Skip to content
2000
image of Metabolic Targets in CRC: The Emerging Role of Cytochrome P450 Inhibitors

Abstract

Cytochrome P450 (CYP 450) plays a pivotal role in the metabolism of a diverse range of agents, and its dysregulation can contribute to tumorigenesis, including tumor angiogenesis across various cancer types. This dysregulation may activate procarcinogenic xenobiotics and endogenous molecules while also inactivating anti-cancer drugs, resulting in drug resistance. The aim of this review is to demonstrate the potential and relevance of CYP inhibitors in the treatment of colorectal cancer (CRC). Several studies have documented the role of CYP enzymes in the metabolic rearrangements of various cancers through the mechanisms underlying metabolic rearrangements in CRC, including those related to glucose, fatty acids, cholesterol, and amino acids. Recent studies have focused on the targeting of metabolic mechanisms in CRC through the use of established CYP inhibitors, yielding varying degrees of success. Among these agents are clotrimazole (inhibitor of CYP24A1, 3A4, 2A6, and 2C8), KD-35 (CYP24A1 inhibitor), liarozole (CYP26A1 inhibitor), letrozole (CYP19A1 inhibitor), lopinavir/ritonavir and quercetin (CYP3A4 inhibitors), α-naphthoflavone and furanfylline (CYP1A1 inhibitors), as well as phenylpyrrole (a CYP1A2 and CYP2A6 inhibitor). Clinical studies investigating CYPs in cancer treatment have been reported in various cancers, including prostate, breast, pancreatic, hematological, lung, and salivary gland cancers, for purposes ranging from dose reduction and cost savings to enhance the efficacy of combined anti-cancer agents (CYP3A4, CYP3A4/5 and CYP1A2 inhibitors), and in addition, functioning as anti-cancer agents themselves (CYP17 inhibitors). Thus, these metabolizing enzymes reveal a complex interaction with cancer therapeutics, opening the door to novel strategies that go beyond conventional treatment paradigms. Harnessing CYP modulators could transform the treatment of CRC, offering more targeted and flexible options.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128341167250520063502
2025-05-29
2025-09-10
Loading full text...

Full text loading...

References

  1. Worldwide cancer data | World Cancer Research Fund International. 2022 Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/
  2. Siegel R.L. Wagle N.S. Cercek A. Smith R.A. Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023 73 3 233 254 10.3322/caac.21772 36856579
    [Google Scholar]
  3. Pimentel-Nunes P. Libânio D. Bastiaansen B.A.J. Bhandari P. Bisschops R. Bourke M.J. Esposito G. Lemmers A. Maselli R. Messmann H. Pech O. Pioche M. Vieth M. Weusten B.L.A.M. van Hooft J.E. Deprez P.H. Dinis-Ribeiro M. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2022. Endoscopy 2022 54 6 591 622 10.1055/a‑1811‑7025 35523224
    [Google Scholar]
  4. Colorectal Cancer - Types of Treatment. 2023 Available from: https://www.cancer.net/cancer-types/colorectal-cancer/types-treatment
  5. Colon Cancer Treatment (PDQ®). 2024 Available from: https://www.cancer.gov/types/colorectal/hp/colon-treatment-pdq#_645_toc
  6. da Silva W.C. de Araujo V.E. Lima E.M.A. dos Santos J.B.R. Silva M.R.R. Almeida P.H.R.F. de Assis Acurcio F. Godman B. Kurdi A. Cherchiglia M.L. Andrade E.I.G. Comparative effectiveness and safety of monoclonal antibodies (Bevacizumab, Cetuximab, and Panitumumab) in combination with chemotherapy for metastatic colorectal cancer: A systematic review and meta-analysis. BioDrugs 2018 32 6 585 606 10.1007/s40259‑018‑0322‑1 30499082
    [Google Scholar]
  7. Yoshihiro T. Kusaba H. Makiyama A. Kobayashi K. Uenomachi M. Ito M. Doi Y. Mitsugi K. Aikawa T. Takayoshi K. Esaki T. Shimokawa H. Tsuchihashi K. Ariyama H. Akashi K. Baba E. Efficacy and safety of ramucirumab plus modified FOLFIRI for metastatic colorectal cancer. Int. J. Clin. Oncol. 2019 24 5 508 515 10.1007/s10147‑018‑01391‑w 30604155
    [Google Scholar]
  8. Welch S. Spithoff K. Rumble R.B. Maroun J. Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: A systematic review. Ann. Oncol. 2010 21 6 1152 1162 10.1093/annonc/mdp533 19942597
    [Google Scholar]
  9. Goldberg R.M. Montagut C. Wainberg Z.A. Ronga P. Audhuy F. Taïeb J. Stintzing S. Siena S. Santini D. Optimising the use of cetuximab in the continuum of care for patients with metastatic colorectal cancer. ESMO Open 2018 3 4 e000353 10.1136/esmoopen‑2018‑000353 29765773
    [Google Scholar]
  10. Zhao R. Xia D. Chen Y. Kai Z. Ruan F. Xia C. Gong J. Wu J. Wang X. Improved diagnosis of colorectal cancer using combined biomarkers including Fusobacterium nucleatum, fecal occult blood, transferrin, CEA, CA19 ‐9, gender, and age. Cancer Med. 2023 12 13 14636 14645 10.1002/cam4.6067 37162269
    [Google Scholar]
  11. Iyer K.K. van Erp N.P. Tauriello D.V.F. Verheul H.M.W. Poel D. Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer. Cancer Treat. Rev. 2022 110 102466 10.1016/j.ctrv.2022.102466 36183569
    [Google Scholar]
  12. Tang Y.L. Li D.D. Duan J.Y. Sheng L.M. Wang X. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments. World J. Gastroenterol. 2023 29 6 926 948 10.3748/wjg.v29.i6.926 36844139
    [Google Scholar]
  13. Esteves F. Rueff J. Kranendonk M. The central role of cytochrome P450 in Xenobiotic Metabolism—A brief review on a fascinating enzyme family. J. Xenobiot. 2021 11 3 94 114 10.3390/jox11030007 34206277
    [Google Scholar]
  14. Lampe J.W. Diet, genetic polymorphisms, detoxification, and health risks. Altern. Ther. Health Med. 2007 13 2 S108 S111 17405687
    [Google Scholar]
  15. Mahé M. Rios-Fuller T.J. Karolin A. Schneider R.J. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front. Oncol. 2023 13 1230934 10.3389/fonc.2023.1230934 37601653
    [Google Scholar]
  16. Nebert D.W. Proposed role of drug-metabolizing enzymes: Regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol. Endocrinol. 1991 5 9 1203 1214 10.1210/mend‑5‑9‑1203 1663211
    [Google Scholar]
  17. Podgorski M.N. Keto A.B. Coleman T. Bruning J.B. De Voss J.J. Krenske E.H. Bell S.G. The Oxidation of Oxygen and Sulfur‐Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023 29 50 e202301371 10.1002/chem.202301371 37338048
    [Google Scholar]
  18. Marchitti S.A. Brocker C. Stagos D. Vasiliou V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin. Drug Metab. Toxicol. 2008 4 6 697 720 10.1517/17425255.4.6.697 18611112
    [Google Scholar]
  19. Jancova P. Anzenbacher P. Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2010 154 2 103 116 10.5507/bp.2010.017 20668491
    [Google Scholar]
  20. Manikandan P. Nagini S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets 2018 19 1 38 54 10.2174/1389450118666170125144557 28124606
    [Google Scholar]
  21. Rothhammer V. Quintana F.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 2019 19 3 184 197 10.1038/s41577‑019‑0125‑8 30718831
    [Google Scholar]
  22. Andrieux L. Langouët S. Fautrel A. Ezan F. Krauser J.A. Savouret J.F. Guengerich F.P. Baffet G. Guillouzo A. Aryl hydrocarbon receptor activation and cytochrome P450 1A induction by the mitogen-activated protein kinase inhibitor U0126 in hepatocytes. Mol. Pharmacol. 2004 65 4 934 943 10.1124/mol.65.4.934 15044623
    [Google Scholar]
  23. Nebert D.W. Dalton T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer 2006 6 12 947 960 10.1038/nrc2015 17128211
    [Google Scholar]
  24. Moorthy B. Chu C. Carlin D.J. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicol. Sci. 2015 145 1 5 15 10.1093/toxsci/kfv040 25911656
    [Google Scholar]
  25. Elfaki I. Mir R. Almutairi F.M. Duhier F.M.A. Cytochrome P450: Polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac. J. Cancer Prev. 2018 19 8 2057 2070 10.22034/apjcp.2018.19.8.2057 30139042
    [Google Scholar]
  26. Patterson L.H. McKeown S.R. Robson T. Gallagher R. Raleigh S.M. Orr S. Antitumour prodrug development using cytochrome P450 (CYP) mediated activation. Anticancer Drug Des. 1999 14 6 473 486 10834269
    [Google Scholar]
  27. Wang F. Zhang X. Wang Y. Chen Y. Lu H. Meng X. Ye X. Chen W. Activation/inactivation of anticancer drugs by CYP3A4: Influencing factors for personalized cancer therapy. Drug Metab. Dispos. 2023 51 5 543 559 10.1124/dmd.122.001131 36732076
    [Google Scholar]
  28. Rendic S. Guengerich F.P. Contributions of human enzymes in carcinogen metabolism. Chem. Res. Toxicol. 2012 25 7 1316 1383 10.1021/tx300132k 22531028
    [Google Scholar]
  29. Imaoka S. Yoneda Y. Matsnda T. Degawa M. Fukushima S. Funae Y. Mutagenic activation of urinary bladder carcinogens by CYP4B1 and the presence of CYP4B1 in bladder mucosa. Biochem. Pharmacol. 1997 54 6 677 683 10.1016/S0006‑2952(97)00216‑5 9310344
    [Google Scholar]
  30. Jin L. Huang J. Guo L. Zhang B. Li Q. Li H. Yu M. Xie P. Yu Q. Chen Z. Liu S. Xu Y. Xiao Y. Lu M. Ye Q. CYP1B1 promotes colorectal cancer liver metastasis by enhancing the growth of metastatic cancer cells via a fatty acids-dependent manner. J. Gastrointest. Oncol. 2023 14 6 2448 2465 10.21037/jgo‑23‑895 38196537
    [Google Scholar]
  31. Rodriguez M. Potter D.A. CYP1A1 regulates breast cancer proliferation and survival. Mol. Cancer Res. 2013 11 7 780 792 10.1158/1541‑7786.MCR‑12‑0675 23576571
    [Google Scholar]
  32. Mikstacka R. Dutkiewicz Z. New perspectives of CYP1B1 inhibitors in the light of molecular studies. Processes (Basel) 2021 9 5 817 10.3390/pr9050817
    [Google Scholar]
  33. Narjoz C. Favre A. McMullen J. Kiehl P. Montemurro M. Figg W.D. Beaune P. de Waziers I. Rochat B. Important role of CYP2J2 in protein kinase inhibitor degradation: A possible role in intratumor drug disposition and resistance. PLoS One 2014 9 5 e95532 10.1371/journal.pone.0095532 24819355
    [Google Scholar]
  34. Miyoshi Y. Ando A. Takamura Y. Taguchi T. Tamaki Y. Noguchi S. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int. J. Cancer 2002 97 1 129 132 10.1002/ijc.1568 11774254
    [Google Scholar]
  35. Makhov P. Golovine K. Canter D. Kutikov A. Simhan J. Corlew M.M. Uzzo R.G. Kolenko V.M. Co‐administration of piperine and docetaxel results in improved anti‐tumor efficacy via inhibition of CYP3A4 activity. Prostate 2012 72 6 661 667 10.1002/pros.21469 21796656
    [Google Scholar]
  36. Xu D. Hu J. De Bruyne E. Menu E. Schots R. Vanderkerken K. Van Valckenborgh E. Dll1/Notch interaction contributes to a decreased sensitivity of myeloma cells to Bortezomib. Blood 2012 120 21 1840 1840 10.1182/blood.V120.21.1840.1840
