Skip to content
2000
Volume 31, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cytochrome P450 (CYP 450) plays a pivotal role in the metabolism of a diverse range of agents, and its dysregulation can contribute to tumorigenesis, including tumor angiogenesis across various cancer types. This dysregulation may activate procarcinogenic xenobiotics and endogenous molecules while also inactivating anti-cancer drugs, resulting in drug resistance. The aim of this review is to demonstrate the potential and relevance of CYP inhibitors in the treatment of colorectal cancer (CRC). Several studies have documented the role of CYP enzymes in the metabolic rearrangements of various cancers through the mechanisms underlying metabolic rearrangements in CRC, including those related to glucose, fatty acids, cholesterol, and amino acids. Recent studies have focused on the targeting of metabolic mechanisms in CRC through the use of established CYP inhibitors, yielding varying degrees of success. Among these agents are clotrimazole (inhibitor of CYP24A1, 3A4, 2A6, and 2C8), KD-35 (CYP24A1 inhibitor), liarozole (CYP26A1 inhibitor), letrozole (CYP19A1 inhibitor), lopinavir/ritonavir and quercetin (CYP3A4 inhibitors), α-naphthoflavone and furanfylline (CYP1A1 inhibitors), as well as phenylpyrrole (a CYP1A2 and CYP2A6 inhibitor). Clinical studies investigating CYPs in cancer treatment have been reported in various cancers, including prostate, breast, pancreatic, hematological, lung, and salivary gland cancers, for purposes ranging from dose reduction and cost savings to enhance the efficacy of combined anti-cancer agents (CYP3A4, CYP3A4/5 and CYP1A2 inhibitors), and in addition, functioning as anti-cancer agents themselves (CYP17 inhibitors). Thus, these metabolizing enzymes reveal a complex interaction with cancer therapeutics, opening the door to novel strategies that go beyond conventional treatment paradigms. Harnessing CYP modulators could transform the treatment of CRC, offering more targeted and flexible options.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128341167250520063502
2025-05-29
2025-10-26
Loading full text...

Full text loading...

References

  1. Worldwide cancer data | World Cancer Research Fund International.2022Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/
  2. SiegelR.L. WagleN.S. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2023.CA Cancer J. Clin.202373323325410.3322/caac.21772 36856579
    [Google Scholar]
  3. Pimentel-NunesP. LibânioD. BastiaansenB.A.J. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2022.Endoscopy202254659162210.1055/a‑1811‑7025 35523224
    [Google Scholar]
  4. Colorectal Cancer - Types of Treatment2023Available from: https://www.cancer.net/cancer-types/colorectal-cancer/types-treatment
  5. Colon Cancer Treatment. (PDQ®)2024Available from: https://www.cancer.gov/types/colorectal/hp/colon-treatment-pdq#_645_toc
  6. da SilvaW.C. de AraujoV.E. LimaE.M.A. Comparative effectiveness and safety of monoclonal antibodies (Bevacizumab, Cetuximab, and Panitumumab) in combination with chemotherapy for metastatic colorectal cancer: A systematic review and meta-analysis.BioDrugs201832658560610.1007/s40259‑018‑0322‑1 30499082
    [Google Scholar]
  7. YoshihiroT. KusabaH. MakiyamaA. Efficacy and safety of ramucirumab plus modified FOLFIRI for metastatic colorectal cancer.Int. J. Clin. Oncol.201924550851510.1007/s10147‑018‑01391‑w 30604155
    [Google Scholar]
  8. WelchS. SpithoffK. RumbleR.B. MarounJ. Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: A systematic review.Ann. Oncol.20102161152116210.1093/annonc/mdp533 19942597
    [Google Scholar]
  9. GoldbergR.M. MontagutC. WainbergZ.A. Optimising the use of cetuximab in the continuum of care for patients with metastatic colorectal cancer.ESMO Open201834e00035310.1136/esmoopen‑2018‑000353 29765773
    [Google Scholar]
  10. ZhaoR. XiaD. ChenY. Improved diagnosis of colorectal cancer using combined biomarkers including Fusobacterium nucleatum, fecal occult blood, transferrin, CEA, CA19-9, gender, and age.Cancer Med.20231213146361464510.1002/cam4.6067 37162269
    [Google Scholar]
  11. IyerK.K. van ErpN.P. TaurielloD.V.F. VerheulH.M.W. PoelD. Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer.Cancer Treat. Rev.202211010246610.1016/j.ctrv.2022.102466 36183569
    [Google Scholar]
  12. TangY.L. LiD.D. DuanJ.Y. ShengL.M. WangX. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments.World J. Gastroenterol.202329692694810.3748/wjg.v29.i6.926 36844139
    [Google Scholar]
  13. EstevesF. RueffJ. KranendonkM. The central role of cytochrome P450 in Xenobiotic Metabolism—A brief review on a fascinating enzyme family.J. Xenobiot.20211139411410.3390/jox11030007 34206277
    [Google Scholar]
  14. LampeJ.W. Diet, genetic polymorphisms, detoxification, and health risks.Altern. Ther. Health Med.2007132S108S111 17405687
    [Google Scholar]
  15. MahéM. Rios-FullerT.J. KarolinA. SchneiderR.J. Genetics of enzymatic dysfunctions in metabolic disorders and cancer.Front. Oncol.202313123093410.3389/fonc.2023.1230934 37601653
    [Google Scholar]
  16. NebertD.W. Proposed role of drug-metabolizing enzymes: Regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions.Mol. Endocrinol.1991591203121410.1210/mend‑5‑9‑1203 1663211
    [Google Scholar]
  17. PodgorskiM.N. KetoA.B. ColemanT. The oxidation of oxygen and sulfur-containing heterocycles by cytochrome p450 enzymes.Chemistry20232950e20230137110.1002/chem.202301371 37338048
    [Google Scholar]
  18. MarchittiS.A. BrockerC. StagosD. VasiliouV. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily.Expert Opin. Drug Metab. Toxicol.20084669772010.1517/17425255.4.6.697 18611112
    [Google Scholar]
  19. JancovaP. AnzenbacherP. AnzenbacherovaE. Phase II drug metabolizing enzymes.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2010154210311610.5507/bp.2010.017 20668491
    [Google Scholar]
  20. ManikandanP. NaginiS. Cytochrome P450 structure, function and clinical significance: A review.Curr. Drug Targets2018191385410.2174/1389450118666170125144557 28124606
    [Google Scholar]
  21. RothhammerV. QuintanaF.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease.Nat. Rev. Immunol.201919318419710.1038/s41577‑019‑0125‑8 30718831
    [Google Scholar]
  22. AndrieuxL. LangouëtS. FautrelA. Aryl hydrocarbon receptor activation and cytochrome P450 1A induction by the mitogen-activated protein kinase inhibitor U0126 in hepatocytes.Mol. Pharmacol.200465493494310.1124/mol.65.4.934 15044623
    [Google Scholar]
  23. NebertD.W. DaltonT.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis.Nat. Rev. Cancer200661294796010.1038/nrc2015 17128211
    [Google Scholar]
  24. MoorthyB. ChuC. CarlinD.J. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer.Toxicol. Sci.2015145151510.1093/toxsci/kfv040 25911656
    [Google Scholar]
  25. ElfakiI. MirR. AlmutairiF.M. DuhierF.M.A. Cytochrome P450: Polymorphisms and roles in cancer, diabetes and atherosclerosis.Asian Pac. J. Cancer Prev.20181982057207010.22034/apjcp.2018.19.8.2057 30139042
    [Google Scholar]
  26. PattersonL.H. McKeownS.R. RobsonT. GallagherR. RaleighS.M. OrrS. Antitumour prodrug development using cytochrome P450 (CYP) mediated activation.Anticancer Drug Des.1999146473486 10834269
    [Google Scholar]
  27. WangF. ZhangX. WangY. Activation/inactivation of anticancer drugs by CYP3A4: Influencing factors for personalized cancer therapy.Drug Metab. Dispos.202351554355910.1124/dmd.122.001131 36732076
