Skip to content
2000
Volume 31, Issue 28
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Intrauterine Adhesions (IUAs) are characterized by endometrial damage due to endometritis or curettage. Currently, the gold standard for IUA treatment is hysteroscopy, which enables the dissolution of IUA through mechanical or electrosurgical energy. Common strategies to prevent recurrence include the insertion of a balloon catheter or IUD in the uterus. Although hysteroscopy and postoperative strategies improve the uterine cavity’s morphology and menstrual flow in some patients, infertility and adhesion recurrence rates are among the problems that persist. Mesenchymal Stem Cells (MSCs) are ideal for tissue regeneration due to their self-renewal and immunomodulatory characteristics. MSCs also exert anti-fibrotic properties in IUA treatment. However, the clinical application of stem cells is limited due to safety concerns and cost. In this review, we have summarized the recent advances in the application of MSCs in IUA treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128348717250108184050
2025-01-22
2025-09-27
Loading full text...

Full text loading...

References

  1. DreislerE. KjerJ.J. Asherman’s syndrome: Current perspectives on diagnosis and management.Int. J. Womens Health20191119119810.2147/IJWH.S16547430936754
    [Google Scholar]
  2. KelleherA.M. Milano-FosterJ. BehuraS.K. SpencerT.E. Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success.Nat. Commun.201891243510.1038/s41467‑018‑04848‑829934619
    [Google Scholar]
  3. ChenL. ZhangC. ChenL. WangX. XiangB. WuX. GuoY. MouX. YuanL. ChenB. WangJ. XiangC. Human menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate cells via paracrine mediators.Stem Cells Transl. Med.20176127228410.5966/sctm.2015‑026528170193
    [Google Scholar]
  4. VitaleS.G. RiemmaG. CarugnoJ. Perez-MedinaT. Alonso PachecoL. HaimovichS. ParryJ.P. Di Spiezio SardoA. De FranciscisP. Postsurgical barrier strategies to avoid the recurrence of intrauterine adhesion formation after hysteroscopic adhesiolysis: A network meta-analysis of randomized controlled trials.Am. J. Obstet. Gynecol.20222264487498.e810.1016/j.ajog.2021.09.01534555319
    [Google Scholar]
  5. VitaleS.G. BruniS. ChiofaloB. RiemmaG. LasmarR.B. Updates in office hysteroscopy: A practical decalogue to perform a correct procedure.Updates Surg.202072496797610.1007/s13304‑020‑00713‑w32008214
    [Google Scholar]
  6. LinX.N. ZhouF. WeiM.L. YangY. LiY. LiT.C. ZhangS.Y. Randomized, controlled trial comparing the efficacy of intrauterine balloon and intrauterine contraceptive device in the prevention of adhesion reformation after hysteroscopic adhesiolysis.Fertil. Steril.2015104123524010.1016/j.fertnstert.2015.04.00825936237
    [Google Scholar]
  7. ShiX. SaravelosS.H. ZhouQ. HuangX. XiaE. LiT.C. Prevention of postoperative adhesion reformation by intermittent intrauterine balloon therapy: A randomised controlled trial.BJOG2019126101259126610.1111/1471‑0528.1584331207009
    [Google Scholar]
  8. XinL. LinX. PanY. ZhengX. ShiL. ZhangY. MaL. GaoC. ZhangS. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility.Acta Biomater.20199216017110.1016/j.actbio.2019.05.01231075515
    [Google Scholar]
  9. YamazakiK. KawaboriM. SekiT. TakamiyaS. KonnoK. WatanabeM. HoukinK. FujimuraM. Mesenchymal stem cell sheet promotes functional recovery and palliates neuropathic pain in a subacute spinal cord injury model.Stem Cells Int.20212021111810.1155/2021/996487734306098
    [Google Scholar]
  10. Kuo YR, Wang CT, Cheng JT, Wang FS, Chiang YC, Wang CJ. Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes. Plast Reconstr Surg 2011; 128(4): 872-80.10.1097/PRS.0b013e318217432921921763
  11. ChiH. GuanY. LiF. ChenZ. The effect of human umbilical cord mesenchymal stromal cells in protection of dopaminergic neurons from apoptosis by reducing oxidative stress in the early stage of a 6-OHDA-induced Parkinson’s disease model.Cell Transplant.2019281_suppl87S99S10.1177/096368971989113431775521
    [Google Scholar]
  12. SagaradzeG.D. BasalovaN.A. EfimenkoA.Y. TkachukV.A. Mesenchymal stromal cells as critical contributors to tissue regeneration.Front. Cell Dev. Biol.2020857617610.3389/fcell.2020.57617633102483
    [Google Scholar]