    [Google Scholar]
  37. Chang I. Mitsui Y. Fukuhara S. Gill A. Wong D.K. Yamamura S. Shahryari V. Tabatabai Z.L. Dahiya R. Shin D.M. Tanaka Y. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget 2015 6 10 7774 7787 10.18632/oncotarget.3484 25860934
    [Google Scholar]
  38. Cui J. Meng Q. Zhang X. Cui Q. Zhou W. Li S. Design and synthesis of new α-Naphthoflavones as Cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem. 2015 58 8 3534 3547 10.1021/acs.jmedchem.5b00265 25799264
    [Google Scholar]
  39. Zhu Z. Mu Y. Qi C. Wang J. Xi G. Guo J. Mi R. Zhao F. CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in vivo and in vitro. Int. J. Mol. Med. 2015 35 2 340 348 10.3892/ijmm.2014.2041 25516145
    [Google Scholar]
  40. Huang Z. Roy P. Waxman D.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. 2000 59 8 961 972 10.1016/S0006‑2952(99)00410‑4 10692561
    [Google Scholar]
  41. Yang L. Yan C. Zhang F. Jiang B. Gao S. Liang Y. Huang L. Chen W. Effects of ketoconazole on cyclophosphamide metabolism: Evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models. Exp. Anim. 2018 67 1 71 82 10.1538/expanim.17‑0048 29129847
    [Google Scholar]
  42. Chapple C. Molecular-genetic analysis of plant cytochrome p450-dependent monooxygenases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998 49 1 311 343 10.1146/annurev.arplant.49.1.311 15012237
    [Google Scholar]
  43. Chamboko C.R. Veldman W. Tata R.B. Schoeberl B. Tastan Bishop Ö. Human cytochrome P450 1, 2, 3 families as pharmacogenes with emphases on their antimalarial and antituberculosis drugs and prevalent African alleles. Int. J. Mol. Sci. 2023 24 4 3383 10.3390/ijms24043383 36834793
    [Google Scholar]
  44. Sello M.M. Jafta N. Nelson D.R. Chen W. Yu J.H. Parvez M. Kgosiemang I.K.R. Monyaki R. Raselemane S.C. Qhanya L.B. Mthakathi N.T. Sitheni Mashele S. Syed K. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. Sci. Rep. 2015 5 1 11572 10.1038/srep11572 26129850
    [Google Scholar]
  45. Nelson D.R. Zeldin D.C. Hoffman S.M.G. Maltais L.J. Wain H.M. Nebert D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004 14 1 1 18 10.1097/00008571‑200401000‑00001 15128046
    [Google Scholar]
  46. Chatuphonprasert W. Jarukamjorn K. Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front. Pharmacol. 2018 9 1027 10.3389/fphar.2018.01027 30258364
    [Google Scholar]
  47. Neve E.P. Ingelman-Sundberg M. Cytochrome P450 proteins: Retention and distribution from the endoplasmic reticulum. Curr. Opin. Drug Discov. Devel. 2010 13 1 78 85 20047148
    [Google Scholar]
  48. Thelen K. Dressman J.B. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol 2009 61 5 541 558 10.1211/jpp.61.05.0002 19405992
    [Google Scholar]
  49. Janssen A.W.F. Duivenvoorde L.P.M. Rijkers D. Nijssen R. Peijnenburg A.A.C.M. van der Zande M. Louisse J. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells. Arch. Toxicol. 2021 95 3 907 922 10.1007/s00204‑020‑02953‑6 33263786
    [Google Scholar]
  50. Xie F. Ding X. Zhang Q.Y. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm. Sin. B 2016 6 5 374 383 10.1016/j.apsb.2016.07.012 27709006
    [Google Scholar]
  51. Veith A. Moorthy B. Role of cytochrome P450s in the generation and metabolism of reactive oxygen species. Curr. Opin. Toxicol. 2018 7 44 51 10.1016/j.cotox.2017.10.003 29527583
    [Google Scholar]
  52. Fer M. Corcos L. Dréano Y. Plée-Gautier E. Salaün J.P. Berthou F. Amet Y. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J. Lipid Res. 2008 49 11 2379 2389 10.1194/jlr.M800199‑JLR200 18577768
    [Google Scholar]
  53. Giera M. Galano J.M. Eicosanoids. Worsfold P. Poole C. Townshend A. Miró M. Encyclopedia of Analytical Science 3rd ed Academic Press: Oxford 2017 10.1016/B978‑0‑12‑409547‑2.13984‑8
    [Google Scholar]
  54. Sausville L.N. Williams S.M. Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol. Ther. 2019 196 183 194 10.1016/j.pharmthera.2018.11.009 30521883
    [Google Scholar]
  55. Wang T. Fu X. Chen Q. Patra J.K. Wang D. Wang Z. Gai Z. Arachidonic Acid Metabolism and Kidney Inflammation. Int. J. Mol. Sci. 2019 20 15 3683 10.3390/ijms20153683 31357612
    [Google Scholar]
  56. Trindade-da-Silva C.A. Clemente-Napimoga J.T. Abdalla H.B. Rosa S.M. Ueira-Vieira C. Morisseau C. Verri W.A. Jr Montalli V.A.M. Hammock B.D. Napimoga M.H. Soluble epoxide hydrolase inhibitor, TPPU, increases regulatory T cells pathway in an arthritis model. FASEB J. 2020 34 7 9074 9086 10.1096/fj.202000415R 32400048
    [Google Scholar]
  57. Bishop-Bailey D. Thomson S. Askari A. Faulkner A. Wheeler-Jones C. Lipid-metabolizing CYPs in the regulation and dysregulation of metabolism. Annu. Rev. Nutr. 2014 34 1 261 279 10.1146/annurev‑nutr‑071813‑105747 24819323
    [Google Scholar]
  58. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  59. Pozzi A. Popescu V. Yang S. Mei S. Shi M. Puolitaival S.M. Caprioli R.M. Capdevila J.H. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor α are arachidonic acid epoxygenase-mediated. J. Biol. Chem. 2010 285 17 12840 12850 10.1074/jbc.M109.081554 20178979
    [Google Scholar]
  60. D’Uva G. Baci D. Albini A. Noonan D.M. Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat. Rev. 2018 63 1 18 10.1016/j.ctrv.2017.10.013 29197745
    [Google Scholar]
  61. Michaelis U.R. Fisslthaler B. Barbosa-Sicard E. Falck J.R. Fleming I. Busse R. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J. Cell Sci. 2005 118 23 5489 5498 10.1242/jcs.02674 16291720
    [Google Scholar]
  62. Jiang J.G. Chen C.L. Card J.W. Yang S. Chen J.X. Fu X.N. Ning Y.G. Xiao X. Zeldin D.C. Wang D.W. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005 65 11 4707 4715 10.1158/0008‑5472.CAN‑04‑4173 15930289
    [Google Scholar]
  63. Kim K.H. Park Y.L. Park S.Y. Joo Y.E. Expression of an oxysterol-metabolizing enzyme in colorectal cancer and its relation to tumor cell behavior and prognosis. Pathol. Res. Pract. 2023 251 154875 10.1016/j.prp.2023.154875 37820439
    [Google Scholar]
  64. Murray G.I. Patimalla S. Stewart K.N. Miller I.D. Heys S.D. Profiling the expression of cytochrome P450 in breast cancer. Histopathology 2010 57 2 202 211 10.1111/j.1365‑2559.2010.03606.x 20716162
    [Google Scholar]
  65. Yu W. Chai H. Li Y. Zhao H. Xie X. Zheng H. Wang C. Wang X. Yang G. Cai X. Falck J.R. Yang J. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer. Toxicol. Appl. Pharmacol. 2012 264 1 73 83 10.1016/j.taap.2012.07.019 22841774
    [Google Scholar]
  66. Kim S. Hong I. Lee M. Kim H.C. Ji S. Kim H. Expression of CYP4X1 in colorectal carcinoma is associated with metastasis and poor prognosis. Research Square 2023 10.21203/rs.3.rs‑3094597/v1
    [Google Scholar]
  67. Durukan O. Investigating The Oncogenic Function of Brain Specific CYP4X1 Gene in Glioblastoma Cancer Cells Using RNA-i Mediated Gene Repression Strategy [Ph.D. - Doctoral Program] Middle East Technical University 2023
    [Google Scholar]
  68. Krock B.L. Skuli N. Simon M.C. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer 2011 2 12 1117 1133 10.1177/1947601911423654 22866203
    [Google Scholar]
  69. Panigrahy D. Kaipainen A. Greene E.R. Huang S. Cytochrome P450-derived eicosanoids: The neglected pathway in cancer. Cancer Metastasis Rev. 2010 29 4 723 735 10.1007/s10555‑010‑9264‑x 20941528
    [Google Scholar]
  70. Suzuki S. Oguro A. Osada-Oka M. Funae Y. Imaoka S. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. J. Pharmacol. Sci. 2008 108 1 79 88 10.1254/jphs.08122FP 18776712
    [Google Scholar]
  71. Chen G. Hashitani H. Suzuki H. Endothelium‐dependent relaxation and hyperpolarization of canine coronary artery smooth muscles in relation to the electrogenic Na‐K pump. Br. J. Pharmacol. 1989 98 3 950 956 10.1111/j.1476‑5381.1989.tb14625.x 2590775
    [Google Scholar]
  72. Shao J. Li Q. Wang H. Liu F. Jiang J. Zhu X. Chen Z. Zou P. P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2011 31 5 596 601 10.1007/s11596‑011‑0567‑0 22038346
    [Google Scholar]
  73. Jiang J.G. Ning Y.G. Chen C. Ma D. Liu Z.J. Yang S. Zhou J. Xiao X. Zhang X.A. Edin M.L. Card J.W. Wang J. Zeldin D.C. Wang D.W. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 2007 67 14 6665 6674 10.1158/0008‑5472.CAN‑06‑3643 17638876
    [Google Scholar]
  74. Wang B. Wu L. Chen J. Dong L. Chen C. Wen Z. Hu J. Fleming I. Wang D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021 6 1 94 10.1038/s41392‑020‑00443‑w 33637672
    [Google Scholar]
  75. Fleming I. Fisslthaler B. Michaelis R. Kiss L. Popp R. Busse R. The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflugers Arch. 2001 442 4 511 518 10.1007/s004240100565 11510882
    [Google Scholar]
  76. Li P.L. Campbell W.B. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ. Res. 1997 80 6 877 884 10.1161/01.RES.80.6.877 9168791
    [Google Scholar]
  77. Cheng L. Jiang J. Sun Z. Chen C. Dackor R.T. Zeldin D.C. Wang D. The epoxyeicosatrienoic acid-stimulated phosphorylation of EGF-R involves the activation of metalloproteinases and the release of HB-EGF in cancer cells. Acta Pharmacol. Sin. 2010 31 2 211 218 10.1038/aps.2009.184 20139904
    [Google Scholar]
  78. Michaelis U.R. Fisslthaler B. Medhora M. Harder D. Fleming I. Busse R. Cytochrome P450 2C9‐derived epoxyeicosatrienoic acids induce angiogenesis via cross‐talk with the epidermal growth factor receptor. FASEB J. 2003 17 6 770 772 10.1096/fj.02‑0640fje 12586744
    [Google Scholar]
  79. Wang Y. Wei X. Xiao X. Hui R. Card J.W. Carey M.A. Wang D.W. Zeldin D.C. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J. Pharmacol. Exp. Ther. 2005 314 2 522 532 10.1124/jpet.105.083477 15840765
    [Google Scholar]
  80. Cheranov S.Y. Karpurapu M. Wang D. Zhang B. Venema R.C. Rao G.N. An essential role for SRC-activated STAT-3 in 14,15-EET–induced VEGF expression and angiogenesis. Blood 2008 111 12 5581 5591 10.1182/blood‑2007‑11‑126680 18408167
    [Google Scholar]
  81. Edson K. Rettie A. CYP4 enzymes as potential drug targets: Focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities. Curr. Top. Med. Chem. 2013 13 12 1429 1440 10.2174/15680266113139990110 23688133
    [Google Scholar]
  82. Yu W. Chen L. Yang Y.Q. Falck J.R. Guo A.M. Li Y. Yang J. Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. Cancer Chemother. Pharmacol. 2011 68 3 619 629 10.1007/s00280‑010‑1521‑8 21120482
    [Google Scholar]