    [Google Scholar]
  28. RendicS. GuengerichF.P. Contributions of human enzymes in carcinogen metabolism.Chem. Res. Toxicol.20122571316138310.1021/tx300132k 22531028
    [Google Scholar]
  29. ImaokaS. YonedaY. MatsndaT. DegawaM. FukushimaS. FunaeY. Mutagenic activation of urinary bladder carcinogens by CYP4B1 and the presence of CYP4B1 in bladder mucosa.Biochem. Pharmacol.199754667768310.1016/S0006‑2952(97)00216‑5 9310344
    [Google Scholar]
  30. JinL. HuangJ. GuoL. CYP1B1 promotes colorectal cancer liver metastasis by enhancing the growth of metastatic cancer cells via a fatty acids-dependent manner.J. Gastrointest. Oncol.20231462448246510.21037/jgo‑23‑895 38196537
    [Google Scholar]
  31. RodriguezM. PotterD.A. CYP1A1 regulates breast cancer proliferation and survival.Mol. Cancer Res.201311778079210.1158/1541‑7786.MCR‑12‑0675 23576571
    [Google Scholar]
  32. MikstackaR. DutkiewiczZ. New perspectives of CYP1B1 inhibitors in the light of molecular studies.Processes (Basel)20219581710.3390/pr9050817
    [Google Scholar]
  33. NarjozC. FavreA. McMullenJ. Important role of CYP2J2 in protein kinase inhibitor degradation: A possible role in intratumor drug disposition and resistance.PLoS One201495e9553210.1371/journal.pone.0095532 24819355
    [Google Scholar]
  34. MiyoshiY. AndoA. TakamuraY. TaguchiT. TamakiY. NoguchiS. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues.Int. J. Cancer200297112913210.1002/ijc.1568 11774254
    [Google Scholar]
  35. MakhovP. GolovineK. CanterD. Co-administration of piperine and docetaxel results in improved anti-tumor efficacy via inhibition of CYP3A4 activity.Prostate201272666166710.1002/pros.21469 21796656
    [Google Scholar]
  36. XuD. HuJ. De BruyneE. Dll1/Notch interaction contributes to a decreased sensitivity of myeloma cells to Bortezomib.Blood2012120211840010.1182/blood.V120.21.1840.1840
    [Google Scholar]
  37. ChangI. MitsuiY. FukuharaS. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma.Oncotarget20156107774778710.18632/oncotarget.3484 25860934
    [Google Scholar]
  38. CuiJ. MengQ. ZhangX. CuiQ. ZhouW. LiS. Design and synthesis of new α-Naphthoflavones as Cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression.J. Med. Chem.20155883534354710.1021/acs.jmedchem.5b00265 25799264
    [Google Scholar]
  39. ZhuZ. MuY. QiC. CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in vivo and in vitro.Int. J. Mol. Med.201535234034810.3892/ijmm.2014.2041 25516145
    [Google Scholar]
  40. HuangZ. RoyP. WaxmanD.J. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide.Biochem. Pharmacol.200059896197210.1016/S0006‑2952(99)00410‑4 10692561
    [Google Scholar]
  41. YangL. YanC. ZhangF. Effects of ketoconazole on cyclophosphamide metabolism: Evaluation of CYP3A4 inhibition effect using the in vitro and in vivo models.Exp. Anim.2018671718210.1538/expanim.17‑0048 29129847
    [Google Scholar]
  42. ChappleC. Molecular-genetic analysis of plant cytochrome p450-dependent monooxygenases.Annu. Rev. Plant Physiol. Plant Mol. Biol.199849131134310.1146/annurev.arplant.49.1.311 15012237
    [Google Scholar]
  43. ChambokoC.R. VeldmanW. TataR.B. SchoeberlB. Tastan BishopÖ. Human cytochrome P450 1, 2, 3 families as pharmacogenes with emphases on their antimalarial and antituberculosis drugs and prevalent African alleles.Int. J. Mol. Sci.2023244338310.3390/ijms24043383 36834793
    [Google Scholar]
  44. SelloM.M. JaftaN. NelsonD.R. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes.Sci. Rep.2015511157210.1038/srep11572 26129850
    [Google Scholar]
  45. NelsonD.R. ZeldinD.C. HoffmanS.M.G. MaltaisL.J. WainH.M. NebertD.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants.Pharmacogenetics200414111810.1097/00008571‑200401000‑00001 15128046
    [Google Scholar]
  46. ChatuphonprasertW. JarukamjornK. EllingerI. Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta.Front. Pharmacol.20189102710.3389/fphar.2018.01027 30258364
    [Google Scholar]
  47. NeveE.P. Ingelman-SundbergM. Cytochrome P450 proteins: Retention and distribution from the endoplasmic reticulum.Curr. Opin. Drug Discov. Devel.20101317885 20047148
    [Google Scholar]
  48. ThelenK. DressmanJ.B. Cytochrome P450-mediated metabolism in the human gut wall.J. Pharm. Pharmacol.200961554155810.1211/jpp.61.05.0002 19405992
    [Google Scholar]
  49. JanssenA.W.F. DuivenvoordeL.P.M. RijkersD. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells.Arch. Toxicol.202195390792210.1007/s00204‑020‑02953‑6 33263786
    [Google Scholar]
  50. XieF. DingX. ZhangQ.Y. An update on the role of intestinal cytochrome P450 enzymes in drug disposition.Acta Pharm. Sin. B20166537438310.1016/j.apsb.2016.07.012 27709006
    [Google Scholar]
  51. VeithA. MoorthyB. Role of cytochrome P450s in the generation and metabolism of reactive oxygen species.Curr. Opin. Toxicol.20187445110.1016/j.cotox.2017.10.003 29527583
    [Google Scholar]
  52. FerM. CorcosL. DréanoY. Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism.J. Lipid Res.200849112379238910.1194/jlr.M800199‑JLR200 18577768
    [Google Scholar]
  53. GieraM. GalanoJ.M. Eicosanoids.Encyclopedia of Analytical Science. WorsfoldP. PooleC. TownshendA. MiróM. 3rd edAcademic Press Oxford201710.1016/B978‑0‑12‑409547‑2.13984‑8
    [Google Scholar]
  54. SausvilleL.N. WilliamsS.M. PozziA. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective.Pharmacol. Ther.201919618319410.1016/j.pharmthera.2018.11.009 30521883
    [Google Scholar]
  55. WangT. FuX. ChenQ. Arachidonic acid metabolism and kidney inflammation.Int. J. Mol. Sci.20192015368310.3390/ijms20153683 31357612
    [Google Scholar]
  56. Trindade-da-SilvaC.A. Clemente-NapimogaJ.T. AbdallaH.B. Soluble epoxide hydrolase inhibitor, TPPU, increases regulatory T cells pathway in an arthritis model.FASEB J.20203479074908610.1096/fj.202000415R 32400048
    [Google Scholar]
  57. Bishop-BaileyD. ThomsonS. AskariA. FaulknerA. Wheeler-JonesC. Lipid-metabolizing CYPs in the regulation and dysregulation of metabolism.Annu. Rev. Nutr.201434126127910.1146/annurev‑nutr‑071813‑105747 24819323
    [Google Scholar]
  58. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  59. PozziA. PopescuV. YangS. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor α are arachidonic acid epoxygenase-mediated.J. Biol. Chem.201028517128401285010.1074/jbc.M109.081554 20178979
    [Google Scholar]
  60. D’UvaG. BaciD. AlbiniA. NoonanD.M. Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment.Cancer Treat. Rev.20186311810.1016/j.ctrv.2017.10.013 29197745
    [Google Scholar]
  61. MichaelisU.R. FisslthalerB. Barbosa-SicardE. FalckJ.R. FlemingI. BusseR. Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis.J. Cell Sci.2005118235489549810.1242/jcs.02674 16291720
    [Google Scholar]
  62. JiangJ.G. ChenC.L. CardJ.W. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors.Cancer Res.200565114707471510.1158/0008‑5472.CAN‑04‑4173 15930289
    [Google Scholar]
  63. KimK.H. ParkY.L. ParkS.Y. JooY.E. Expression of an oxysterol-metabolizing enzyme in colorectal cancer and its relation to tumor cell behavior and prognosis.Pathol. Res. Pract.202325115487510.1016/j.prp.2023.154875 37820439
    [Google Scholar]
  64. MurrayG.I. PatimallaS. StewartK.N. MillerI.D. HeysS.D. Profiling the expression of cytochrome P450 in breast cancer.Histopathology201057220221110.1111/j.1365‑2559.2010.03606.x 20716162
    [Google Scholar]