  13. CervellóI. SantamaríaX. MiyazakiK. MaruyamaT. SimónC. Cell therapy and tissue engineering from and toward the uterus.Thieme Medical Publishers2015366372
    [Google Scholar]
  14. GargettC.E. SchwabK.E. DeaneJ.A. Endometrial stem/progenitor cells: The first 10 years.Hum. Reprod. Update201622213716326552890
    [Google Scholar]
  15. WangX. BaoH. LiuX. WangC. HaoC. Effects of endometrial stem cell transplantation combined with estrogen in the repair of endometrial injury.Oncol. Lett.20181611115112210.3892/ol.2018.870229963188
    [Google Scholar]
  16. SaribasG.S. OzogulC. TiryakiM. Alpaslan PinarliF. Hamdemir KilicS. Effects of uterus derived mesenchymal stem cells and their exosomes on Asherman’s syndrome.Acta Histochem.2020122115146510.1016/j.acthis.2019.15146531776004
    [Google Scholar]
  17. MengX. IchimT.E. ZhongJ. RogersA. YinZ. JacksonJ. WangH. GeW. BoginV. ChanK.W. ThébaudB. RiordanN.H. Endometrial regenerative cells: A novel stem cell population.J. Transl. Med.2007515710.1186/1479‑5876‑5‑5718005405
    [Google Scholar]
  18. RossignoliF. CaselliA. GrisendiG. PiccinnoS. BurnsJ.S. MurgiaA. VeronesiE. LoschiP. MasiniC. ConteP. PaolucciP. HorwizE.M. DominiciM. Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood.BioMed Res. Int.20132013111410.1155/2013/90182123607099
    [Google Scholar]
  19. LaiD. WangF. YaoX. ZhangQ. WuX. XiangC. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure.J. Transl. Med.201513115510.1186/s12967‑015‑0516‑y25964118
    [Google Scholar]
  20. PatelA.N. ParkE. KuzmanM. BenettiF. SilvaF.J. AllicksonJ.G. Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation.Cell Transplant.200817330331110.3727/09636890878415392218522233
    [Google Scholar]
  21. ChenL. QuJ. XiangC. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine.Stem Cell Res. Ther.201910111010.1186/s13287‑018‑1105‑930606242
    [Google Scholar]
  22. DomninaA. NovikovaP. ObidinaJ. FridlyanskayaI. AlekseenkoL. KozhukharovaI. LyublinskayaO. ZeninV. NikolskyN. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium.Stem Cell Res. Ther.2018915010.1186/s13287‑018‑0801‑929482664
    [Google Scholar]
  23. LiuY. NiuR. YangF. YanY. LiangS. SunY. ShenP. LinJ. Biological characteristics of human menstrual blood-derived endometrial stem cells.J. Cell. Mol. Med.20182231627163910.1111/jcmm.1343729278305
    [Google Scholar]
  24. TanJ. LiP. WangQ. LiY. LiX. ZhaoD. XuX. KongL. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome.Hum. Reprod.201631122723272910.1093/humrep/dew23527664218
    [Google Scholar]
  25. CaoY. SunH. ZhuH. ZhuX. TangX. YanG. WangJ. BaiD. WangJ. WangL. ZhouQ. WangH. DaiC. DingL. XuB. ZhouY. HaoJ. DaiJ. HuY. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: A phase I clinical trial.Stem Cell Res. Ther.20189119210.1186/s13287‑018‑0904‑329996892
    [Google Scholar]
  26. ChenL. QuJ. ChengT. ChenX. XiangC. Menstrual blood-derived stem cells: Toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases.Stem Cell Res. Ther.201910140610.1186/s13287‑019‑1503‑731864423
    [Google Scholar]
  27. WuX. LuoY. ChenJ. PanR. XiangB. DuX. XiangL. ShaoJ. XiangC. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice.Stem Cells Dev.201423111245125710.1089/scd.2013.039024499421
    [Google Scholar]
  28. LiuY. NiuR. LiW. LinJ. StammC. SteinhoffG. MaN. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases.Cell. Mol. Life Sci.20197691681169510.1007/s00018‑019‑03019‑230721319
    [Google Scholar]
  29. UzielieneI. UrbonaiteG. TachtamisevaiteZ. MobasheriA. BernotieneE. The potential of menstrual blood-derived mesenchymal stem cells for cartilage repair and regeneration: Novel aspects.Stem Cells Int.20182018111010.1155/2018/574812630627174
    [Google Scholar]
  30. KhanmohammadiM. GolshahiH. SaffarianZ. MontazeriS. KhorasaniS. KazemnejadS. Repair of osteochondral defects in rabbit knee using menstrual blood stem cells encapsulated in fibrin glue: A good stem cell candidate for the treatment of osteochondral defects.Tissue Eng. Regen. Med.201916331132410.1007/s13770‑019‑00189‑931205859
    [Google Scholar]
  31. FengP. LiP. TanJ. Human menstrual blood-derived stromal cells promote recovery of premature ovarian insufficiency via regulating the ECM-dependent FAK/Akt signaling.Stem Cell Rev.201915224125510.1007/s12015‑018‑9867‑030560467
    [Google Scholar]