  83. La Vecchia S. Sebastián C. Metabolic pathways regulating colorectal cancer initiation and progression. Semin. Cell Dev. Biol. 2020 98 63 70 10.1016/j.semcdb.2019.05.018 31129171
    [Google Scholar]
  84. Chen X. Ma Z. Yi Z. Wu E. Shang Z. Tuo B. Li T. Liu X. The effects of metabolism on the immune microenvironment in colorectal cancer. Cell Death Discov. 2024 10 1 118 10.1038/s41420‑024‑01865‑z 38453888
    [Google Scholar]
  85. Shao M. Pan Q. Tan H. Wu J. Lee H.W. Huber A.D. Wright W.C. Cho J.H. Yu J. Peng J. Chen T. CYP3A5 unexpectedly regulates glucose metabolism through the AKT–TXNIP–GLUT1 axis in pancreatic cancer. Genes Dis. 2024 11 4 101079 10.1016/j.gendis.2023.101079 38560501
    [Google Scholar]
  86. Li T. Matozel M. Boehme S. Kong B. Nilsson L.M. Guo G. Ellis E. Chiang J.Y.L. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 2011 53 3 996 1006 10.1002/hep.24107 21319191
    [Google Scholar]
  87. Li T. Chen W. Chiang J.Y.L. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. J. Lipid Res. 2007 48 2 373 384 10.1194/jlr.M600282‑JLR200 17088262
    [Google Scholar]
  88. Liu J. Carlson H.A. Scott E.E. The structure and characterization of human cytochrome P450 8B1 supports future drug design for nonalcoholic fatty liver disease and diabetes. J. Biol. Chem. 2022 298 9 102344 10.1016/j.jbc.2022.102344 35944583
    [Google Scholar]
  89. Pikuleva I.A. Cytochrome P450s and cholesterol homeostasis. Pharmacol. Ther. 2006 112 3 761 773 10.1016/j.pharmthera.2006.05.014 16872679
    [Google Scholar]
  90. Zhou W.J. Zhang J. Yang H.L. Wu K. Xie F. Wu J.N. Wang Y. Yao L. Zhuang Y. Xiang J.D. Zhang A.J. He Y.Y. Li M.Q. Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism. Cell Commun. Signal. 2019 17 1 99 10.1186/s12964‑019‑0412‑9 31429768
    [Google Scholar]
  91. Cura A.J. Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2012 2 2 863 914 10.1002/cphy.c110024 22943001
    [Google Scholar]
  92. Melkonian E.A. Schury M.P. Biochemistry, Anaerobic Glycolysis. 2023 Available from: https://www.ncbi.nlm.nih.gov/books/NBK546695/
  93. Farooq Z. Ismail H. Bhat S.A. Layden B.T. Khan M.W. Aiding Cancer’s “Sweet Tooth”: Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023 13 4 946 10.3390/life13040946 37109475
    [Google Scholar]
  94. John S. Weiss J.N. Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One 2011 6 3 e17674 10.1371/journal.pone.0017674 21408025
    [Google Scholar]
  95. Barba I. Carrillo-Bosch L. Seoane J. Targeting the warburg effect in cancer: Where do we stand? Int. J. Mol. Sci. 2024 25 6 3142 10.3390/ijms25063142 38542116
    [Google Scholar]
  96. Tsujimoto Y. Shimizu S. The voltage-dependent anion channel: An essential player in apoptosis. Biochimie 2002 84 2-3 187 193 10.1016/S0300‑9084(02)01370‑6 12022949
    [Google Scholar]
  97. García-Domínguez E. Carretero A. Viña-Almunia A. Domenech-Fernandez J. Olaso-González G. Viña J. Gómez-Cabrera M.C. Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. Cells 2022 11 19 3041 10.3390/cells11193041 36231003
    [Google Scholar]
  98. Jurica M.S. Mesecar A. Heath P.J. Shi W. Nowak T. Stoddard B.L. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 1998 6 2 195 210 10.1016/S0969‑2126(98)00021‑5 9519410
    [Google Scholar]
  99. Alves-Filho J.C. Pålsson-McDermott E.M. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation. Front. Immunol. 2016 7 145 10.3389/fimmu.2016.00145 27148264
    [Google Scholar]
  100. Zangari J. Petrelli F. Maillot B. Martinou J.C. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020 10 7 1068 10.3390/biom10071068 32708919
    [Google Scholar]
  101. Naquet P. Kerr E.W. Vickers S.D. Leonardi R. Regulation of coenzyme A levels by degradation: The ‘Ins and Outs’. Prog. Lipid Res. 2020 78 101028 10.1016/j.plipres.2020.101028 32234503
    [Google Scholar]
  102. Xiao W. Wang R.S. Handy D.E. Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid. Redox Signal. 2018 28 3 251 272 10.1089/ars.2017.7216 28648096
    [Google Scholar]
  103. Ciccarone F. Vegliante R. Di Leo L. Ciriolo M.R. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Semin. Cancer Biol. 2017 47 50 56 10.1016/j.semcancer.2017.06.008 28645607
    [Google Scholar]
  104. Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009 324 5930 1029 1033 10.1126/science.1160809 19460998
    [Google Scholar]
  105. Forkasiewicz A. Dorociak M. Stach K. Szelachowski P. Tabola R. Augoff K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell. Mol. Biol. Lett. 2020 25 1 35 10.1186/s11658‑020‑00228‑7 32528540
    [Google Scholar]
  106. Yang J. Wen J. Tian T. Lu Z. Wang Y. Wang Z. Wang X. Yang Y. GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget 2017 8 7 11788 11796 10.18632/oncotarget.14352 28052033
    [Google Scholar]
  107. Brown R.E. Short S.P. Williams C.S. Colorectal Cancer and Metabolism. Curr. Colorectal Cancer Rep. 2018 14 6 226 241 10.1007/s11888‑018‑0420‑y 31406492
    [Google Scholar]
  108. Lu J. Tan M. Cai Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015 356 2 156 164 10.1016/j.canlet.2014.04.001 24732809
    [Google Scholar]
  109. de la Cruz-López K.G. Castro-Muñoz L.J. Reyes-Hernández D.O. García-Carrancá A. Manzo-Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front. Oncol. 2019 9 1143 10.3389/fonc.2019.01143 31737570
    [Google Scholar]
  110. Granchi C. Minutolo F. Anticancer agents that counteract tumor glycolysis. ChemMedChem 2012 7 8 1318 1350 10.1002/cmdc.201200176 22684868
    [Google Scholar]
  111. Vaupel P. Schmidberger H. Mayer A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019 95 7 912 919 10.1080/09553002.2019.1589653 30822194
    [Google Scholar]
  112. Ghanbari Movahed Z. Rastegari-Pouyani M. Mohammadi M. Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed. Pharmacother. 2019 112 108690 10.1016/j.biopha.2019.108690 30798124
    [Google Scholar]
  113. Schiliro C. Firestein B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021 10 5 1056 10.3390/cells10051056 33946927
    [Google Scholar]
  114. Zhang B. Chan S.H. Liu X.Q. Shi Y.Y. Dong Z.X. Shao X.R. Zheng L.Y. Mai Z.Y. Fang T.L. Deng L.Z. Zhou D.S. Chen S.N. Li M. Zhang X.D. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J. Cell. Mol. Med. 2021 25 18 8836 8849 10.1111/jcmm.16842 34378321
    [Google Scholar]
  115. Ciscato F. Filadi R. Masgras I. Pizzi M. Marin O. Damiano N. Pizzo P. Gori A. Frezzato F. Chiara F. Trentin L. Bernardi P. Rasola A. Hexokinase 2 displacement from mitochondria‐associated membranes prompts Ca 2+ ‐dependent death of cancer cells. EMBO Rep. 2020 21 7 e49117 10.15252/embr.201949117 32383545
    [Google Scholar]
  116. Zhou C.F. Li X.B. Sun H. Zhang B. Han Y.S. Jiang Y. Zhuang Q.L. Fang J. Wu G.H. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life 2012 64 9 775 782 10.1002/iub.1066 22807066
    [Google Scholar]
  117. Kikuchi D. Saito M. Saito K. Watanabe Y. Matsumoto Y. Kanke Y. Onozawa H. Hayase S. Sakamoto W. Ishigame T. Momma T. Ohki S. Takenoshita S. Upregulated solute carrier family 37 member 1 in colorectal cancer is associated with poor patient outcome and metastasis. Oncol. Lett. 2017 10.3892/ol.2017.7559 29434906
    [Google Scholar]
  118. Zhan P. Zhao S. Yan H. Yin C. Xiao Y. Wang Y. Ni R. Chen W. Wei G. Zhang P. α‐enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Mol. Carcinog. 2017 56 5 1427 1437 10.1002/mc.22603 27996156
    [Google Scholar]
  119. Gu J. Zhong K. Wang L. Ni H. Zhao Y. Wang X. Yao Y. Jiang L. Wang B. Zhu X. ENO1 contributes to 5-fluorouracil resistance in colorectal cancer cells via EMT pathway. Front. Oncol. 2022 12 1013035 10.3389/fonc.2022.1013035 36620599
    [Google Scholar]
  120. Scartozzi M. Giampieri R. Maccaroni E. Del Prete M. Faloppi L. Bianconi M. Galizia E. Loretelli C. Belvederesi L. Bittoni A. Cascinu S. Pre-treatment lactate dehydrogenase levels as predictor of efficacy of first-line bevacizumab-based therapy in metastatic colorectal cancer patients. Br. J. Cancer 2012 106 5 799 804 10.1038/bjc.2012.17 22315053
    [Google Scholar]
  121. Jin L. Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncol. Lett. 2019 17 5 4213 4221 10.3892/ol.2019.10112 30944616
    [Google Scholar]
  122. Haloi N. Wen P.C. Cheng Q. Yang M. Natarajan G. Camara A.K.S. Kwok W.M. Tajkhorshid E. Structural basis of complex formation between mitochondrial anion channel VDAC1 and Hexokinase-II. Commun. Biol. 2021 4 1 667 10.1038/s42003‑021‑02205‑y 34083717
    [Google Scholar]
  123. Chen J. Zhang Z. Ni J. Sun J. Ju F. Wang Z. Wang L. Xue M. ENO3 promotes colorectal cancer progression by enhancing cell glycolysis. Med Oncol 2022 39 5 80 10.1007/s12032‑022‑01676‑1 35477821
    [Google Scholar]
  124. Pastorino J.G. Hoek J.B. Regulation of hexokinase binding to VDAC. J. Bioenerg. Biomembr. 2008 40 3 171 182 10.1007/s10863‑008‑9148‑8 18683036
    [Google Scholar]
  125. Koukourakis M.I. Giatromanolaki A. Sivridis E. Gatter K.C. Harris A.L. Trarbach T. Folprecht G. Shi M.M. Meinhardt G. Intratumoral lactate dehydrogenase 5 (LDH5) protein expression is associated with expression of angiogenesis markers and hypoxia in patients with colorectal cancer (CRC). J. Clin. Oncol. 2007 25 18_suppl 4107 4107 10.1200/jco.2007.25.18_suppl.4107
    [Google Scholar]
  126. Nie H. Ju H. Fan J. Shi X. Cheng Y. Cang X. Zheng Z. Duan X. Yi W. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat. Commun. 2020 11 1 36 10.1038/s41467‑019‑13601‑8 31911580
    [Google Scholar]
  127. Sun Q. Wu J. Zhu G. Li T. Zhu X. Ni B. Xu B. Ma X. Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front. Endocrinol. (Lausanne) 2023 13 1089918 10.3389/fendo.2022.1089918 36778600
    [Google Scholar]
  128. Wang H. Tian T. Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int. J. Mol. Sci. 2021 22 16 8470 10.3390/ijms22168470 34445193
    [Google Scholar]
  129. Zhao G. Yuan H. Li Q. Zhang J. Guo Y. Feng T. Gu R. Ou D. Li S. Li K. Lin P. DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2. Signal Transduct. Target. Ther. 2022 7 1 275 10.1038/s41392‑022‑01096‑7 35973989
    [Google Scholar]
  130. Ji Y. Yang C. Tang Z. Yang Y. Tian Y. Yao H. Zhu X. Zhang Z. Ji J. Zheng X. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat. Commun. 2017 8 1 15308 10.1038/ncomms15308 28516914
    [Google Scholar]
  131. Wang B. Ye Y. Yang X. Liu B. Wang Z. Chen S. Jiang K. Zhang W. Jiang H. Mustonen H. Puolakkainen P. Wang S. Luo J. Shen Z. SIRT 2‐dependent IDH 1 deacetylation inhibits colorectal cancer and liver metastases. EMBO Rep. 2020 21 4 e48183 10.15252/embr.201948183 32141187