  65. YuW. ChaiH. LiY. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer.Toxicol. Appl. Pharmacol.20122641738310.1016/j.taap.2012.07.019 22841774
    [Google Scholar]
  66. KimS. HongI. LeeM. KimH.C. JiS. KimH. Expression of CYP4X1 in colorectal carcinoma is associated with metastasis and poor prognosis.Research Square202310.21203/rs.3.rs‑3094597/v1
    [Google Scholar]
  67. DurukanO. Investigating The Oncogenic Function of Brain Specific CYP4X1 Gene in Glioblastoma Cancer Cells Using RNA-i Mediated Gene Repression Strategy [PhD - Doctoral Program].Middle East Technical University2023
    [Google Scholar]
  68. KrockB.L. SkuliN. SimonM.C. Hypoxia-induced angiogenesis: Good and evil.Genes Cancer20112121117113310.1177/1947601911423654 22866203
    [Google Scholar]
  69. PanigrahyD. KaipainenA. GreeneE.R. HuangS. Cytochrome P450-derived eicosanoids: The neglected pathway in cancer.Cancer Metastasis Rev.201029472373510.1007/s10555‑010‑9264‑x 20941528
    [Google Scholar]
  70. SuzukiS. OguroA. Osada-OkaM. FunaeY. ImaokaS. Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells.J. Pharmacol. Sci.20081081798810.1254/jphs.08122FP 18776712
    [Google Scholar]
  71. ChenG. HashitaniH. SuzukiH. Endothelium-dependent relaxation and hyperpolarization of canine coronary artery smooth muscles in relation to the electrogenic Na-K pump.Br. J. Pharmacol.198998395095610.1111/j.1476‑5381.1989.tb14625.x 2590775
    [Google Scholar]
  72. ShaoJ. LiQ. WangH. P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells.J. Huazhong Univ. Sci. Technolog. Med. Sci.201131559660110.1007/s11596‑011‑0567‑0 22038346
    [Google Scholar]
  73. JiangJ.G. NingY.G. ChenC. Cytochrome p450 epoxygenase promotes human cancer metastasis.Cancer Res.200767146665667410.1158/0008‑5472.CAN‑06‑3643 17638876
    [Google Scholar]
  74. WangB. WuL. ChenJ. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w 33637672
    [Google Scholar]
  75. FlemingI. FisslthalerB. MichaelisR. KissL. PoppR. BusseR. The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells.Pflugers Arch.2001442451151810.1007/s004240100565 11510882
    [Google Scholar]
  76. LiP.L. CampbellW.B. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein.Circ. Res.199780687788410.1161/01.RES.80.6.877 9168791
    [Google Scholar]
  77. ChengL. JiangJ. SunZ. The epoxyeicosatrienoic acid-stimulated phosphorylation of EGF-R involves the activation of metalloproteinases and the release of HB-EGF in cancer cells.Acta Pharmacol. Sin.201031221121810.1038/aps.2009.184 20139904
    [Google Scholar]
  78. MichaelisU.R. FisslthalerB. MedhoraM. HarderD. FlemingI. BusseR. Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor.FASEB J.200317677077210.1096/fj.02‑0640fje 12586744
    [Google Scholar]
  79. WangY. WeiX. XiaoX. Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways.J. Pharmacol. Exp. Ther.2005314252253210.1124/jpet.105.083477 15840765
    [Google Scholar]
  80. CheranovS.Y. KarpurapuM. WangD. ZhangB. VenemaR.C. RaoG.N. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis.Blood2008111125581559110.1182/blood‑2007‑11‑126680 18408167
    [Google Scholar]
  81. EdsonK. RettieA. CYP4 enzymes as potential drug targets: Focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities.Curr. Top. Med. Chem.201313121429144010.2174/15680266113139990110 23688133
    [Google Scholar]
  82. YuW. ChenL. YangY.Q. Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer.Cancer Chemother. Pharmacol.201168361962910.1007/s00280‑010‑1521‑8 21120482
    [Google Scholar]
  83. La VecchiaS. SebastiánC. Metabolic pathways regulating colorectal cancer initiation and progression.Semin. Cell Dev. Biol.202098637010.1016/j.semcdb.2019.05.018 31129171
    [Google Scholar]
  84. ChenX. MaZ. YiZ. The effects of metabolism on the immune microenvironment in colorectal cancer.Cell Death Discov.202410111810.1038/s41420‑024‑01865‑z 38453888
    [Google Scholar]
  85. ShaoM. PanQ. TanH. CYP3A5 unexpectedly regulates glucose metabolism through the AKT-TXNIP-GLUT1 axis in pancreatic cancer.Genes Dis.202411410107910.1016/j.gendis.2023.101079 38560501
    [Google Scholar]
  86. LiT. MatozelM. BoehmeS. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis.Hepatology2011533996100610.1002/hep.24107 21319191
    [Google Scholar]
  87. LiT. ChenW. ChiangJ.Y.L. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine.J. Lipid Res.200748237338410.1194/jlr.M600282‑JLR200 17088262
    [Google Scholar]
  88. LiuJ. CarlsonH.A. ScottE.E. The structure and characterization of human cytochrome P450 8B1 supports future drug design for nonalcoholic fatty liver disease and diabetes.J. Biol. Chem.2022298910234410.1016/j.jbc.2022.102344 35944583
    [Google Scholar]
  89. PikulevaI.A. Cytochrome P450s and cholesterol homeostasis.Pharmacol. Ther.2006112376177310.1016/j.pharmthera.2006.05.014 16872679
    [Google Scholar]
  90. ZhouW.J. ZhangJ. YangH.L. Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism.Cell Commun. Signal.20191719910.1186/s12964‑019‑0412‑9 31429768
    [Google Scholar]
  91. CuraA.J. CarruthersA. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis.Compr. Physiol.20122286391410.1002/cphy.c110024 22943001
    [Google Scholar]
  92. MelkonianEA SchuryMP Biochemistry, Anaerobic Glycolysis.2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK546695/
  93. FarooqZ. IsmailH. BhatS.A. LaydenB.T. KhanM.W. Aiding Cancer’s “Sweet Tooth”: Role of Hexokinases in Metabolic Reprogramming.Life (Basel)202313494610.3390/life13040946 37109475
    [Google Scholar]
  94. JohnS. WeissJ.N. RibaletB. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose.PLoS One201163e1767410.1371/journal.pone.0017674 21408025
    [Google Scholar]
  95. BarbaI. Carrillo-BoschL. SeoaneJ. Targeting the warburg effect in cancer: Where do we stand?Int. J. Mol. Sci.2024256314210.3390/ijms25063142 38542116
    [Google Scholar]
  96. TsujimotoY. ShimizuS. The voltage-dependent anion channel: An essential player in apoptosis.Biochimie2002842-318719310.1016/S0300‑9084(02)01370‑6 12022949
    [Google Scholar]
  97. García-DomínguezE. CarreteroA. Viña-AlmuniaA. Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise.Cells20221119304110.3390/cells11193041 36231003
    [Google Scholar]
  98. JuricaM.S. MesecarA. HeathP.J. ShiW. NowakT. StoddardB.L. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate.Structure19986219521010.1016/S0969‑2126(98)00021‑5 9519410
    [Google Scholar]
  99. Alves-FilhoJ.C. Pålsson-McDermottE.M. Pyruvate Kinase M2: A Potential Target for Regulating Inflammation.Front. Immunol.2016714510.3389/fimmu.2016.00145 27148264
    [Google Scholar]
  100. ZangariJ. PetrelliF. MaillotB. MartinouJ.C. The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier.Biomolecules2020107106810.3390/biom10071068 32708919
    [Google Scholar]
  101. NaquetP. KerrE.W. VickersS.D. LeonardiR. Regulation of coenzyme A levels by degradation: The ‘Ins and Outs’.Prog. Lipid Res.20207810102810.1016/j.plipres.2020.101028 32234503
    [Google Scholar]
  102. XiaoW. WangR.S. HandyD.E. LoscalzoJ. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.Antioxid. Redox Signal.201828325127210.1089/ars.2017.7216 28648096
    [Google Scholar]
  103. CiccaroneF. VeglianteR. Di LeoL. CirioloM.R. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer.Semin. Cancer Biol.201747505610.1016/j.semcancer.2017.06.008 28645607
    [Google Scholar]
  104. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.1160809 19460998