  32. ZhengS.X. WangJ. WangX.L. AliA. WuL.M. LiuY.S. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells.Int. J. Mol. Med.20184142201221210.3892/ijmm.2018.341529393381
    [Google Scholar]
  33. FanY. SunJ. ZhangQ. LaiD. Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model.Stem Cell Res. Ther.202112120710.1186/s13287‑021‑02260‑633762002
    [Google Scholar]
  34. TalR. ShaikhS. PallaviP. TalA. López-GiráldezF. LyuF. FangY.Y. ChinchanikarS. LiuY. KlimanH.J. AldermanM.III PluchinoN. KayaniJ. MamillapalliR. KrauseD.S. TaylorH.S. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy.PLoS Biol.2019179e300042110.1371/journal.pbio.300042131513564
    [Google Scholar]
  35. PolishukW.Z. Endometrial regeneration and adhesion formation.S. Afr. Med. J.197549124404421154128
    [Google Scholar]
  36. ZhangS. SunY. JiangD. ChenT. LiuR. LiX. LuY. QiaoL. PanY. LiuY. LinJ. Construction and optimization of an endometrial injury model in mice by transcervical ethanol perfusion.Reprod. Sci.202128369370210.1007/s43032‑020‑00296‑232939736
    [Google Scholar]
  37. XuQ.X. ZhangW.Q. LiuX.Z. YanW.K. LuL. SongS.S. WeiS.W. LiuY.N. KangJ.W. SuR.W. Notch1 signaling enhances collagen expression and fibrosis in mouse uterus.Biofactors202147585286410.1002/biof.177134320265
    [Google Scholar]
  38. KimY.Y. ChoiB.B. LimJ.W. KimY.J. KimS.Y. KuS.Y. Efficient production of murine uterine damage model.Tissue Eng. Regen. Med.201916211912910.1007/s13770‑018‑0149‑330989039
    [Google Scholar]
  39. PengX. YuS. LinH. WuF. YangJ. ZhouC. ZhangL. YangJ. ZhangW. Time-concentration-dependent profile of histone modifications on human hepatocytes treated by trichloroacetic acid.Int. J. Environ. Health Res.202232112376238410.1080/09603123.2021.196444834365848
    [Google Scholar]
  40. FengQ. GaoB. ZhaoX. HuangH. YiS. ZouL. LiuX. XueM. XuD. Establishment of an animal model of intrauterine adhesions after surgical abortion and curettage in pregnant rats.Ann. Transl. Med.2020845610.21037/atm.2020.01.13432175350
    [Google Scholar]
  41. ZhangS. LiP. YuanZ. TanJ. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion.Stem Cell Res. Ther.20191016110.1186/s13287‑019‑1155‑730770774
    [Google Scholar]
  42. ZhangS. ChangQ. LiP. TongX. FengY. HaoX. ZhangX. YuanZ. TanJ. Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model.Nanoscale202113157334734710.1039/D0NR08942G33889891
    [Google Scholar]
  43. SantamariaX. CabanillasS. CervellóI. ArbonaC. RagaF. FerroJ. PalmeroJ. RemohíJ. PellicerA. SimónC. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: A pilot cohort study.Hum. Reprod.20163151087109610.1093/humrep/dew04227005892
    [Google Scholar]
  44. MaH. LiuM. LiY. WangW. YangK. LuL. HeM. DengT. LiM. WuD. Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion.J. Obstet. Gynaecol. Res.202046112347235510.1111/jog.1444932856391
    [Google Scholar]
  45. PanchalS.Y. NagoriC.B. PatelH. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman′s syndrome.J. Hum. Reprod. Sci.201141434810.4103/0974‑1208.8236021772740
    [Google Scholar]
  46. SinghN. MohantyS. SethT. ShankarM. BhaskaranS. DharmendraS. Autologous stem cell transplantation in refractory Asherman′s syndrome: A novel cell based therapy.J. Hum. Reprod. Sci.201472939810.4103/0974‑1208.13886425191021
    [Google Scholar]
  47. WangJ JuB PanC Application of bone marrow-derived mesenchymal stem cells in the treatment of intrauterine adhesions in rats.Cell. Physiol. Biochem.20163941553156010.1159/000447857
    [Google Scholar]
  48. ZhuH. PanY. JiangY. LiJ. ZhangY. ZhangS. Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor β signaling in human endometrial stromal cells.Hum. Reprod.201934463564510.1093/humrep/dez00130715393
    [Google Scholar]
  49. ChangQ.Y. ZhangS.W. LiP.P. YuanZ.W. TanJ.C. Safety of menstrual blood-derived stromal cell transplantation in treatment of intrauterine adhesion.World J. Stem Cells202012536838010.4252/wjsc.v12.i5.36832547685
    [Google Scholar]
  50. ZhaoY. LuoQ. ZhangX. QinY. HaoJ. KongD. WangH. LiG. GuX. WangH. Clinical efficacy and safety of stem cell-based therapy in treating asherman syndrome: A system review and meta-analysis.Stem Cells Int.20202020111110.1155/2020/882053833414830
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128348717250108184050
Loading
/content/journals/cpd/10.2174/0113816128348717250108184050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test