    [Google Scholar]
  132. Vellinga T.T. Borovski T. de Boer V.C.J. Fatrai S. van Schelven S. Trumpi K. Verheem A. Snoeren N. Emmink B.L. Koster J. Rinkes I.H.M.B. Kranenburg O. SIRT1/PGC1α-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer. Clin. Cancer Res. 2015 21 12 2870 2879 10.1158/1078‑0432.CCR‑14‑2290 25779952
    [Google Scholar]
  133. Li Z. Sun C. Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics 2021 11 17 8322 8336 10.7150/thno.62378 34373744
    [Google Scholar]
  134. Zhu S. Huang J. Xu R. Wang Y. Wan Y. McNeel R. Parker E. Kolson D. Yam M. Webb B. Zhao C. Sigado J. Du J. Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability. J. Biol. Chem. 2022 298 9 102387 10.1016/j.jbc.2022.102387 35985423
    [Google Scholar]
  135. Zhang W. An F. Xia M. Zhan Q. Tian W. Jiao Y. Increased HMGB1 expression correlates with higher expression of c-IAP2 and pERK in colorectal cancer. Medicine (Baltimore) 2019 98 3 e14069 10.1097/MD.0000000000014069 30653121
    [Google Scholar]
  136. Cerwenka A. Kopitz J. Schirmacher P. Roth W. Gdynia G. HMGB1: The metabolic weapon in the arsenal of NK cells. Mol. Cell. Oncol. 2016 3 4 e1175538 10.1080/23723556.2016.1175538 27652323
    [Google Scholar]
  137. Gdynia G. Sauer S.W. Kopitz J. Fuchs D. Duglova K. Ruppert T. Miller M. Pahl J. Cerwenka A. Enders M. Mairbäurl H. Kamiński M.M. Penzel R. Zhang C. Fuller J.C. Wade R.C. Benner A. Chang-Claude J. Brenner H. Hoffmeister M. Zentgraf H. Schirmacher P. Roth W. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nat. Commun. 2016 7 1 10764 10.1038/ncomms10764 26948869
    [Google Scholar]
  138. Jing Z. Liu Q. He X. Jia Z. Xu Z. Yang B. Liu P. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer. J. Exp. Clin. Cancer Res. 2022 41 1 198 10.1186/s13046‑022‑02412‑3 35689245
    [Google Scholar]
  139. Li L. Liang Y. Kang L. Liu Y. Gao S. Chen S. Li Y. You W. Dong Q. Hong T. Yan Z. Jin S. Wang T. Zhao W. Mai H. Huang J. Han X. Ji Q. Song Q. Yang C. Zhao S. Xu X. Ye Q. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1. Cancer Cell 2018 33 3 368 385.e7 10.1016/j.ccell.2018.01.010 29455928
    [Google Scholar]
  140. Satoh K. Yachida S. Sugimoto M. Oshima M. Nakagawa T. Akamoto S. Tabata S. Saitoh K. Kato K. Sato S. Igarashi K. Aizawa Y. Kajino-Sakamoto R. Kojima Y. Fujishita T. Enomoto A. Hirayama A. Ishikawa T. Taketo M.M. Kushida Y. Haba R. Okano K. Tomita M. Suzuki Y. Fukuda S. Aoki M. Soga T. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc. Natl. Acad. Sci. USA 2017 114 37 E7697 E7706 10.1073/pnas.1710366114 28847964
    [Google Scholar]
  141. Šmerc A. Sodja E. Legiša M. Posttranslational modification of 6-phosphofructo-1-kinase as an important feature of cancer metabolism. PLoS One 2011 6 5 e19645 10.1371/journal.pone.0019645 21573193
    [Google Scholar]
  142. Zhao Z. Wang L. Bartom E. Marshall S. Rendleman E. Ryan C. Shilati A. Savas J. Chandel N. Shilatifard A. β-Catenin/Tcf7l2–dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer. Sci. Adv. 2019 5 7 eaax0698 10.1126/sciadv.aax0698 31392276
    [Google Scholar]
  143. Pate K.T. Stringari C. Sprowl-Tanio S. Wang K. TeSlaa T. Hoverter N.P. McQuade M.M. Garner C. Digman M.A. Teitell M.A. Edwards R.A. Gratton E. Waterman M.L. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 2014 33 13 1454 1473 10.15252/embj.201488598 24825347
    [Google Scholar]
  144. Lee E.E. Ma J. Sacharidou A. Mi W. Salato V.K. Nguyen N. Jiang Y. Pascual J.M. North P.E. Shaul P.W. Mettlen M. Wang R.C. A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome. Mol. Cell 2015 58 5 845 853 10.1016/j.molcel.2015.04.015 25982116
    [Google Scholar]
  145. Yun J. Mullarky E. Lu C. Bosch K.N. Kavalier A. Rivera K. Roper J. Chio I.I.C. Giannopoulou E.G. Rago C. Muley A. Asara J.M. Paik J. Elemento O. Chen Z. Pappin D.J. Dow L.E. Papadopoulos N. Gross S.S. Cantley L.C. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015 350 6266 1391 1396 10.1126/science.aaa5004 26541605
    [Google Scholar]
  146. Kuo C.C. Ling H.H. Chiang M.C. Chung C.H. Lee W.Y. Chu C.Y. Wu Y.C. Chen C.H. Lai Y.W. Tsai I.L. Cheng C.H. Lin C.W. Metastatic Colorectal Cancer Rewrites Metabolic Program Through a Glut3-YAP-dependent Signaling Circuit. Theranostics 2019 9 9 2526 2540 10.7150/thno.32915 31131051
    [Google Scholar]
  147. Xing B.C. Wang C. Ji F.J. Zhang X.B. Synergistically suppressive effects on colorectal cancer cells by combination of mTOR inhibitor and glycolysis inhibitor, Oxamate. Int. J. Clin. Exp. Pathol. 2018 11 9 4439 4445 31949841
    [Google Scholar]
  148. Chen H. Gao S. Liu W. Wong C.C. Wu J. Wu J. Liu D. Gou H. Kang W. Zhai J. Li C. Su H. Wang S. Soares F. Han J. He H.H. Yu J. RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. Gastroenterology 2021 160 4 1284 1300.e16 10.1053/j.gastro.2020.11.013 33217448
    [Google Scholar]
  149. Jiang X. Jin Z. Yang Y. Zheng X. Chen S. Wang S. Zhang X. Qu N. m6A modification on the fate of colorectal cancer: Functions and mechanisms of cell proliferation and tumorigenesis. Front. Oncol. 2023 13 1162300 10.3389/fonc.2023.1162300 37152066
    [Google Scholar]
  150. Fu L-N. Wang Y-Q. Tan J. Xu J. Gao Q-Y. Chen Y-X. Fang J-Y. Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms. Oncogene 2018 37 3 389 402 10.1038/onc.2017.345 28945223
    [Google Scholar]
  151. Dai W. Xu Y. Mo S. Li Q. Yu J. Wang R. Ma Y. Ni Y. Xiang W. Han L. Zhang L. Cai S. Qin J. Chen W.L. Jia W. Cai G. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies. Signal Transduct. Target. Ther. 2020 5 1 177 10.1038/s41392‑020‑00220‑9 32873793
    [Google Scholar]
  152. Zhou L. Yu X. Li M. Gong G. Liu W. Li T. Zuo H. Li W. Gao F. Liu H. Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2020 51 102570 10.1016/j.ebiom.2019.11.031 31806563
    [Google Scholar]
  153. Asmamaw M.D. Liu Y. Zheng Y.C. Shi X.J. Liu H.M. Skp2 in the ubiquitin‐proteasome system: A comprehensive review. Med. Res. Rev. 2020 40 5 1920 1949 10.1002/med.21675 32391596
    [Google Scholar]
  154. Ou B. Sun H. Zhao J. Xu Z. Liu Y. Feng H. Peng Z. Polo-like kinase 3 inhibits glucose metabolism in colorectal cancer by targeting HSP90/STAT3/HK2 signaling. J. Exp. Clin. Cancer Res. 2019 38 1 426 10.1186/s13046‑019‑1418‑2 31655629
    [Google Scholar]
  155. Zhang J. Wang S. Jiang B. Huang L. Ji Z. Li X. Zhou H. Han A. Chen A. Wu Y. Ma H. Zhao W. Zhao Q. Xie C. Sun X. Zhou Y. Huang H. Suleman M. Lin F. Zhou L. Tian F. Jin M. Cai Y. Zhang N. Li Q. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat. Commun. 2017 8 1 13732 10.1038/ncomms13732 28054552
    [Google Scholar]
  156. Ma H. Zhang J. Zhou L. Wen S. Tang H.Y. Jiang B. Zhang F. Suleman M. Sun D. Chen A. Zhao W. Lin F. Tsau M.T. Shih L.M. Xie C. Li X. Lin D. Hung L.M. Cheng M.L. Li Q. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3. Cell Rep. 2020 30 12 4235 4249.e6 10.1016/j.celrep.2020.03.005 32209481
    [Google Scholar]
  157. Wang S. Peng Z. Wang S. Yang L. Chen Y. Kong X. Song S. Pei P. Tian C. Yan H. Ding P. Hu W. Liu C.H. Zhang X. He F. Zhang L. KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration. Cell Res. 2018 28 5 572 592 10.1038/s41422‑018‑0008‑8 29467382
    [Google Scholar]
  158. Contractor T. Harris C.R. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012 72 2 560 567 10.1158/0008‑5472.CAN‑11‑1215 22123926
    [Google Scholar]
  159. Liang Y. Hou L. Li L. Li L. Zhu L. Wang Y. Huang X. Hou Y. Zhu D. Zou H. Gu Y. Weng X. Wang Y. Li Y. Wu T. Yao M. Gross I. Gaiddon C. Luo M. Wang J. Meng X. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene 2020 39 2 469 485 10.1038/s41388‑019‑1035‑8 31597953
    [Google Scholar]
  160. Suzuki S. Tanaka T. Poyurovsky M.V. Nagano H. Mayama T. Ohkubo S. Lokshin M. Hosokawa H. Nakayama T. Suzuki Y. Sugano S. Sato E. Nagao T. Yokote K. Tatsuno I. Prives C. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA 2010 107 16 7461 7466 10.1073/pnas.1002459107 20351271
    [Google Scholar]
  161. Nadhan R. Isidoro C. Song Y.S. Dhanasekaran D.N. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022 11 16 2517 10.3390/cells11162517 36010595
    [Google Scholar]
  162. Chen N. Guo D. Xu Q. Yang M. Wang D. Peng M. Ding Y. Wang S. Zhou J. Long non-coding RNA FEZF1-AS1 facilitates cell proliferation and migration in colorectal carcinoma. Oncotarget 2016 7 10 11271 11283 10.18632/oncotarget.7168 26848625
    [Google Scholar]
  163. Li J. Zhao L. Zhang C. Li M. Gao B. Hu X. Cao J. Wang G. The lncRNA FEZF1-AS1 Promotes the Progression of Colorectal Cancer Through Regulating OTX1 and Targeting miR-30a-5p. Oncol. Res. 2020 28 1 51 63 10.3727/096504019X15619783964700 31270006
    [Google Scholar]
  164. Bian Z. Zhang J. Li M. Feng Y. Wang X. Zhang J. Yao S. Jin G. Du J. Han W. Yin Y. Huang S. Fei B. Zou J. Huang Z. LncRNA–FEZF1-AS1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling. Clin. Cancer Res. 2018 24 19 4808 4819 10.1158/1078‑0432.CCR‑17‑2967 29914894
    [Google Scholar]
  165. Tang J. Yan T. Bao Y. Shen C. Yu C. Zhu X. Tian X. Guo F. Liang Q. Liu Q. Zhong M. Chen J. Ge Z. Li X. Chen X. Cui Y. Chen Y. Zou W. Chen H. Hong J. Fang J.Y. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat. Commun. 2019 10 1 3499 10.1038/s41467‑019‑11447‑8 31375671
    [Google Scholar]
  166. Koh-Tan H.H.C. Strachan E. Cooper K. Bell-Sakyi L. Jonsson N.N. Identification of a novel β-adrenergic octopamine receptor-like gene (βAOR-like) and increased ATP-binding cassette B10 (ABCB10) expression in a Rhipicephalus microplus cell line derived from acaricide-resistant ticks. Parasit. Vectors 2016 9 1 425 10.1186/s13071‑016‑1708‑x 27484910
    [Google Scholar]
  167. Hoxha M. Zappacosta B. A review on the role of fatty acids in colorectal cancer progression. Front. Pharmacol. 2022 13 1032806 10.3389/fphar.2022.1032806 36578540
    [Google Scholar]
  168. Krauß D. Fari O. Sibilia M. Lipid Metabolism Interplay in CRC—An Update. Metabolites 2022 12 3 213 10.3390/metabo12030213 35323656
    [Google Scholar]
  169. Pakiet A. Kobiela J. Stepnowski P. Śledziński T. Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019 18 1 29 10.1186/s12944‑019‑0977‑8 30684960
    [Google Scholar]
  170. Zhang J. Zou S. Fang L. Metabolic reprogramming in colorectal cancer: Regulatory networks and therapy. Cell Biosci. 2023 13 1 25 10.1186/s13578‑023‑00977‑w 36755301
    [Google Scholar]