    [Google Scholar]
  105. ForkasiewiczA. DorociakM. StachK. SzelachowskiP. TabolaR. AugoffK. The usefulness of lactate dehydrogenase measurements in current oncological practice.Cell. Mol. Biol. Lett.20202513510.1186/s11658‑020‑00228‑7 32528540
    [Google Scholar]
  106. YangJ. WenJ. TianT. GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer.Oncotarget201787117881179610.18632/oncotarget.14352 28052033
    [Google Scholar]
  107. BrownR.E. ShortS.P. WilliamsC.S. Colorectal Cancer and Metabolism.Curr. Colorectal Cancer Rep.201814622624110.1007/s11888‑018‑0420‑y 31406492
    [Google Scholar]
  108. LuJ. TanM. CaiQ. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism.Cancer Lett.2015356215616410.1016/j.canlet.2014.04.001 24732809
    [Google Scholar]
  109. de la Cruz-LópezK.G. Castro-MuñozL.J. Reyes-HernándezD.O. García-CarrancáA. Manzo-MerinoJ. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches.Front. Oncol.20199114310.3389/fonc.2019.01143 31737570
    [Google Scholar]
  110. GranchiC. MinutoloF. Anticancer agents that counteract tumor glycolysis.ChemMedChem2012781318135010.1002/cmdc.201200176 22684868
    [Google Scholar]
  111. VaupelP. SchmidbergerH. MayerA. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression.Int. J. Radiat. Biol.201995791291910.1080/09553002.2019.1589653 30822194
    [Google Scholar]
  112. Ghanbari MovahedZ. Rastegari-PouyaniM. MohammadiM. MansouriK. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell?Biomed. Pharmacother.201911210869010.1016/j.biopha.2019.108690 30798124
    [Google Scholar]
  113. SchiliroC. FiresteinB.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation.Cells2021105105610.3390/cells10051056 33946927
    [Google Scholar]
  114. ZhangB. ChanS.H. LiuX.Q. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer.J. Cell. Mol. Med.202125188836884910.1111/jcmm.16842 34378321
    [Google Scholar]
  115. CiscatoF. FiladiR. MasgrasI. Hexokinase 2 displacement from mitochondria-associated membranes prompts Ca2+-dependent death of cancer cells.EMBO Rep.2020217e4911710.15252/embr.201949117 32383545
    [Google Scholar]
  116. ZhouC.F. LiX.B. SunH. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells.IUBMB Life201264977578210.1002/iub.1066 22807066
    [Google Scholar]
  117. KikuchiD. SaitoM. SaitoK. Upregulated solute carrier family 37 member 1 in colorectal cancer is associated with poor patient outcome and metastasis.Oncol. Lett.201710.3892/ol.2017.7559 29434906
    [Google Scholar]
  118. ZhanP. ZhaoS. YanH. α-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer.Mol. Carcinog.20175651427143710.1002/mc.22603 27996156
    [Google Scholar]
  119. GuJ. ZhongK. WangL. ENO1 contributes to 5-fluorouracil resistance in colorectal cancer cells via EMT pathway.Front. Oncol.202212101303510.3389/fonc.2022.1013035 36620599
    [Google Scholar]
  120. ScartozziM. GiampieriR. MaccaroniE. Pre-treatment lactate dehydrogenase levels as predictor of efficacy of first-line bevacizumab-based therapy in metastatic colorectal cancer patients.Br. J. Cancer2012106579980410.1038/bjc.2012.17 22315053
    [Google Scholar]
  121. JinL. ZhouY. Crucial role of the pentose phosphate pathway in malignant tumors (Review).Oncol. Lett.20191754213422110.3892/ol.2019.10112 30944616
    [Google Scholar]
  122. HaloiN. WenP.C. ChengQ. Structural basis of complex formation between mitochondrial anion channel VDAC1 and Hexokinase-II.Commun. Biol.20214166710.1038/s42003‑021‑02205‑y 34083717
    [Google Scholar]
  123. ChenJ. ZhangZ. NiJ. ENO3 promotes colorectal cancer progression by enhancing cell glycolysis.Med. Oncol.20223958010.1007/s12032‑022‑01676‑1 35477821
    [Google Scholar]
  124. PastorinoJ.G. HoekJ.B. Regulation of hexokinase binding to VDAC.J. Bioenerg. Biomembr.200840317118210.1007/s10863‑008‑9148‑8 18683036
    [Google Scholar]
  125. KoukourakisM.I. GiatromanolakiA. SivridisE. Intratumoral lactate dehydrogenase 5 (LDH5) protein expression is associated with expression of angiogenesis markers and hypoxia in patients with colorectal cancer (CRC).J. Clin. Oncol.20072518Suppl.4107710.1200/jco.2007.25.18_suppl.4107
    [Google Scholar]
  126. NieH. JuH. FanJ. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth.Nat. Commun.20201113610.1038/s41467‑019‑13601‑8 31911580
    [Google Scholar]
  127. SunQ. WuJ. ZhuG. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer.Front. Endocrinol. (Lausanne)202313108991810.3389/fendo.2022.1089918 36778600
    [Google Scholar]
  128. WangH. TianT. ZhangJ. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis.Int. J. Mol. Sci.20212216847010.3390/ijms22168470 34445193
    [Google Scholar]
  129. ZhaoG. YuanH. LiQ. DDX39B drives colorectal cancer progression by promoting the stability and nuclear translocation of PKM2.Signal Transduct. Target. Ther.20227127510.1038/s41392‑022‑01096‑7 35973989
    [Google Scholar]
  130. JiY. YangC. TangZ. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation.Nat. Commun.2017811530810.1038/ncomms15308 28516914
    [Google Scholar]
  131. WangB. YeY. YangX. SIRT 2-dependent IDH 1 deacetylation inhibits colorectal cancer and liver metastases.EMBO Rep.2020214e4818310.15252/embr.201948183 32141187
    [Google Scholar]
  132. VellingaT.T. BorovskiT. de BoerV.C.J. SIRT1/PGC1α-Dependent Increase in Oxidative Phosphorylation Supports Chemotherapy Resistance of Colon Cancer.Clin. Cancer Res.201521122870287910.1158/1078‑0432.CCR‑14‑2290 25779952
    [Google Scholar]
  133. LiZ. SunC. QinZ. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming.Theranostics202111178322833610.7150/thno.62378 34373744
    [Google Scholar]
  134. ZhuS. HuangJ. XuR. Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability.J. Biol. Chem.2022298910238710.1016/j.jbc.2022.102387 35985423
    [Google Scholar]
  135. ZhangW. AnF. XiaM. ZhanQ. TianW. JiaoY. Increased HMGB1 expression correlates with higher expression of c-IAP2 and pERK in colorectal cancer.Medicine (Baltimore)2019983e1406910.1097/MD.0000000000014069 30653121
    [Google Scholar]
  136. CerwenkaA. KopitzJ. SchirmacherP. RothW. GdyniaG. HMGB1: The metabolic weapon in the arsenal of NK cells.Mol. Cell. Oncol.201634e117553810.1080/23723556.2016.1175538 27652323
    [Google Scholar]
  137. GdyniaG. SauerS.W. KopitzJ. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration.Nat. Commun.2016711076410.1038/ncomms10764 26948869
    [Google Scholar]
  138. JingZ. LiuQ. HeX. NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer.J. Exp. Clin. Cancer Res.202241119810.1186/s13046‑022‑02412‑3 35689245
    [Google Scholar]
  139. LiL. LiangY. KangL. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1.Cancer Cell2018333368385.e710.1016/j.ccell.2018.01.010 29455928
    [Google Scholar]
  140. SatohK. YachidaS. SugimotoM. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC.Proc. Natl. Acad. Sci. USA201711437E7697E770610.1073/pnas.1710366114 28847964
    [Google Scholar]
  141. ŠmercA. SodjaE. LegišaM. Posttranslational modification of 6-phosphofructo-1-kinase as an important feature of cancer metabolism.PLoS One201165e1964510.1371/journal.pone.0019645 21573193
    [Google Scholar]
  142. ZhaoZ. WangL. BartomE. β-Catenin/Tcf7l2-dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer.Sci. Adv.201957eaax069810.1126/sciadv.aax0698 31392276
    [Google Scholar]
  143. PateK.T. StringariC. Sprowl-TanioS. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer.EMBO J.201433131454147310.15252/embj.201488598 24825347
