crit Rev Oncol Hematol2022169103525
    [Google Scholar]
  82. UrbanosG. MartínA. VázquezG. VillanuevaM. VillaM. Jimenez-RoldanL. ChavarríasM. LagaresA. JuárezE. SanzC. SupervisedM.L. Supervised machine learning methods and hyperspectral imaging techniques jointly applied for brain cancer classification.Sensors 20212111382710.3390/s2111382734073145
    [Google Scholar]
  83. MirkinS. AlbensiB.C. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer’s disease?Front. Aging Neurosci.202315109423310.3389/fnagi.2023.109423337187577
    [Google Scholar]
  84. MacRaildM. Sarrami-ForoushaniA. LassilaT. FrangiA.F. Accelerated simulation methodologies for computational vascular flow modelling.J. R. Soc. Interface2024212112023056510.1098/rsif.2023.056538350616
    [Google Scholar]
  85. YeD. ZunP. KrzhizhanovskayaV. HoekstraA.G. Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling.J. R. Soc. Interface2022191872021086410.1098/rsif.2021.086435193385
    [Google Scholar]
  86. ChauS.L. MuandetK. SejdinovicD. Explaining the uncertain: Stochastic shapley values for gaussian process models.arXiv:2305.151672024
    [Google Scholar]
  87. KyrimiE. McLachlanS. DubeK. NevesM.R. FahmiA. FentonN. A comprehensive scoping review of Bayesian networks in healthcare: Past, present and future.Artif. Intell. Med.202111710210810.1016/j.artmed.2021.10210834127238
    [Google Scholar]
  88. FregugliaV. GarciaN.L. Inference tools for Markov random fields on lattices: The r package mrf2d.J. Stat. Softw.2022101813610.18637/jss.v101.i08
    [Google Scholar]
  89. WenN. LiuG. ZhangJ. ZhangR. FuY. HanX. A fingerprints based molecular property prediction method using the BERT model.J. Cheminform.20221417110.1186/s13321‑022‑00650‑336271394
    [Google Scholar]
  90. ChenS.Y-C. Asynchronous training of quantum reinforcement learning.arXiv:2301.050962023
    [Google Scholar]
  91. DaveT. AthaluriS.A. SinghS. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations.Front. Artif. Intell.20236116959510.3389/frai.2023.116959537215063
    [Google Scholar]
  92. ThapaS. AdhikariS. ChatGPT, bard, and large language models for biomedical research: Opportunities and pitfalls.Ann. Biomed. Eng.202351122647265110.1007/s10439‑023‑03284‑037328703
    [Google Scholar]
  93. SharmaS. PajaiS. PrasadR. WanjariM.B. MunjewarP.K. SharmaR. PathadeA. A critical review of ChatGPT as a potential substitute for diabetes educators.Cureus2023155e3838010.7759/cureus.3838037265899
    [Google Scholar]
  94. KretschmerF. SeippJ. LudwiM. KlauG.W. BöckerS. Small molecule ML: All models are wrong, some may not even be useful.bioRxiv202310.1101/2023.03.27.534311
    [Google Scholar]
  95. KangQ. FangP. ZhangS. QiuH. LanZ. Deep graph convolutional network for small-molecule retention time prediction.J Chromatogr A2023171146443910.1016/j.chroma.2023.464439
    [Google Scholar]
  96. ShilpaS. KashyapG. SunojR.B. Recent applications of ML in molecular property and chemical reaction outcome predictions.J. Phys. Chem. A2023127408253827110.1021/acs.jpca.3c0477937769193
    [Google Scholar]
  97. StahlK. GraziadeiA. DauT. BrockO. RappsilberJ. Protein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning.Nat. Biotechnol.202341121810181910.1038/s41587‑023‑01704‑z36941363
    [Google Scholar]
  98. ChenS. WulamuA. ZouQ. ZhengH. WenL. GuoX. ChenH. ZhangT. ZhangY. MD-GNN: A mechanism-data- driven graph neural network for molecular properties prediction and new material discovery.J. Mol. Graph. Model.202312310850610.1016/j.jmgm.2023.10850637182505
    [Google Scholar]
  99. YangL. JinC. YangG. BingZ. HuangL. NiuY. YangL. Transformer-based deep learning method for optimizing ADMET properties of lead compounds.Phys. Chem. Chem. Phys.20232532377238510.1039/D2CP05332B36597997
    [Google Scholar]
  100. SalamA. SirajH.H. MohamadN. DasS. RabeyaY. Bedside teaching in undergraduate medical education: Issues, strategies, and new models for better preparation of new generation doctors.Iran. J. Med. Sci.20113611623365470
    [Google Scholar]
  101. JanicikR.W. FletcherK.E. Teaching at the bedside: A new model.Med. Teach.200325212713010.1080/014215903100009249012745518
    [Google Scholar]
  102. RiderE.A. KeeferC.H. Communication skills competencies: Definitions and a teaching toolbox.Med. Educ.200640762462910.1111/j.1365‑2929.2006.02500.x16836534
    [Google Scholar]
  103. RamaniS. LeinsterS. AMEE Guide no. 34: Teaching in the clinical environment.Med. Teach.200830434736410.1080/0142159080206161318569655
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128353371250119121315
Loading
/content/journals/cpd/10.2174/0113816128353371250119121315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test