  171. Furuhashi M. Fatty Acid-Binding Protein 4 in Cardiovascular and Metabolic Diseases. J. Atheroscler. Thromb. 2019 26 3 216 232 10.5551/jat.48710 30726793
    [Google Scholar]
  172. Furuhashi M. Hotamışlıgil G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008 7 6 489 503 10.1038/nrd2589 18511927
    [Google Scholar]
  173. Zhang Y. Zhang W. Xia M. Xie Z. An F. Zhan Q. Tian W. Zhu T. High expression of FABP4 in colorectal cancer and its clinical significance. J. Zhejiang Univ. Sci. B 2021 22 2 136 145 10.1631/jzus.B2000366 33615754
    [Google Scholar]
  174. Kawaguchi K. Senga S. Kubota C. Kawamura Y. Ke Y. Fujii H. High expression of Fatty Acid‐Binding Protein 5 promotes cell growth and metastatic potential of colorectal cancer cells. FEBS Open Bio 2016 6 3 190 199 10.1002/2211‑5463.12031 27047747
    [Google Scholar]
  175. Nenkov M. Ma Y. Gaßler N. Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int. J. Mol. Sci. 2021 22 12 6262 10.3390/ijms22126262 34200820
    [Google Scholar]
  176. Shang K. Ma N. Che J. Li H. Hu J. Sun H. Cao B. SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway. BMC Cancer 2023 23 1 335 10.1186/s12885‑023‑10816‑3 37041476
    [Google Scholar]
  177. da Costa A.C. Filho P.R.S. Júnior S.A. de Oliveira Ferreira F. Begnami M.D. de Lima V.C.C. de Santa Cruz Oliveira F. Nakagawa W.T. Spencer R.M. Lopes A. Prognostic value of factors associated with hypoxia and lipid metabolism in patients with colorectal cancer. Applied Cancer Research 2017 37 1 44 10.1186/s41241‑017‑0050‑8
    [Google Scholar]
  178. Kumari A. Beta Oxidation of Fatty Acids. Sweet Biochemistry 2018 17–19 17 19 10.1016/B978‑0‑12‑814453‑4.00004‑2
    [Google Scholar]
  179. Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem. Biophys. 2014 68 3 475 478 10.1007/s12013‑013‑9750‑1 24068518
    [Google Scholar]
  180. Shi L. Tu B.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr. Opin. Cell Biol. 2015 33 125 131 10.1016/j.ceb.2015.02.003 25703630
    [Google Scholar]
  181. Guo D. Prins R.M. Dang J. Kuga D. Iwanami A. Soto H. Lin K.Y. Huang T.T. Akhavan D. Hock M.B. Zhu S. Kofman A.A. Bensinger S.J. Yong W.H. Vinters H.V. Horvath S. Watson A.D. Kuhn J.G. Robins H.I. Mehta M.P. Wen P.Y. DeAngelis L.M. Prados M.D. Mellinghoff I.K. Cloughesy T.F. Mischel P.S. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal. 2009 2 101 ra82 10.1126/scisignal.2000446 20009104
    [Google Scholar]
  182. Matsushita Y. Nakagawa H. Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021 13 3 474 10.3390/cancers13030474 33530546
    [Google Scholar]
  183. Gharib E. Nasri Nasrabadi P. Reza Zali M. miR‐497‐5p mediates starvation‐induced death in colon cancer cells by targeting acyl‐CoA synthetase‐5 and modulation of lipid metabolism. J. Cell. Physiol. 2020 235 7-8 5570 5589 10.1002/jcp.29488 32012265
    [Google Scholar]
  184. Fernández L.P. Ramos-Ruiz R. Herranz J. Martín-Hernández R. Vargas T. Mendiola M. Guerra L. Reglero G. Feliu J. Ramírez de Molina A. The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer. Oncotarget 2018 9 5 5919 5930 10.18632/oncotarget.23592 29464044
    [Google Scholar]
  185. Zaytseva Y.Y. Rychahou P.G. Gulhati P. Elliott V.A. Mustain W.C. O’Connor K. Morris A.J. Sunkara M. Weiss H.L. Lee E.Y. Evers B.M. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012 72 6 1504 1517 10.1158/0008‑5472.CAN‑11‑4057 22266115
    [Google Scholar]
  186. Zaytseva Y.Y. Harris J.W. Mitov M.I. Kim J.T. Butterfield D.A. Lee E.Y. Weiss H.L. Gao T. Evers B.M. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget 2015 6 22 18891 18904 10.18632/oncotarget.3783 25970773
    [Google Scholar]
  187. Wang Y. Zeng Z. Lu J. Wang Y. Liu Z. He M. Zhao Q. Wang Z. Li T. Lu Y. Wu Q. Yu K. Wang F. Pu H.Y. Li B. Jia W. shi M. Xie D. Kang T. Huang P. Ju H. Xu R. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene 2018 37 46 6025 6040 10.1038/s41388‑018‑0384‑z 29995871
    [Google Scholar]
  188. Eberlé D. Hegarty B. Bossard P. Ferré P. Foufelle F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004 86 11 839 848 10.1016/j.biochi.2004.09.018 15589694
    [Google Scholar]
  189. Zhao Q. Lin X. Wang G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front. Oncol. 2022 12 952371 10.3389/fonc.2022.952371 35912181
    [Google Scholar]
  190. Wen Y.A. Xiong X. Zaytseva Y.Y. Napier D.L. Vallee E. Li A.T. Wang C. Weiss H.L. Evers B.M. Gao T. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer. Cell Death Dis. 2018 9 3 265 10.1038/s41419‑018‑0330‑6 29449559
    [Google Scholar]
  191. Gao Y. Nan X. Shi X. Mu X. Liu B. Zhu H. Yao B. Liu X. Yang T. Hu Y. Liu S. SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-κB pathway activation. BMC Cancer 2019 19 1 685 10.1186/s12885‑019‑5904‑x
    [Google Scholar]
  192. Gouw A.M. Margulis K. Liu N.S. Raman S.J. Mancuso A. Toal G.G. Tong L. Mosley A. Hsieh A.L. Sullivan D.K. Stine Z.E. Altman B.J. Schulze A. Dang C.V. Zare R.N. Felsher D.W. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metab. 2019 30 3 556 572.e5 10.1016/j.cmet.2019.07.012 31447321
    [Google Scholar]
  193. Ni T. He Z. Dai Y. Yao J. Guo Q. Wei L. Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism. Cell Death Dis. 2017 8 6 e2865 10.1038/cddis.2017.261 28594405
    [Google Scholar]
  194. Lee G. Zheng Y. Cho S. Jang C. England C. Dempsey J.M. Yu Y. Liu X. He L. Cavaliere P.M. Chavez A. Zhang E. Isik M. Couvillon A. Dephoure N.E. Blackwell T.K. Yu J.J. Rabinowitz J.D. Cantley L.C. Blenis J. Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling. Cell 2017 171 7 1545 1558.e18 10.1016/j.cell.2017.10.037 29153836
    [Google Scholar]
  195. Zhang K.L. Zhu W.W. Wang S.H. Gao C. Pan J.J. Du Z.G. Lu L. Jia H.L. Dong Q.Z. Chen J.H. Lu M. Qin L.X. Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer. Theranostics 2021 11 13 6560 6572 10.7150/thno.55609 33995676
    [Google Scholar]
  196. Tao J.H. Wang X.T. Yuan W. Chen J.N. Wang Z.J. Ma Y.B. Zhao F.Q. Zhang L.Y. Ma J. Liu Q. Reduced serum high-density lipoprotein cholesterol levels and aberrantly expressed cholesterol metabolism genes in colorectal cancer. World J. Clin. Cases 2022 10 14 4446 4459 10.12998/wjcc.v10.i14.4446 35663062
    [Google Scholar]
  197. Simmen F.A. Pabona J.M.P. Al-Dwairi A. Alhallak I. Montales M.T.E. Simmen R.C.M. Malic Enzyme 1 (ME1) Promotes Adiposity and Hepatic Steatosis and Induces Circulating Insulin and Leptin in Obese Female Mice. Int. J. Mol. Sci. 2023 24 7 6613 10.3390/ijms24076613 37047583
    [Google Scholar]
  198. Zhu Y. Gu L. Lin X. Liu C. Lu B. Cui K. Zhou F. Zhao Q. Prochownik E.V. Fan C. Li Y. Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis. Mol. Cell 2020 77 1 138 149.e5 10.1016/j.molcel.2019.10.015 31735643
    [Google Scholar]
  199. Long T. Sun Y. Hassan A. Qi X. Li X. Structure of nevanimibe-bound tetrameric human ACAT1. Nature 2020 581 7808 339 343 10.1038/s41586‑020‑2295‑8 32433613
    [Google Scholar]
  200. Delmas D. Cotte A.K. Connat J.L. Hermetet F. Bouyer F. Aires V. Emergence of Lipid Droplets in the Mechanisms of Carcinogenesis and Therapeutic Responses. Cancers (Basel) 2023 15 16 4100 10.3390/cancers15164100 37627128
    [Google Scholar]
  201. Wilson D.J. DuBois R.N. Role of Prostaglandin E2 in the Progression of Gastrointestinal Cancer. Cancer Prev. Res. (Phila.) 2022 15 6 355 363 10.1158/1940‑6207.CAPR‑22‑0038 35288737
    [Google Scholar]
  202. Shen H. Xing C. Cui K. Li Y. Zhang J. Du R. Zhang X. Li Y. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1. Cell Death Differ. 2017 24 7 1253 1262 10.1038/cdd.2017.63 28475173
    [Google Scholar]
  203. Li Q. Wang Y. Wu S. Zhou Z. Ding X. Shi R. Thorne R.F. Zhang X.D. Hu W. Wu M. CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. Cell Metab. 2019 30 1 157 173.e7 10.1016/j.cmet.2019.05.009 31155494
    [Google Scholar]
  204. Christensen L.L. True K. Hamilton M.P. Nielsen M.M. Damas N.D. Damgaard C.K. Ongen H. Dermitzakis E. Bramsen J.B. Pedersen J.S. Lund A.H. Vang S. Stribolt K. Madsen M.R. Laurberg S. McGuire S.E. Ørntoft T.F. Andersen C.L. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol. Oncol. 2016 10 8 1266 1282 10.1016/j.molonc.2016.06.003 27396952
    [Google Scholar]
  205. Gong J. Lin Y. Zhang H. Liu C. Cheng Z. Yang X. Zhang J. Xiao Y. Sang N. Qian X. Wang L. Cen X. Du X. Zhao Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 2020 11 4 267 10.1038/s41419‑020‑2434‑z 32327627
    [Google Scholar]
  206. Di Franco S. Bianca P. Sardina D.S. Turdo A. Gaggianesi M. Veschi V. Nicotra A. Mangiapane L.R. Lo Iacono M. Pillitteri I. van Hooff S. Martorana F. Motta G. Gulotta E. Lentini V.L. Martorana E. Fiori M.E. Vieni S. Bongiorno M.R. Giannone G. Giuffrida D. Memeo L. Colarossi L. Mare M. Vigneri P. Todaro M. De Maria R. Medema J.P. Stassi G. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery. Nat. Commun. 2021 12 1 5006 10.1038/s41467‑021‑25333‑9 34408135
    [Google Scholar]
  207. Li Q. Ding C. Meng T. Lu W. Liu W. Hao H. Cao L. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J. Pharmacol. Sci. 2017 135 4 148 155 10.1016/j.jphs.2017.11.004 29233468
    [Google Scholar]
  208. Shi J. Ju R. Gao H. Huang Y. Guo L. Zhang D. Targeting glutamine utilization to block metabolic adaptation of tumor cells under the stress of carboxyamidotriazole-induced nutrients unavailability. Acta Pharm. Sin. B 2022 12 2 759 773 10.1016/j.apsb.2021.07.008 35256945
    [Google Scholar]
  209. Xu F. Jiang H.L. Feng W.W. Fu C. Zhou J.C. Characteristics of amino acid metabolism in colorectal cancer. World J. Clin. Cases 2023 11 27 6318 6326 10.12998/wjcc.v11.i27.6318 37900242
    [Google Scholar]
  210. Miyo M. Konno M. Nishida N. Sueda T. Noguchi K. Matsui H. Colvin H. Kawamoto K. Koseki J. Haraguchi N. Nishimura J. Hata T. Gotoh N. Matsuda F. Satoh T. Mizushima T. Shimizu H. Doki Y. Mori M. Ishii H. Metabolic Adaptation to Nutritional Stress in Human Colorectal Cancer. Sci. Rep. 2016 6 1 38415 10.1038/srep38415 27924922
    [Google Scholar]
  211. Zhao Y. Zhao X. Chen V. Feng Y. Wang L. Croniger C. Conlon R.A. Markowitz S. Fearon E. Puchowicz M. Brunengraber H. Hao Y. Wang Z. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci. Rep. 2019 9 1 19180 10.1038/s41598‑019‑55718‑2 31844152
    [Google Scholar]
  212. Yang L. Venneti S. Nagrath D. Glutaminolysis: A Hallmark of Cancer Metabolism. Annu. Rev. Biomed. Eng. 2017 19 1 163 194 10.1146/annurev‑bioeng‑071516‑044546 28301735
    [Google Scholar]