    [Google Scholar]
  144. LeeE.E. MaJ. SacharidouA. A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome.Mol. Cell201558584585310.1016/j.molcel.2015.04.015 25982116
    [Google Scholar]
  145. YunJ. MullarkyE. LuC. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.Science201535062661391139610.1126/science.aaa5004 26541605
    [Google Scholar]
  146. KuoC.C. LingH.H. ChiangM.C. Metastatic Colorectal Cancer Rewrites Metabolic Program Through a Glut3-YAP-dependent Signaling Circuit.Theranostics2019992526254010.7150/thno.32915 31131051
    [Google Scholar]
  147. XingB.C. WangC. JiF.J. ZhangX.B. Synergistically suppressive effects on colorectal cancer cells by combination of mTOR inhibitor and glycolysis inhibitor, Oxamate.Int. J. Clin. Exp. Pathol.201811944394445 31949841
    [Google Scholar]
  148. ChenH. GaoS. LiuW. RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target.Gastroenterology2021160412841300.e1610.1053/j.gastro.2020.11.013 33217448
    [Google Scholar]
  149. JiangX. JinZ. YangY. m6A modification on the fate of colorectal cancer: Functions and mechanisms of cell proliferation and tumorigenesis.Front. Oncol.202313116230010.3389/fonc.2023.1162300 37152066
    [Google Scholar]
  150. FuL-N. WangY-Q. TanJ. Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms.Oncogene201837338940210.1038/onc.2017.345 28945223
    [Google Scholar]
  151. DaiW. XuY. MoS. GLUT3 induced by AMPK/CREB1 axis is key for withstanding energy stress and augments the efficacy of current colorectal cancer therapies.Signal Transduct. Target. Ther.20205117710.1038/s41392‑020‑00220‑9 32873793
    [Google Scholar]
  152. ZhouL. YuX. LiM. Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth.EBioMedicine20205110257010.1016/j.ebiom.2019.11.031 31806563
    [Google Scholar]
  153. AsmamawM.D. LiuY. ZhengY.C. ShiX.J. LiuH.M. Skp2 in the ubiquitin-proteasome system: A comprehensive review.Med. Res. Rev.20204051920194910.1002/med.21675 32391596
    [Google Scholar]
  154. OuB. SunH. ZhaoJ. Polo-like kinase 3 inhibits glucose metabolism in colorectal cancer by targeting HSP90/STAT3/HK2 signaling.J. Exp. Clin. Cancer Res.201938142610.1186/s13046‑019‑1418‑2 31655629
    [Google Scholar]
  155. ZhangJ. WangS. JiangB. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis.Nat. Commun.2017811373210.1038/ncomms13732 28054552
    [Google Scholar]
  156. MaH. ZhangJ. ZhouL. c-Src Promotes Tumorigenesis and Tumor Progression by Activating PFKFB3.Cell Rep.2020301242354249.e610.1016/j.celrep.2020.03.005 32209481
    [Google Scholar]
  157. WangS. PengZ. WangS. KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration.Cell Res.201828557259210.1038/s41422‑018‑0008‑8 29467382
    [Google Scholar]
  158. ContractorT. HarrisC.R. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2.Cancer Res.201272256056710.1158/0008‑5472.CAN‑11‑1215 22123926
    [Google Scholar]
  159. LiangY. HouL. LiL. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway.Oncogene202039246948510.1038/s41388‑019‑1035‑8 31597953
    [Google Scholar]
  160. SuzukiS. TanakaT. PoyurovskyM.V. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species.Proc. Natl. Acad. Sci. USA2010107167461746610.1073/pnas.1002459107 20351271
    [Google Scholar]
  161. NadhanR. IsidoroC. SongY.S. DhanasekaranD.N. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology.Cells20221116251710.3390/cells11162517 36010595
    [Google Scholar]
  162. ChenN. GuoD. XuQ. Long non-coding RNA FEZF1-AS1 facilitates cell proliferation and migration in colorectal carcinoma.Oncotarget2016710112711128310.18632/oncotarget.7168 26848625
    [Google Scholar]
  163. LiJ. ZhaoL. ZhangC. The lncRNA FEZF1-AS1 Promotes the Progression of Colorectal Cancer Through Regulating OTX1 and Targeting miR-30a-5p.Oncol. Res.2020281516310.3727/096504019X15619783964700 31270006
    [Google Scholar]
  164. BianZ. ZhangJ. LiM. LncRNA-FEZF1-AS1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling.Clin. Cancer Res.201824194808481910.1158/1078‑0432.CCR‑17‑2967 29914894
    [Google Scholar]
  165. TangJ. YanT. BaoY. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc.Nat. Commun.2019101349910.1038/s41467‑019‑11447‑8 31375671
    [Google Scholar]
  166. Koh-TanH.H.C. StrachanE. CooperK. Bell-SakyiL. JonssonN.N. Identification of a novel β-adrenergic octopamine receptor-like gene (βAOR-like) and increased ATP-binding cassette B10 (ABCB10) expression in a Rhipicephalus microplus cell line derived from acaricide-resistant ticks.Parasit. Vectors20169142510.1186/s13071‑016‑1708‑x 27484910
    [Google Scholar]
  167. HoxhaM. ZappacostaB. A review on the role of fatty acids in colorectal cancer progression.Front. Pharmacol.202213103280610.3389/fphar.2022.1032806 36578540
    [Google Scholar]
  168. KraußD. FariO. SibiliaM. Lipid Metabolism Interplay in CRC—An Update.Metabolites202212321310.3390/metabo12030213 35323656
    [Google Scholar]
  169. PakietA. KobielaJ. StepnowskiP. ŚledzińskiT. MikaA. Changes in lipids composition and metabolism in colorectal cancer: A review.Lipids Health Dis.20191812910.1186/s12944‑019‑0977‑8 30684960
    [Google Scholar]
  170. ZhangJ. ZouS. FangL. Metabolic reprogramming in colorectal cancer: Regulatory networks and therapy.Cell Biosci.20231312510.1186/s13578‑023‑00977‑w 36755301
    [Google Scholar]
  171. FuruhashiM. Fatty Acid-Binding Protein 4 in Cardiovascular and Metabolic Diseases.J. Atheroscler. Thromb.201926321623210.5551/jat.48710 30726793
    [Google Scholar]
  172. FuruhashiM. HotamışlıgilG.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets.Nat. Rev. Drug Discov.20087648950310.1038/nrd2589 18511927
    [Google Scholar]
  173. ZhangY. ZhangW. XiaM. High expression of FABP4 in colorectal cancer and its clinical significance.J. Zhejiang Univ. Sci. B202122213614510.1631/jzus.B2000366 33615754
    [Google Scholar]
  174. KawaguchiK. SengaS. KubotaC. KawamuraY. KeY. FujiiH. High expression of Fatty Acid-Binding Protein 5 promotes cell growth and metastatic potential of colorectal cancer cells.FEBS Open Bio20166319019910.1002/2211‑5463.12031 27047747
    [Google Scholar]
  175. NenkovM. MaY. GaßlerN. ChenY. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy.Int. J. Mol. Sci.20212212626210.3390/ijms22126262 34200820
    [Google Scholar]
  176. ShangK. MaN. CheJ. SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway.BMC Cancer202323133510.1186/s12885‑023‑10816‑3 37041476
    [Google Scholar]
  177. da CostaA.C. FilhoP.R.S. JúniorS.A. Prognostic value of factors associated with hypoxia and lipid metabolism in patients with colorectal cancer.Applied Cancer Research20173714410.1186/s41241‑017‑0050‑8
    [Google Scholar]
  178. KumariA. Beta Oxidation of Fatty Acids.Sweet Biochemistry201817-19171910.1016/B978‑0‑12‑814453‑4.00004‑2
    [Google Scholar]
  179. AkramM. Citric acid cycle and role of its intermediates in metabolism.Cell Biochem. Biophys.201468347547810.1007/s12013‑013‑9750‑1 24068518
    [Google Scholar]
  180. ShiL. TuB.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences.Curr. Opin. Cell Biol.20153312513110.1016/j.ceb.2015.02.003 25703630
    [Google Scholar]
  181. GuoD. PrinsR.M. DangJ. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy.Sci. Signal.20092101ra8210.1126/scisignal.2000446 20009104
    [Google Scholar]
  182. MatsushitaY. NakagawaH. KoikeK. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat.Cancers (Basel)202113347410.3390/cancers13030474 33530546