  213. Liu G. Zhu J. Yu M. Cai C. Zhou Y. Yu M. Fu Z. Gong Y. Yang B. Li Y. Zhou Q. Lin Q. Ye H. Ye L. Zhao X. Li Z. Chen R. Han F. Tang C. Zeng B. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J. Transl. Med. 2015 13 1 144 10.1186/s12967‑015‑0500‑6 25947346
    [Google Scholar]
  214. Huang F. Zhang Q. Ma H. Lv Q. Zhang T. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance. Int. J. Clin. Exp. Pathol. 2014 7 3 1093 1100 24696726
    [Google Scholar]
  215. Song Z. Wei B. Lu C. Li P. Chen L. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol. Lett. 2017 14 3 3117 3123 10.3892/ol.2017.6538 28928849
    [Google Scholar]
  216. Shen X. Jain A. Aladelokun O. Yan H. Gilbride A. Ferrucci L.M. Lu L. Khan S.A. Johnson C.H. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Front. Mol. Biosci. 2022 9 958666 10.3389/fmolb.2022.958666 36090030
    [Google Scholar]
  217. Du F. Chen J. Líu H. Cai Y. Cao T. Han W. Yi X. Qian M. Tian D. Nie Y. Wu K. Fan D. Xia L. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death Dis. 2019 10 3 239 10.1038/s41419‑019‑1481‑9 30858360
    [Google Scholar]
  218. Li J. Song P. Jiang T. Dai D. Wang H. Sun J. Zhu L. Xu W. Feng L. Shin V.Y. Morrison H. Wang X. Jin H. Heat Shock Factor 1 Epigenetically Stimulates Glutaminase-1-Dependent mTOR Activation to Promote Colorectal Carcinogenesis. Mol. Ther. 2018 26 7 1828 1839 10.1016/j.ymthe.2018.04.014 29730197
    [Google Scholar]
  219. Kim M. Gwak J. Hwang S. Yang S. Jeong S.M. Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism. Oncogene 2019 38 24 4729 4738 10.1038/s41388‑019‑0751‑4 30765862
    [Google Scholar]
  220. Cathomas G. PIK3CA in Colorectal Cancer. Front. Oncol. 2014 4 35 10.3389/fonc.2014.00035 24624362
    [Google Scholar]
  221. Hao Y. Samuels Y. Li Q. Krokowski D. Guan B.J. Wang C. Jin Z. Dong B. Cao B. Feng X. Xiang M. Xu C. Fink S. Meropol N.J. Xu Y. Conlon R.A. Markowitz S. Kinzler K.W. Velculescu V.E. Brunengraber H. Willis J.E. LaFramboise T. Hatzoglou M. Zhang G.F. Vogelstein B. Wang Z. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat. Commun. 2016 7 1 11971 10.1038/ncomms11971 27321283
    [Google Scholar]
  222. Najumudeen A.K. Ceteci F. Fey S.K. Hamm G. Steven R.T. Hall H. Nikula C.J. Dexter A. Murta T. Race A.M. Sumpton D. Vlahov N. Gay D.M. Knight J.R.P. Jackstadt R. Leach J.D.G. Ridgway R.A. Johnson E.R. Nixon C. Hedley A. Gilroy K. Clark W. Malla S.B. Dunne P.D. Rodriguez-Blanco G. Critchlow S.E. Mrowinska A. Malviya G. Solovyev D. Brown G. Lewis D.Y. Mackay G.M. Strathdee D. Tardito S. Gottlieb E. Campbell A. Najumudeen A. Race A.M. Gilmore I. McMahon G. Grant P. Yan B. Taylor A.J. Elia E. Thomas S. Munteanu C. Al-Afeef A. Burton A. Vorng J-L. Loizeau X. Zhou W. Nasif A. Gonzalez A. Koquna H. Metodiev M. Kyriazi M. Zhang J. Zeiger L. Vande-Voorde J. Morton J. Soloviev D. Wu V. Xiang Y. McGill D. Maneta-Stravrakaki S. Mistry J. Kazanc E. Yuneva M. Panina Y. Nanda C.S. Kreuzaler P. Ghanate A. Ling S. Richings J. Brindle K. Tsyben A. Poulogiannis G. Gupta A. Tripp A. Karali E. Koundouros N. Tsalikis T. Marshall J. Garrett M. Hall H. Takats Z. Barry S.T. Goodwin R.J.A. Bunch J. Bushell M. Campbell A.D. Sansom O.J. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nat. Genet. 2021 53 1 16 26 10.1038/s41588‑020‑00753‑3 33414552
    [Google Scholar]
  223. Wong C.C. Qian Y. Li X. Xu J. Kang W. Tong J.H. To K.F. Jin Y. Li W. Chen H. Go M.Y.Y. Wu J.L. Cheng K.W. Ng S.S.M. Sung J.J.Y. Cai Z. Yu J. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Gastroenterology 2016 151 5 945 960.e6 10.1053/j.gastro.2016.07.011 27451147
    [Google Scholar]
  224. Hua Q. Zhang B. Xu G. Wang L. Wang H. Lin Z. Yu D. Ren J. Zhang D. Zhao L. Zhang T. CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin. Oncogene 2021 40 46 6443 6455 10.1038/s41388‑021‑02023‑w 34608265
    [Google Scholar]
  225. Wang Y.Q. Wang H.L. Xu J. Tan J. Fu L.N. Wang J.L. Zou T.H. Sun D.F. Gao Q.Y. Chen Y.X. Fang J.Y. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat. Commun. 2018 9 1 545 10.1038/s41467‑018‑02951‑4 29416026
    [Google Scholar]
  226. Locasale J.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat Rev Cancer 2013 13 8 572 583 10.1038/nrc3557 23822983
    [Google Scholar]
  227. Li K. Wu J. Qin B. Fan Z. Tang Q. Lu W. Zhang H. Xing F. Meng M. Zou S. Wei W. Chen H. Cai J. Wang H. Zhang H. Cai J. Fang L. Bian X. Chen C. Lan P. Ghesquière B. Fang L. Lee M.H. ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell Res. 2020 30 2 163 178 10.1038/s41422‑019‑0257‑1 31772275
    [Google Scholar]
  228. Wang H. Cui L. Li D. Fan M. Liu Z. Liu C. Pan S. Zhang L. Zhang H. Zhao Y. Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer. Signal Transduct. Target. Ther. 2020 5 1 47 10.1038/s41392‑020‑0147‑5 32300099
    [Google Scholar]
  229. Jain M. Nilsson R. Sharma S. Madhusudhan N. Kitami T. Souza A.L. Kafri R. Kirschner M.W. Clish C.B. Mootha V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012 336 6084 1040 1044 10.1126/science.1218595 22628656
    [Google Scholar]
  230. Ducker G.S. Ghergurovich J.M. Mainolfi N. Suri V. Jeong S.K. Hsin-Jung Li S. Friedman A. Manfredi M.G. Gitai Z. Kim H. Rabinowitz J.D. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 2017 114 43 11404 11409 10.1073/pnas.1706617114 29073064
    [Google Scholar]
  231. Morscher R.J. Ducker G.S. Li S.H.J. Mayer J.A. Gitai Z. Sperl W. Rabinowitz J.D. Mitochondrial translation requires folate-dependent tRNA methylation. Nature 2018 554 7690 128 132 10.1038/nature25460 29364879
    [Google Scholar]
  232. Yang X. Wang Z. Li X. Liu B. Liu M. Liu L. Chen S. Ren M. Wang Y. Yu M. Wang B. Zou J. Zhu W.G. Yin Y. Gu W. Luo J. SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation. Cancer Res. 2018 78 2 372 386 10.1158/0008‑5472.CAN‑17‑1912 29180469
    [Google Scholar]
  233. Wei Z. Song J. Wang G. Cui X. Zheng J. Tang Y. Yu W. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 2018 9 1 4468 10.1038/s41467‑018‑06812‑y 30367038
    [Google Scholar]
  234. Richard D.M. Dawes M.A. Mathias C.W. Acheson A. Hill-Kapturczak N. Dougherty D.M. L -Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009 2 IJTR.S2129 10.4137/IJTR.S2129 20651948
    [Google Scholar]
  235. Zhang H. Zhang A. Miao J. Sun H. Yan G. Wu F. Wang X. Targeting regulation of tryptophan metabolism for colorectal cancer therapy: A systematic review. RSC Advances 2019 9 6 3072 3080 10.1039/C8RA08520J 35518968
    [Google Scholar]
  236. Venkateswaran N. Lafita-Navarro M.C. Hao Y.H. Kilgore J.A. Perez-Castro L. Braverman J. Conacci-Sorrell M. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev. 2019 33 17-18 1236 1251 10.1101/gad.327056.119 31416966
    [Google Scholar]
  237. Ramprasath T. Han Y.M. Zhang D. Yu C.J. Zou M.H. Tryptophan Catabolism and Inflammation: A Novel Therapeutic Target For Aortic Diseases. Front. Immunol. 2021 12 731701 10.3389/fimmu.2021.731701 34630411
    [Google Scholar]
  238. Ball H.J. Fedelis F.F. Bakmiwewa S.M. Hunt N.H. Yuasa H.J. Tryptophan-catabolizing enzymes - party of three. Front. Immunol. 2014 5 485 10.3389/fimmu.2014.00485 25346733
    [Google Scholar]
  239. Santhanam S. Alvarado D.M. Ciorba M.A. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl. Res. 2016 167 1 67 79 10.1016/j.trsl.2015.07.003 26297050
    [Google Scholar]
  240. Brandacher G. Perathoner A. Ladurner R. Schneeberger S. Obrist P. Winkler C. Werner E.R. Werner-Felmayer G. Weiss H.G. Göbel G. Margreiter R. Königsrainer A. Fuchs D. Amberger A. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin. Cancer Res. 2006 12 4 1144 1151 10.1158/1078‑0432.CCR‑05‑1966 16489067
    [Google Scholar]
  241. Bishnupuri K.S. Alvarado D.M. Khouri A.N. Shabsovich M. Chen B. Dieckgraefe B.K. Ciorba M.A. IDO1 and Kynurenine Pathway Metabolites Activate PI3K-Akt Signaling in the Neoplastic Colon Epithelium to Promote Cancer Cell Proliferation and Inhibit Apoptosis. Cancer Res. 2019 79 6 1138 1150 10.1158/0008‑5472.CAN‑18‑0668 30679179
    [Google Scholar]
  242. Lou Q. Liu R. Yang X. Li W. Huang L. Wei L. Tan H. Xiang N. Chan K. Chen J. Liu H. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J. Immunother. Cancer 2019 7 1 210 10.1186/s40425‑019‑0691‑0 31391111
    [Google Scholar]
  243. Weng N. Zhang Z. Tan Y. Zhang X. Wei X. Zhu Q. Repurposing antifungal drugs for cancer therapy. J. Adv. Res. 2023 48 259 273 10.1016/j.jare.2022.08.018 36067975
    [Google Scholar]
  244. Pfab C. Schnobrich L. Eldnasoury S. Gessner A. El-Najjar N. Repurposing of antimicrobial agents for cancer therapy: What do we know? Cancers (Basel) 2021 13 13 3193 10.3390/cancers13133193 34206772
    [Google Scholar]
  245. Wang W. Yang J. Edin M.L. Wang Y. Luo Y. Wan D. Yang H. Song C.Q. Xue W. Sanidad K.Z. Song M. Bisbee H.A. Bradbury J.A. Nan G. Zhang J. Shih P.B. Lee K.S.S. Minter L.M. Kim D. Xiao H. Liu J.Y. Hammock B.D. Zeldin D.C. Zhang G. Targeted Metabolomics Identifies the Cytochrome P450 Monooxygenase Eicosanoid Pathway as a Novel Therapeutic Target of Colon Tumorigenesis. Cancer Res. 2019 79 8 1822 1830 10.1158/0008‑5472.CAN‑18‑3221 30803995
    [Google Scholar]
  246. Horváth H.C. Lakatos P. Kósa J.P. Bácsi K. Borka K. Bises G. Nittke T. Hershberger P.A. Speer G. Kállay E. The candidate oncogene CYP24A1: A potential biomarker for colorectal tumorigenesis. J Histochem Cytochem. 2010 58 3 277 285 10.1369/jhc.2009.954339 19901270
    [Google Scholar]
  247. Schuster I. Egger H. Bikle D. Herzig G. Reddy G.S. Stuetz A. Stuetz P. Vorisek G. Selective inhibition of vitamin D hydroxylases in human keratinocytes11Abbreviations: VD: vitamin D3; 25(OH)D3: 25-hydroxyvitamin D3; 3H-25(OH)D3: [26,27n-3H] 25-hydroxyvitamin D3; 1α,25(OH)2D3: 1α,25-dihydroxyvitamin D3; 1α,25(OH)2-3epi-D3: 1α,25-dihydroxyvitamin-3-epi-D3; 1α,24(R),25(OH)3D3: 1α,24(R),25-trihydroxyvitamin D3, 1α,25(OH)2-24oxo-D3: 1α,25-dihydroxy-24oxo-vitamin D3; 1α,23(S),25(OH)3-24oxo-D3: 1α,23(S),25-trihydroxy-24oxo-vitamin D3; calcitroic acid: 1α-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D3; CYP: cytochrome P450; 1α-hydroxylase: 25-hydroxyvitamin D3-1α-hydroxylase; 24-hydroxylase (CYP24), 1α,25-hydroxyvitamin D3-24-hydroxylase; PHK, primary human keratinocytes; KGM: keratinocyte growth medium; HPLC, high performance liquid chromatography; IC50: half-maximum inhibitor concentration; SD: standard deviation. Steroids 2001 66 3-5 409 422 10.1016/S0039‑128X(00)00159‑8 11179750
    [Google Scholar]
  248. Godamudunage M.P. Grech A.M. Scott E.E. Comparison of antifungal azole interactions with adult cytochrome P450 3A4 versus neonatal cytochrome P450 3A7. Drug Metab Dispos. 2018 46 9 1329 1337 10.1124/dmd.118.082032 29991575
    [Google Scholar]
  249. Olszewski U. Liedauer R. Ausch C. Thalhammer T. Hamilton G. Overexpression of CYP3A4 in a COLO 205 colon cancer stem cell model in vitro. Cancers (Basel) 2011 3 1 1467 1479 10.3390/cancers3011467 24212669
    [Google Scholar]
  250. Matsuda Y. Saoo K. Yamakawa K. Yokohira M. Suzuki S. Kuno T. Kamataki T. Imaida K. Overexpression of CYP2A6 in human colorectal tumors. Cancer Sci. 2007 98 10 1582 1585 10.1111/j.1349‑7006.2007.00572.x 17683511
    [Google Scholar]
  251. Burris-Hiday S.D. Scott E.E. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem. 2023 299 9 105112 10.1016/j.jbc.2023.105112 37517692
    [Google Scholar]
  252. Ong C.E. Coulter S. Birkett D.J. Bhasker C.R. Miners J.O. The xenobiotic inhibitor profile of cytochrome P4502C8. Br. J. Clin. Pharmacol. 2000 50 6 573 580 10.1046/j.1365‑2125.2000.00316.x 11136296
    [Google Scholar]
  253. Kósa J.P. Horváth P. Wölfling J. Kovács D. Ballá B. Mátyus P. Horváth E. Speer G. Takács I. Nagy Z. Horváth H. Lakatos P. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J. Gastroenterol. 2013 19 17 2621 2628 10.3748/wjg.v19.i17.2621 23674869
    [Google Scholar]
  254. Ferrer-Mayorga G. Larriba M.J. Crespo P. Muñoz A. Mechanisms of action of vitamin D in colon cancer. J. Steroid Biochem. Mol. Biol. 2019 185 1 6 10.1016/j.jsbmb.2018.07.002 29981368
    [Google Scholar]
  255. Jendželovský R. Kovaľ J. Mikeš J. Papčová Z. Plšíková J. Fedoročko P. Inhibition of GSK-3β reverses the pro-apoptotic effect of proadifen (SKF-525A) in HT-29 colon adenocarcinoma cells. Toxicol. In Vitro 2012 26 6 775 782 10.1016/j.tiv.2012.05.014 22683934
    [Google Scholar]
  256. Modarai S.R. Gupta A. Opdenaker L.M. Kowash R. Masters G. Viswanathan V. Zhang T. Fields J.Z. Boman B.M. The anti-cancer effect of retinoic acid signaling in CRC occurs via decreased growth of ALDH+ colon cancer stem cells and increased differentiation of stem cells. Oncotarget 2018 9 78 34658 34669 10.18632/oncotarget.26157 30410666
    [Google Scholar]
  257. Wu Z. Zhang X. An Y. Ma K. Xue R. Ye G. Du J. Chen Z. Zhu Z. Shi G. Ding X. Wan M. Jiang B. Zhang P. Liu J. Bu P. CLMP is a tumor suppressor that determines all-trans retinoic acid response in colorectal cancer. Dev. Cell 2023 58 23 2684 2699.e6 10.1016/j.devcel.2023.10.006 37944525
    [Google Scholar]
  258. Alaei M. Nazari S.E. Pourali G. Asadnia A. Moetamani-Ahmadi M. Fiuji H. Tanzadehpanah H. Asgharzadeh F. Babaei F. Khojasteh-Leylakoohi F. Saeed Gataa I. Ali Kiani M. Ferns G.A. Lam A.K. Hassanian S.M. Khazaei M. Giovannetti E. Avan A. Therapeutic potential of targeting the cytochrome P450 enzymes using lopinavir/ritonavir in colorectal cancer: A study in monolayers, spheroids and in vivo models. Cancers (Basel) 2023 15 15 3939 10.3390/cancers15153939 37568755
    [Google Scholar]
  259. Choi J.S. Piao Y.J. Kang K.W. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin. Arch. Pharm. Res. 2011 34 4 607 613 10.1007/s12272‑011‑0411‑x 21544726
    [Google Scholar]
  260. Lim S.M. Hwang J.W. Ahn J.B. Bae S.K. Park C.H. Kim K.Y. Rha S.Y. Chung H.C. Roh J.K. Shin S.J. Combination of CYP inhibitor with MEK/ERK inhibitor enhances the inhibitory effect on ERK in BRAF mutant colon cancer cells. Anticancer Res. 2013 33 6 2499 2508 23749901
    [Google Scholar]
  261. Untereiner A.A. Pavlidou A. Druzhyna N. Papapetropoulos A. Hellmich M.R. Szabo C. Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells. Biochem. Pharmacol. 2018 149 174 185 10.1016/j.bcp.2017.10.007 29061341
    [Google Scholar]
  262. Liu L. Mo M. Chen X. Chao D. Zhang Y. Chen X. Wang Y. Zhang N. He N. Yuan X. Chen H. Yang J. Targeting inhibition of prognosis-related lipid metabolism genes including CYP19A1 enhances immunotherapeutic response in colon cancer. J. Exp. Clin. Cancer Res. 2023 42 1 85 10.1186/s13046‑023‑02647‑8 37055842
    [Google Scholar]
  263. Anthoni H. Sucheston L.E. Lewis B.A. Tapia-Páez I. Fan X. Zucchelli M. Taipale M. Stein C.M. Hokkanen M.E. Castrén E. Pennington B.F. Smith S.D. Olson R.K. Tomblin J.B. Schulte-Körne G. Nöthen M. Schumacher J. Müller-Myhsok B. Hoffmann P. Gilger J.W. Hynd G.W. Nopola-Hemmi J. Leppanen P.H.T. Lyytinen H. Schoumans J. Nordenskjöld M. Spencer J. Stanic D. Boon W.C. Simpson E. Mäkelä S. Gustafsson J.Å. Peyrard-Janvid M. Iyengar S. Kere J. The aromatase gene CYP19A1: Several genetic and functional lines of evidence supporting a role in reading, speech and language. Behav. Genet. 2012 42 4 509 527 10.1007/s10519‑012‑9532‑3 22426781
    [Google Scholar]
  264. Vanden Bossche H. Marichal P. Le Jeune L. Coene M.C. Gorrens J. Cools W. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. Antimicrob. Agents Chemother. 1993 37 10 2101 2105 10.1128/AAC.37.10.2101 8257130
    [Google Scholar]
  265. Kane G.C. Lipsky J.J. Drug-grapefruit juice interactions. Mayo Clin. Proc. 2000 75 9 933 942 10.4065/75.9.933 10994829
    [Google Scholar]
  266. Zhou X. Pant S. Nemunaitis J. Craig Lockhart A. Falchook G. Bauer T.M. Patel M. Sarantopoulos J. Bargfrede M. Muehler A. Rangachari L. Zhang B. Venkatakrishnan K. Effects of rifampin, itraconazole and esomeprazole on the pharmacokinetics of alisertib, an investigational aurora a kinase inhibitor in patients with advanced malignancies. Invest. New Drugs 2018 36 2 248 258 10.1007/s10637‑017‑0499‑z 28852909
    [Google Scholar]
  267. Lang I. Liu D. Fritsch H. Taube T. Chizhikov E. Liptai B. Potential Drug–Drug Interactions with Combination Volasertib + Itraconazole: A Phase I, Fixed-sequence Study in Patients with Solid Tumors. Clin. Ther. 2020 42 11 2214 2224 10.1016/j.clinthera.2020.09.015 33139055
    [Google Scholar]
  268. Dirix L. Swaisland H. Verheul H.M.W. Rottey S. Leunen K. Jérusalem G. Rolfo C. Nielsen D. Molife L.R. Kristeleit R. Vos-Geelen J. Mau-Sørensen M. Soetekouw P. van Herpen C. Fielding A. So K. Bannister W. Plummer R. Effect of itraconazole and rifampin on the pharmacokinetics of olaparib in patients with advanced solid tumors: Results of two phase I open-label studies. Clin. Ther. 2016 38 10 2286 2299 10.1016/j.clinthera.2016.08.010 27745744
    [Google Scholar]
  269. Mu S. Lin C. Skrzypczyk-Ostaszewicz A. Bulat I. Maglakelidze M. Skarbova V. Andreu-Vieyra C. Sahasranaman S. The pharmacokinetics of pamiparib in the presence of a strong CYP3A inhibitor (itraconazole) and strong CYP3A inducer (rifampin) in patients with solid tumors: An open-label, parallel-group phase 1 study. Cancer Chemother. Pharmacol. 2021 88 1 81 88 10.1007/s00280‑021‑04253‑x 33772633
    [Google Scholar]
  270. Moreno I. Hernandez T. Calvo E. Fudio S. Kahatt C. Martinez S. Iglesias J. Calafati R.O. Pérez Ramos L. Montilla L. Zeaiter A. Lubomirov R. 679P Lurbinectedin (LRB) pharmacokinetics (PK) and safety when co-administered with itraconazole (ITZ) in patients with advanced solid tumor. Ann. Oncol. 2023 34 S475 10.1016/j.annonc.2023.09.1865
    [Google Scholar]
  271. Mohamed A.W. Elbassiouny M. Elkhodary D.A. Shawki M.A. Saad A.S. The effect of itraconazole on the clinical outcomes of patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: A randomized controlled study. Med. Oncol. 2021 38 3 23 10.1007/s12032‑021‑01475‑0 33559053
    [Google Scholar]
  272. Takahashi S. Karayama M. Takahashi M. Watanabe J. Minami H. Yamamoto N. Kinoshita I. Lin C.C. Im Y.H. Achiwa I. Kamiyama E. Okuda Y. Lee C. Bang Y.J. Pharmacokinetics, Safety, and Efficacy of Trastuzumab Deruxtecan with Concomitant Ritonavir or Itraconazole in Patients with HER2-Expressing Advanced Solid Tumors. Clin. Cancer Res. 2021 27 21 5771 5780 10.1158/1078‑0432.CCR‑21‑1560 34426442
    [Google Scholar]
  273. Head S.A. Shi W. Zhao L. Gorshkov K. Pasunooti K. Chen Y. Deng Z. Li R. Shim J.S. Tan W. Hartung T. Zhang J. Zhao Y. Colombini M. Liu J.O. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells. Proc. Natl. Acad. Sci. USA 2015 112 52 E7276 E7285 10.1073/pnas.1512867112 26655341
    [Google Scholar]
  274. de Jong J. Hellemans P. De Wilde S. Patricia D. Masterson T. Manikhas G. Myasnikov A. Osmanov D. Córdoba R. Panizo C. de Zwart L. Snoeys J. Chauhan V. Jiao J. Sukbuntherng J. Ouellet D. A drug–drug interaction study of ibrutinib with moderate/strong CYP3A inhibitors in patients with B-cell malignancies. Leuk. Lymphoma 2018 59 12 2888 2895 10.1080/10428194.2018.1460474 29846137
    [Google Scholar]
  275. Hohmann N. Sprick M.R. Pohl M. Ahmed A. Burhenne J. Kirchner M. Le Cornet L. Kratzmann M. Hajda J. Stenzinger A. Steindorf K. Delorme S. Schlemmer H.P. Riethdorf S. van Schaik R. Pantel K. Siveke J. Seufferlein T. Jäger D. Haefeli W.E. Trumpp A. Springfeld C. Protocol of the IntenSify‐Trial : An open‐label phase I trial of the CYP3A inhibitor cobicistat and the cytostatics gemcitabine and nab‐paclitaxel in patients with advanced stage or metastatic pancreatic ductal adenocarcinoma to evaluate the combination’s pharmacokinetics, safety, and efficacy. Clin. Transl. Sci. 2023 16 12 2483 2493 10.1111/cts.13661 37920921
    [Google Scholar]
  276. Lei Z.N. Tian Q. Teng Q.X. Wurpel J.N.D. Zeng L. Pan Y. Chen Z.S. Understanding and targeting resistance mechanisms in cancer. MedComm 2023 4 3 e265 10.1002/mco2.265 37229486
    [Google Scholar]
  277. Venkatakrishnan K. Rader M. Ramanathan R.K. Ramalingam S. Chen E. Riordan W. Trepicchio W. Cooper M. Karol M. von Moltke L. Neuwirth R. Egorin M. Chatta G. Effect of the CYP3A inhibitor ketoconazole on the pharmacokinetics and pharmacodynamics of bortezomib in patients with advanced solid tumors: A prospective, multicenter, open-label, randomized, two-way crossover drug—drug interaction study. Clin. Ther. 2009 31 Pt 2 2444 2458 10.1016/j.clinthera.2009.11.012 20110052
    [Google Scholar]
  278. Figg W.D. Woo S. Zhu W. Chen X. Ajiboye A.S. Steinberg S.M. Price D.K. Wright J.J. Parnes H.L. Arlen P.M. Gulley J.L. Dahut W.L. A phase I clinical study of high dose ketoconazole plus weekly docetaxel for metastatic castration resistant prostate cancer. J. Urol. 2010 183 6 2219 2226 10.1016/j.juro.2010.02.020 20399458
    [Google Scholar]
  279. Eklund J. Kozloff M. Vlamakis J. Starr A. Mariott M. Gallot L. Jovanovic B. Schilder L. Robin E. Pins M. Bergan R.C. Phase II study of mitoxantrone and ketoconazole for hormone‐refractory prostate cancer. Cancer 2006 106 11 2459 2465 10.1002/cncr.21880 16615097