    [Google Scholar]
  183. GharibE. Nasri NasrabadiP. Reza ZaliM. miR-497-5p mediates starvation-induced death in colon cancer cells by targeting acyl-CoA synthetase-5 and modulation of lipid metabolism.J. Cell. Physiol.20202357-85570558910.1002/jcp.29488 32012265
    [Google Scholar]
  184. FernándezL.P. Ramos-RuizR. HerranzJ. The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer.Oncotarget2018955919593010.18632/oncotarget.23592 29464044
    [Google Scholar]
  185. ZaytsevaY.Y. RychahouP.G. GulhatiP. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer.Cancer Res.20127261504151710.1158/0008‑5472.CAN‑11‑4057 22266115
    [Google Scholar]
  186. ZaytsevaY.Y. HarrisJ.W. MitovM.I. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.Oncotarget2015622188911890410.18632/oncotarget.3783 25970773
    [Google Scholar]
  187. WangY. ZengZ. LuJ. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis.Oncogene201837466025604010.1038/s41388‑018‑0384‑z 29995871
    [Google Scholar]
  188. EberléD. HegartyB. BossardP. FerréP. FoufelleF. SREBP transcription factors: Master regulators of lipid homeostasis.Biochimie2004861183984810.1016/j.biochi.2004.09.018 15589694
    [Google Scholar]
  189. ZhaoQ. LinX. WangG. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer.Front. Oncol.20221295237110.3389/fonc.2022.952371 35912181
    [Google Scholar]
  190. WenY.A. XiongX. ZaytsevaY.Y. Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer.Cell Death Dis.20189326510.1038/s41419‑018‑0330‑6 29449559
    [Google Scholar]
  191. GaoY. NanX. ShiX. SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-κB pathway activation.BMC Cancer201919168510.1186/s12885‑019‑5904‑x
    [Google Scholar]
  192. GouwA.M. MargulisK. LiuN.S. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth.Cell Metab.2019303556572.e510.1016/j.cmet.2019.07.012 31447321
    [Google Scholar]
  193. NiT. HeZ. DaiY. YaoJ. GuoQ. WeiL. Oroxylin A suppresses the development and growth of colorectal cancer through reprogram of HIF1α-modulated fatty acid metabolism.Cell Death Dis.201786e286510.1038/cddis.2017.261 28594405
    [Google Scholar]
  194. LeeG. ZhengY. ChoS. Post-transcriptional Regulation of De Novo Lipogenesis by mTORC1-S6K1-SRPK2 Signaling.Cell2017171715451558.e1810.1016/j.cell.2017.10.037 29153836
    [Google Scholar]
  195. ZhangK.L. ZhuW.W. WangS.H. Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer.Theranostics202111136560657210.7150/thno.55609 33995676
    [Google Scholar]
  196. TaoJ.H. WangX.T. YuanW. Reduced serum high-density lipoprotein cholesterol levels and aberrantly expressed cholesterol metabolism genes in colorectal cancer.World J. Clin. Cases202210144446445910.12998/wjcc.v10.i14.4446 35663062
    [Google Scholar]
  197. SimmenF.A. PabonaJ.M.P. Al-DwairiA. AlhallakI. MontalesM.T.E. SimmenR.C.M. Malic Enzyme 1 (ME1) Promotes Adiposity and Hepatic Steatosis and Induces Circulating Insulin and Leptin in Obese Female Mice.Int. J. Mol. Sci.2023247661310.3390/ijms24076613 37047583
    [Google Scholar]
  198. ZhuY. GuL. LinX. Dynamic Regulation of ME1 Phosphorylation and Acetylation Affects Lipid Metabolism and Colorectal Tumorigenesis.Mol. Cell2020771138149.e510.1016/j.molcel.2019.10.015 31735643
    [Google Scholar]
  199. LongT. SunY. HassanA. QiX. LiX. Structure of nevanimibe-bound tetrameric human ACAT1.Nature2020581780833934310.1038/s41586‑020‑2295‑8 32433613
    [Google Scholar]
  200. DelmasD. CotteA.K. ConnatJ.L. HermetetF. BouyerF. AiresV. Emergence of Lipid Droplets in the Mechanisms of Carcinogenesis and Therapeutic Responses.Cancers (Basel)20231516410010.3390/cancers15164100 37627128
    [Google Scholar]
  201. WilsonD.J. DuBoisR.N. Role of Prostaglandin E2 in the Progression of Gastrointestinal Cancer.Cancer Prev. Res. (Phila.)202215635536310.1158/1940‑6207.CAPR‑22‑0038 35288737
    [Google Scholar]
  202. ShenH. XingC. CuiK. MicroRNA-30a attenuates mutant KRAS-driven colorectal tumorigenesis via direct suppression of ME1.Cell Death Differ.20172471253126210.1038/cdd.2017.63 28475173
    [Google Scholar]
  203. LiQ. WangY. WuS. CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress.Cell Metab.2019301157173.e710.1016/j.cmet.2019.05.009 31155494
    [Google Scholar]
  204. ChristensenL.L. TrueK. HamiltonM.P. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism.Mol. Oncol.20161081266128210.1016/j.molonc.2016.06.003 27396952
    [Google Scholar]
  205. GongJ. LinY. ZhangH. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells.Cell Death Dis.202011426710.1038/s41419‑020‑2434‑z 32327627
    [Google Scholar]
  206. Di FrancoS. BiancaP. SardinaD.S. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery.Nat. Commun.2021121500610.1038/s41467‑021‑25333‑9 34408135
    [Google Scholar]
  207. LiQ. DingC. MengT. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner.J. Pharmacol. Sci.2017135414815510.1016/j.jphs.2017.11.004 29233468
    [Google Scholar]
  208. ShiJ. JuR. GaoH. HuangY. GuoL. ZhangD. Targeting glutamine utilization to block metabolic adaptation of tumor cells under the stress of carboxyamidotriazole-induced nutrients unavailability.Acta Pharm. Sin. B202212275977310.1016/j.apsb.2021.07.008 35256945
    [Google Scholar]
  209. XuF. JiangH.L. FengW.W. FuC. ZhouJ.C. Characteristics of amino acid metabolism in colorectal cancer.World J. Clin. Cases202311276318632610.12998/wjcc.v11.i27.6318 37900242
    [Google Scholar]
  210. MiyoM. KonnoM. NishidaN. Metabolic Adaptation to Nutritional Stress in Human Colorectal Cancer.Sci. Rep.2016613841510.1038/srep38415 27924922
    [Google Scholar]
  211. ZhaoY. ZhaoX. ChenV. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo.Sci. Rep.2019911918010.1038/s41598‑019‑55718‑2 31844152
    [Google Scholar]
  212. YangL. VennetiS. NagrathD. Glutaminolysis: A Hallmark of Cancer Metabolism.Annu. Rev. Biomed. Eng.201719116319410.1146/annurev‑bioeng‑071516‑044546 28301735
    [Google Scholar]
  213. LiuG. ZhuJ. YuM. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients.J. Transl. Med.201513114410.1186/s12967‑015‑0500‑6 25947346
    [Google Scholar]
  214. HuangF. ZhangQ. MaH. LvQ. ZhangT. Expression of glutaminase is upregulated in colorectal cancer and of clinical significance.Int. J. Clin. Exp. Pathol.20147310931100 24696726
    [Google Scholar]
  215. SongZ. WeiB. LuC. LiP. ChenL. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer.Oncol. Lett.20171433117312310.3892/ol.2017.6538 28928849
    [Google Scholar]
  216. ShenX. JainA. AladelokunO. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review.Front. Mol. Biosci.2022995866610.3389/fmolb.2022.958666 36090030
    [Google Scholar]
  217. DuF. ChenJ. LíuH. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis.Cell Death Dis.201910323910.1038/s41419‑019‑1481‑9 30858360
    [Google Scholar]
  218. LiJ. SongP. JiangT. Heat shock factor 1 epigenetically stimulates glutaminase-1-dependent mTOR activation to promote colorectal carcinogenesis.Mol. Ther.20182671828183910.1016/j.ymthe.2018.04.014 29730197
    [Google Scholar]
  219. KimM. GwakJ. HwangS. YangS. JeongS.M. Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism.Oncogene201938244729473810.1038/s41388‑019‑0751‑4 30765862
    [Google Scholar]
  220. CathomasG. PIK3CA in Colorectal Cancer.Front. Oncol.201443510.3389/fonc.2014.00035 24624362
    [Google Scholar]
  221. HaoY. SamuelsY. LiQ. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer.Nat. Commun.2016711197110.1038/ncomms11971 27321283