    [Google Scholar]
  280. Sella A. Kilbourn R. Amato R. Bui C. Zukiwski A.A. Ellerhorst J. Logothetis C.J. Phase II study of ketoconazole combined with weekly doxorubicin in patients with androgen-independent prostate cancer. J. Clin. Oncol. 1994 12 4 683 688 10.1200/JCO.1994.12.4.683 7512126
    [Google Scholar]
  281. Weiss J. Theile D. Dvorak Z. Haefeli W. Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro. Pharmaceutics 2014 6 4 632 650 10.3390/pharmaceutics6040632 25521244
    [Google Scholar]
  282. de Weger V.A. Goel S. von Moos R. Schellens J.H.M. Mach N. Tan E. Anand S. Scott J.W. Lassen U. A drug–drug interaction study to assess the effect of the CYP1A2 inhibitor fluvoxamine on the pharmacokinetics of dovitinib (TKI258) in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2018 81 1 73 80 10.1007/s00280‑017‑3469‑4 29101463
    [Google Scholar]
  283. Miller W.L. Minireview: Regulation of steroidogenesis by electron transfer. Endocrinology 2005 146 6 2544 2550 10.1210/en.2005‑0096 15774560
    [Google Scholar]
  284. Wróbel T.M. Jørgensen F.S. Pandey A.V. Grudzińska A. Sharma K. Yakubu J. Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J. Med. Chem. 2023 66 10 6542 6566 10.1021/acs.jmedchem.3c00442 37191389
    [Google Scholar]
  285. Beck K.R. Thompson G.R. III Odermatt A. Drug-induced endocrine blood pressure elevation. Pharmacol. Res. 2020 154 104311 10.1016/j.phrs.2019.104311 31212012
    [Google Scholar]
  286. FDA approves abiraterone acetate in combination with prednisone for high-risk metastatic castration-sensitive prostate cancer. U.S. Food And Drug Administration. 2018 Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abiraterone-acetate-combination-prednisone-high-risk-metastatic-castration-sensitive
  287. McKay R.R. Werner L. Jacobus S.J. Jones A. Mostaghel E.A. Marck B.T. Choudhury A.D. Pomerantz M.M. Sweeney C.J. Slovin S.F. Morris M.J. Kantoff P.W. Taplin M.E. A phase 2 trial of abiraterone acetate without glucocorticoids for men with metastatic castration‐resistant prostate cancer. Cancer 2019 125 4 524 532 10.1002/cncr.31836 30427533
    [Google Scholar]
  288. Efstathiou E. Titus M. Tsavachidou D. Tzelepi V. Wen S. Hoang A. Molina A. Chieffo N. Smith L.A. Karlou M. Troncoso P. Logothetis C.J. Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J. Clin. Oncol. 2012 30 6 637 643 10.1200/JCO.2010.33.7675 22184395
    [Google Scholar]
  289. Ryan C.J. Smith M.R. Fong L. Rosenberg J.E. Kantoff P. Raynaud F. Martins V. Lee G. Kheoh T. Kim J. Molina A. Small E.J. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J. Clin. Oncol. 2010 28 9 1481 1488 10.1200/JCO.2009.24.1281 20159824
    [Google Scholar]
  290. Attard G. Reid A.H.M. A’Hern R. Parker C. Oommen N.B. Folkerd E. Messiou C. Molife L.R. Maier G. Thompson E. Olmos D. Sinha R. Lee G. Dowsett M. Kaye S.B. Dearnaley D. Kheoh T. Molina A. de Bono J.S. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 2009 27 23 3742 3748 10.1200/JCO.2008.20.0642 19470933
    [Google Scholar]
  291. Slovin S. Hussain S. Saad F. Garcia J. Picus J. Ferraldeschi R. Crespo M. Flohr P. Riisnaes R. Lin C. Keer H. Oganesian A. Workman P. de Bono J. Pharmacodynamic and Clinical Results from a Phase I/II Study of the HSP90 Inhibitor Onalespib in Combination with Abiraterone Acetate in Prostate Cancer. Clin. Cancer Res. 2019 25 15 4624 4633 10.1158/1078‑0432.CCR‑18‑3212 31113841
    [Google Scholar]
  292. Nordquist L.T. Shore N.D. Open-label phase II study evaluating the efficacy of concurrent administration of radium Ra 223 dichloride and abiraterone acetate in men with castration-resistant prostate cancer patients with symptomatic bone metastases. J. Clin. Oncol. 2016 34 15_suppl Suppl. e16546 e16546 10.1200/JCO.2016.34.15_suppl.e16546
    [Google Scholar]
  293. Zaretsky J.M. Bansal D. Saeed M.A. Peng B. Luo J. Klette J. Reimers M.A. Pachynski R.K. CABIOS trial: A phase Ib study of cabozantinib and nivolumab in combination with abiraterone in patients (pts) with metastatic hormone sensitive prostate cancer (mHSPC). J. Clin. Oncol. 2023 41 16_suppl Suppl. 5084 10.1200/JCO.2023.41.16_suppl.5084
    [Google Scholar]
  294. Antonarakis E.S. Park S.H. Goh J.C. Shin S.J. Lee J.L. Mehra N. McDermott R. Sala-Gonzalez N. Fong P.C. Greil R. Retz M. Sade J.P. Yanez P. Huang Y.H. Begbie S.D. Gafanov R.A. De Santis M. Rosenbaum E. Kolinsky M.P. Rey F. Chiu K.Y. Roubaud G. Kramer G. Sumitomo M. Massari F. Suzuki H. Qiu P. Zhang J. Kim J. Poehlein C.H. Yu E.Y. Pembrolizumab Plus Olaparib for Patients With Previously Treated and Biomarker-Unselected Metastatic Castration-Resistant Prostate Cancer: The Randomized, Open-Label, Phase III KEYLYNK-010 Trial. J. Clin. Oncol. 2023 41 22 3839 3850 10.1200/JCO.23.00233 37290035
    [Google Scholar]
  295. Mistry S. Abiraterone Plus LHRH Is Active and Safe for Androgen Receptor-Positive Salivary Gland Tumors. 2023 Available from: https://www.cancertherapyadvisor.com/home/cancer-topics/head-and-neck-cancer/salivary-gland-carcinoma-abiraterone-lhrh-active-safe-treatment-risk/
  296. García-Donás J. Hurtado A. Garrigós L. Santaballa A. Redondo A. Vidal L. Lainez N. Guerra E. Rodriguez V. Cueva J. Bover I. Palacio I. Rubio M.J. Prieto M. Lopez-Guerrero J.A. Rodriguez-Moreno J.F. Garcia-Casado Z. Garcia-Martinez E. Taus A. de Castro I.P. Navarro P. Grande E. Open-label phase II clinical trial of ketoconazole as CYP17 inhibitor in metastatic or advanced non-resectable granulosa cell ovarian tumors: the GREKO (GRanulosa Et KetOconazole) trial, GETHI 2011-03. Clin. Transl. Oncol. 2023 25 7 2090 2098 10.1007/s12094‑023‑03085‑w 36708371
    [Google Scholar]
  297. Garcia-Donas J. Hurtado A. García-Casado Z. Albareda J. López-Guerrero J.A. Alemany I. Grande E. Camara J.C. Hernando S. Cytochrome P17 inhibition with ketoconazole as treatment for advanced granulosa cell ovarian tumor. J. Clin. Oncol. 2013 31 10 e165 e166 10.1200/JCO.2012.45.0346 23358981
    [Google Scholar]
  298. Toren P.J. Kim S. Pham S. Mangalji A. Adomat H. Guns E.S.T. Zoubeidi A. Moore W. Gleave M.E. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer. Mol. Cancer Ther. 2015 14 1 59 69 10.1158/1535‑7163.MCT‑14‑0521 25351916
    [Google Scholar]
  299. De Bono J.S. Pezaro C.J. Gillessen S. Shore N.D. Nordquist L.T. Efstathiou E. Araujo J.C. Berry W.R. Liu G. Vogelzang N.J. Omlin A.G. Schotzinger R.J. Eisner J.R. Moore W.R. The oral CYP17-Lyase (L) inhibitor VT-464 in patients with CRPC. J. Clin. Oncol. 2015 33 7_suppl Suppl. 187 187 10.1200/jco.2015.33.7_suppl.187
    [Google Scholar]
  300. Gucalp A. Danso M.A. Elias A.D. Bardia A. Ali H.Y. Potter D. Phase (Ph) 2 stage 1 clinical activity of seviteronel, a selective CYP17-lyase and androgen receptor (AR) inhibitor, in women with advanced AR+ triple-negative breast cancer (TNBC) or estrogen receptor (ER)+ BC: CLARITY-01. J. Clin. Oncol. 2017 35 15 Suppl. 1102 1102 10.1200/JCO.2017.35.15_suppl.1102
    [Google Scholar]
  301. Vaccarino L. Di Noto L. Santini G. Bova M. Di Gangi P. Balistreri C.R. Polymorphism of cytochrome P450 (CYP) genes and response to chemiotherapy in patients with colorectal cancer (CRC). Abstract of the 2nd Joint Meeting of Pathology and Laboratory Diagnostics Elsevier Health Sciences 2014 3 Available from: https://iris.unipa.it/handle/10447/99935
    [Google Scholar]
  302. Chai L. Ni J. Ni X. Zhang N. Liu Y. Ji Z. Zhao X. Zhu X. Zhao B. Xin G. Wang Y. Yang F. Sun L. Zhu X. Bao W. Shui X. Wang F. Chen F. Yang Z. Association of CYP24A1 gene polymorphism with colorectal cancer in the Jiamusi population. PLoS One 2021 16 6 e0253474 10.1371/journal.pone.0253474 34191826
    [Google Scholar]
  303. Hoffman E. Mielicki W.P. [All-trans retinoic acid (ATRA) in prevention and cancer therapy]. Postepy Hig. Med. Dosw. 2010 64 284 290 20558866
    [Google Scholar]
  304. Sonneveld E. van den Brink C.E. van der Leede B.M. Schulkes R.K. Petkovich M. van der Burg B. van der Saag P.T. Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoma cells. Cell Growth Differ. 1998 9 8 629 637 9716180
    [Google Scholar]
  305. Ahmed D. Eide P.W. Eilertsen I.A. Danielsen S.A. Eknæs M. Hektoen M. Lind G.E. Lothe R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013 2 9 e71 10.1038/oncsis.2013.35 24042735
    [Google Scholar]
  306. Berg K.C.G. Eide P.W. Eilertsen I.A. Johannessen B. Bruun J. Danielsen S.A. Bjørnslett M. Meza-Zepeda L.A. Eknæs M. Lind G.E. Myklebost O. Skotheim R.I. Sveen A. Lothe R.A. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol. Cancer 2017 16 1 116 10.1186/s12943‑017‑0691‑y 28683746
    [Google Scholar]
  307. Tyzack J.D. Kirchmair J. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem. Biol. Drug Des. 2019 93 4 377 386 10.1111/cbdd.13445 30471192
    [Google Scholar]
  308. Rahman M.M. Islam M.R. Rahman F. Rahaman M.S. Khan M.S. Abrar S. Ray T.K. Uddin M.B. Kali M.S.K. Dua K. Kamal M.A. Chellappan D.K. Emerging promise of computational techniques in anti-cancer research: At a Glance. Bioengineering (Basel) 2022 9 8 335 10.3390/bioengineering9080335 35892749
    [Google Scholar]
  309. Barzi A. Lenz A.M. Labonte M.J. Lenz H.J. Molecular pathways: Estrogen pathway in colorectal cancer. Clin. Cancer Res. 2013 19 21 5842 5848 10.1158/1078‑0432.CCR‑13‑0325 23965904
    [Google Scholar]
  310. Caiazza F. Ryan E.J. Doherty G. Winter D.C. Sheahan K. Estrogen receptors and their implications in colorectal carcinogenesis. Front. Oncol. 2015 5 19 10.3389/fonc.2015.00019 25699240
    [Google Scholar]
  311. Martínez C. García-Martín E. Ladero J.M. Sastre J. Garcia-Gamito F. Diaz-Rubio M. Agúndez J.A. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 2001 22 8 1323 1326 10.1093/carcin/22.8.1323 11470765
    [Google Scholar]
  312. Kiss I. Orsós Z. Gombos K. Bogner B. Csejtei A. Tibold A. Varga Z. Pázsit E. Magda I. Zölyomi A. Ember I. Association between allelic polymorphisms of metabolizing enzymes (CYP 1A1, CYP 1A2, CYP 2E1, mEH) and occurrence of colorectal cancer in Hungary. Anticancer Res. 2007 27 4C 2931 2937 17695473
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128341167250520063502
Loading
/content/journals/cpd/10.2174/0113816128341167250520063502
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: angiogenesis ; CRC ; cancer ; reprogramming ; metabolism ; cytochrome P450 ; inhibitor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test