    [Google Scholar]
  222. NajumudeenA.K. CeteciF. FeyS.K. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer.Nat. Genet.2021531162610.1038/s41588‑020‑00753‑3 33414552
    [Google Scholar]
  223. WongC.C. QianY. LiX. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.Gastroenterology20161515945960.e610.1053/j.gastro.2016.07.011 27451147
    [Google Scholar]
  224. HuaQ. ZhangB. XuG. CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin.Oncogene202140466443645510.1038/s41388‑021‑02023‑w 34608265
    [Google Scholar]
  225. WangY.Q. WangH.L. XuJ. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner.Nat. Commun.20189154510.1038/s41467‑018‑02951‑4 29416026
    [Google Scholar]
  226. LocasaleJ.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle.Nat. Rev. Cancer201313857258310.1038/nrc3557 23822983
    [Google Scholar]
  227. LiK. WuJ. QinB. ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer.Cell Res.202030216317810.1038/s41422‑019‑0257‑1 31772275
    [Google Scholar]
  228. WangH. CuiL. LiD. Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer.Signal Transduct. Target. Ther.2020514710.1038/s41392‑020‑0147‑5 32300099
    [Google Scholar]
  229. JainM. NilssonR. SharmaS. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.Science201233660841040104410.1126/science.1218595 22628656
    [Google Scholar]
  230. DuckerG.S. GhergurovichJ.M. MainolfiN. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma.Proc. Natl. Acad. Sci. USA201711443114041140910.1073/pnas.1706617114 29073064
    [Google Scholar]
  231. MorscherR.J. DuckerG.S. LiS.H.J. Mitochondrial translation requires folate-dependent tRNA methylation.Nature2018554769012813210.1038/nature25460 29364879
    [Google Scholar]
  232. YangX. WangZ. LiX. SHMT2 Desuccinylation by SIRT5 Drives Cancer Cell Proliferation.Cancer Res.201878237238610.1158/0008‑5472.CAN‑17‑1912 29180469
    [Google Scholar]
  233. WeiZ. SongJ. WangG. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis.Nat. Commun.201891446810.1038/s41467‑018‑06812‑y 30367038
    [Google Scholar]
  234. RichardDM DawesMA MathiasCW AchesonA Hill-KapturczakN DoughertyDM L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications.Int J Tryptophan Res20092IJTR.S212910.4137/IJTR.S2129 20651948
    [Google Scholar]
  235. ZhangH. ZhangA. MiaoJ. Targeting regulation of tryptophan metabolism for colorectal cancer therapy: A systematic review.RSC Advances2019963072308010.1039/C8RA08520J 35518968
    [Google Scholar]
  236. VenkateswaranN. Lafita-NavarroM.C. HaoY.H. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer.Genes Dev.20193317-181236125110.1101/gad.327056.119 31416966
    [Google Scholar]
  237. RamprasathT. HanY.M. ZhangD. YuC.J. ZouM.H. Tryptophan catabolism and inflammation: A novel therapeutic target for aortic diseases.Front. Immunol.20211273170110.3389/fimmu.2021.731701 34630411
    [Google Scholar]
  238. BallH.J. FedelisF.F. BakmiwewaS.M. HuntN.H. YuasaH.J. Tryptophan-catabolizing enzymes - party of three.Front. Immunol.2014548510.3389/fimmu.2014.00485 25346733
    [Google Scholar]
  239. SanthanamS. AlvaradoD.M. CiorbaM.A. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer.Transl. Res.20161671677910.1016/j.trsl.2015.07.003 26297050
    [Google Scholar]
  240. BrandacherG. PerathonerA. LadurnerR. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells.Clin. Cancer Res.20061241144115110.1158/1078‑0432.CCR‑05‑1966 16489067
    [Google Scholar]
  241. BishnupuriK.S. AlvaradoD.M. KhouriA.N. IDO1 and Kynurenine Pathway Metabolites Activate PI3K-Akt Signaling in the Neoplastic Colon Epithelium to Promote Cancer Cell Proliferation and Inhibit Apoptosis.Cancer Res.20197961138115010.1158/0008‑5472.CAN‑18‑0668 30679179
    [Google Scholar]
  242. LouQ. LiuR. YangX. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer.J. Immunother. Cancer20197121010.1186/s40425‑019‑0691‑0 31391111
    [Google Scholar]
  243. WengN. ZhangZ. TanY. ZhangX. WeiX. ZhuQ. Repurposing antifungal drugs for cancer therapy.J. Adv. Res.20234825927310.1016/j.jare.2022.08.018 36067975
    [Google Scholar]
  244. PfabC. SchnobrichL. EldnasouryS. GessnerA. El-NajjarN. Repurposing of antimicrobial agents for cancer therapy: What do we know?Cancers (Basel)20211313319310.3390/cancers13133193 34206772
    [Google Scholar]
  245. WangW. YangJ. EdinM.L. Targeted Metabolomics Identifies the Cytochrome P450 Monooxygenase Eicosanoid Pathway as a Novel Therapeutic Target of Colon Tumorigenesis.Cancer Res.20197981822183010.1158/0008‑5472.CAN‑18‑3221 30803995
    [Google Scholar]
  246. HorváthH.C. LakatosP. KósaJ.P. The candidate oncogene CYP24A1: A potential biomarker for colorectal tumorigenesis.J. Histochem. Cytochem.201058327728510.1369/jhc.2009.954339 19901270
    [Google Scholar]
  247. SchusterI. EggerH. BikleD. Selective inhibition of vitamin D hydroxylases in human keratinocytes11Abbreviations: VD: vitamin D3; 25(OH)D3: 25-hydroxyvitamin D3; 3H-25(OH)D3: [26,27n-3H] 25-hydroxyvitamin D3; 1α,25(OH)2D3: 1α,25-dihydroxyvitamin D3; 1α,25(OH)2-3epi-D3: 1α,25-dihydroxyvitamin-3-epi-D3; 1α,24(R),25(OH)3D3: 1α,24(R),25-trihydroxyvitamin D3, 1α,25(OH)2-24oxo-D3: 1α,25-dihydroxy-24oxo-vitamin D3; 1α,23(S),25(OH)3-24oxo-D3: 1α,23(S),25-trihydroxy-24oxo-vitamin D3; calcitroic acid: 1α-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D3; CYP: cytochrome P450; 1α-hydroxylase: 25-hydroxyvitamin D3-1α-hydroxylase; 24-hydroxylase (CYP24), 1α,25-hydroxyvitamin D3-24-hydroxylase; PHK, primary human keratinocytes; KGM: keratinocyte growth medium; HPLC, high performance liquid chromatography; IC50: half-maximum inhibitor concentration; SD: standard deviation.Steroids2001663-540942210.1016/S0039‑128X(00)00159‑8 11179750
    [Google Scholar]
  248. GodamudunageM.P. GrechA.M. ScottE.E. Comparison of antifungal azole interactions with adult cytochrome P450 3A4 versus neonatal cytochrome P450 3A7.Drug Metab. Dispos.20184691329133710.1124/dmd.118.082032 29991575
    [Google Scholar]
  249. OlszewskiU. LiedauerR. AuschC. ThalhammerT. HamiltonG. Overexpression of CYP3A4 in a COLO 205 colon cancer stem cell model in vitro.Cancers (Basel)2011311467147910.3390/cancers3011467 24212669
    [Google Scholar]
  250. MatsudaY. SaooK. YamakawaK. Overexpression of CYP2A6 in human colorectal tumors.Cancer Sci.200798101582158510.1111/j.1349‑7006.2007.00572.x 17683511
    [Google Scholar]
  251. Burris-HidayS.D. ScottE.E. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain.J. Biol. Chem.2023299910511210.1016/j.jbc.2023.105112 37517692
    [Google Scholar]
  252. OngC.E. CoulterS. BirkettD.J. BhaskerC.R. MinersJ.O. The xenobiotic inhibitor profile of cytochrome P4502C8.Br. J. Clin. Pharmacol.200050657358010.1046/j.1365‑2125.2000.00316.x 11136296
    [Google Scholar]
  253. KósaJ.P. HorváthP. WölflingJ. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells.World J. Gastroenterol.201319172621262810.3748/wjg.v19.i17.2621 23674869
    [Google Scholar]
  254. Ferrer-MayorgaG. LarribaM.J. CrespoP. MuñozA. Mechanisms of action of vitamin D in colon cancer.J. Steroid Biochem. Mol. Biol.20191851610.1016/j.jsbmb.2018.07.002 29981368
    [Google Scholar]
  255. JendželovskýR. KovaľJ. MikešJ. PapčováZ. PlšíkováJ. FedoročkoP. Inhibition of GSK-3β reverses the pro-apoptotic effect of proadifen (SKF-525A) in HT-29 colon adenocarcinoma cells.Toxicol. In Vitro201226677578210.1016/j.tiv.2012.05.014 22683934
    [Google Scholar]
  256. ModaraiS.R. GuptaA. OpdenakerL.M. The anti-cancer effect of retinoic acid signaling in CRC occurs via decreased growth of ALDH+ colon cancer stem cells and increased differentiation of stem cells.Oncotarget2018978346583466910.18632/oncotarget.26157 30410666
    [Google Scholar]
  257. WuZ. ZhangX. AnY. CLMP is a tumor suppressor that determines all-trans retinoic acid response in colorectal cancer.Dev. Cell2023582326842699.e610.1016/j.devcel.2023.10.006 37944525
    [Google Scholar]
  258. AlaeiM. NazariS.E. PouraliG. Therapeutic potential of targeting the cytochrome P450 enzymes using lopinavir/ritonavir in colorectal cancer: A study in monolayers, spheroids and in vivo models.Cancers (Basel)20231515393910.3390/cancers15153939 37568755
    [Google Scholar]
  259. ChoiJ.S. PiaoY.J. KangK.W. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin.Arch. Pharm. Res.201134460761310.1007/s12272‑011‑0411‑x 21544726
    [Google Scholar]
  260. LimS.M. HwangJ.W. AhnJ.B. Combination of CYP inhibitor with MEK/ERK inhibitor enhances the inhibitory effect on ERK in BRAF mutant colon cancer cells.Anticancer Res.201333624992508 23749901
    [Google Scholar]
  261. UntereinerA.A. PavlidouA. DruzhynaN. PapapetropoulosA. HellmichM.R. SzaboC. Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells.Biochem. Pharmacol.201814917418510.1016/j.bcp.2017.10.007 29061341
    [Google Scholar]
  262. LiuL. MoM. ChenX. Targeting inhibition of prognosis-related lipid metabolism genes including CYP19A1 enhances immunotherapeutic response in colon cancer.J. Exp. Clin. Cancer Res.20234218510.1186/s13046‑023‑02647‑8 37055842
    [Google Scholar]
  263. AnthoniH. SuchestonL.E. LewisB.A. The aromatase gene CYP19A1: Several genetic and functional lines of evidence supporting a role in reading, speech and language.Behav. Genet.201242450952710.1007/s10519‑012‑9532‑3 22426781
    [Google Scholar]
  264. Vanden BosscheH. MarichalP. Le JeuneL. CoeneM.C. GorrensJ. CoolsW. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans.Antimicrob. Agents Chemother.199337102101210510.1128/AAC.37.10.2101 8257130
    [Google Scholar]
  265. KaneG.C. LipskyJ.J. Drug-grapefruit juice interactions.Mayo Clin. Proc.200075993394210.4065/75.9.933 10994829
    [Google Scholar]
  266. ZhouX. PantS. NemunaitisJ. Effects of rifampin, itraconazole and esomeprazole on the pharmacokinetics of alisertib, an investigational aurora a kinase inhibitor in patients with advanced malignancies.Invest. New Drugs201836224825810.1007/s10637‑017‑0499‑z 28852909
    [Google Scholar]
  267. LangI. LiuD. FritschH. TaubeT. ChizhikovE. LiptaiB. Potential Drug-Drug Interactions with Combination Volasertib + Itraconazole: A Phase I, Fixed-sequence Study in Patients with Solid Tumors.Clin. Ther.202042112214222410.1016/j.clinthera.2020.09.015 33139055
    [Google Scholar]
  268. DirixL. SwaislandH. VerheulH.M.W. Effect of itraconazole and rifampin on the pharmacokinetics of olaparib in patients with advanced solid tumors: Results of two phase I open-label studies.Clin. Ther.201638102286229910.1016/j.clinthera.2016.08.010 27745744
    [Google Scholar]
  269. MuS. LinC. Skrzypczyk-OstaszewiczA. The pharmacokinetics of pamiparib in the presence of a strong CYP3A inhibitor (itraconazole) and strong CYP3A inducer (rifampin) in patients with solid tumors: An open-label, parallel-group phase 1 study.Cancer Chemother. Pharmacol.2021881818810.1007/s00280‑021‑04253‑x 33772633
    [Google Scholar]
  270. MorenoI. HernandezT. CalvoE. 679P Lurbinectedin (LRB) pharmacokinetics (PK) and safety when co-administered with itraconazole (ITZ) in patients with advanced solid tumor.Ann. Oncol.202334S47510.1016/j.annonc.2023.09.1865
    [Google Scholar]
  271. MohamedA.W. ElbassiounyM. ElkhodaryD.A. ShawkiM.A. SaadA.S. The effect of itraconazole on the clinical outcomes of patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: A randomized controlled study.Med. Oncol.20213832310.1007/s12032‑021‑01475‑0 33559053
    [Google Scholar]
  272. TakahashiS. KarayamaM. TakahashiM. Pharmacokinetics, Safety, and Efficacy of Trastuzumab Deruxtecan with Concomitant Ritonavir or Itraconazole in Patients with HER2-Expressing Advanced Solid Tumors.Clin. Cancer Res.202127215771578010.1158/1078‑0432.CCR‑21‑1560 34426442
    [Google Scholar]
  273. HeadS.A. ShiW. ZhaoL. Antifungal drug itraconazole targets VDAC1 to modulate the AMPK/mTOR signaling axis in endothelial cells.Proc. Natl. Acad. Sci. USA201511252E7276E728510.1073/pnas.1512867112 26655341
    [Google Scholar]
  274. de JongJ. HellemansP. De WildeS. A drug-drug interaction study of ibrutinib with moderate/strong CYP3A inhibitors in patients with B-cell malignancies.Leuk. Lymphoma201859122888289510.1080/10428194.2018.1460474 29846137
    [Google Scholar]
  275. HohmannN. SprickM.R. PohlM. Protocol of the IntenSify-Trial: An open-label phase I trial of the CYP3A inhibitor cobicistat and the cytostatics gemcitabine and nab-paclitaxel in patients with advanced stage or metastatic pancreatic ductal adenocarcinoma to evaluate the combination’s pharmacokinetics, safety, and efficacy.Clin. Transl. Sci.202316122483249310.1111/cts.13661 37920921
    [Google Scholar]
  276. LeiZ.N. TianQ. TengQ.X. Understanding and targeting resistance mechanisms in cancer.MedComm202343e26510.1002/mco2.265 37229486
    [Google Scholar]
  277. VenkatakrishnanK. RaderM. RamanathanR.K. Effect of the CYP3A inhibitor ketoconazole on the pharmacokinetics and pharmacodynamics of bortezomib in patients with advanced solid tumors: A prospective, multicenter, open-label, randomized, two-way crossover drug—drug interaction study.Clin. Ther.200931Pt 22444245810.1016/j.clinthera.2009.11.012 20110052
    [Google Scholar]
  278. FiggW.D. WooS. ZhuW. A phase I clinical study of high dose ketoconazole plus weekly docetaxel for metastatic castration resistant prostate cancer.J. Urol.201018362219222610.1016/j.juro.2010.02.020 20399458
    [Google Scholar]
  279. EklundJ. KozloffM. VlamakisJ. Phase II study of mitoxantrone and ketoconazole for hormone-refractory prostate cancer.Cancer2006106112459246510.1002/cncr.21880 16615097
    [Google Scholar]
  280. SellaA. KilbournR. AmatoR. Phase II study of ketoconazole combined with weekly doxorubicin in patients with androgen-independent prostate cancer.J. Clin. Oncol.199412468368810.1200/JCO.1994.12.4.683 7512126
    [Google Scholar]
  281. WeissJ. TheileD. DvorakZ. HaefeliW. Interaction potential of the multitargeted receptor tyrosine kinase inhibitor dovitinib with drug transporters and drug metabolising enzymes assessed in vitro.Pharmaceutics20146463265010.3390/pharmaceutics6040632 25521244
    [Google Scholar]
  282. de WegerV.A. GoelS. von MoosR. A drug-drug interaction study to assess the effect of the CYP1A2 inhibitor fluvoxamine on the pharmacokinetics of dovitinib (TKI258) in patients with advanced solid tumors.Cancer Chemother. Pharmacol.2018811738010.1007/s00280‑017‑3469‑4 29101463
    [Google Scholar]
  283. MillerW.L. Minireview: Regulation of steroidogenesis by electron transfer.Endocrinology200514662544255010.1210/en.2005‑0096 15774560
    [Google Scholar]
  284. WróbelT.M. JørgensenF.S. PandeyA.V. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment.J. Med. Chem.202366106542656610.1021/acs.jmedchem.3c00442 37191389
    [Google Scholar]
  285. BeckK.R. ThompsonG.R.III OdermattA. Drug-induced endocrine blood pressure elevation.Pharmacol. Res.202015410431110.1016/j.phrs.2019.104311 31212012
    [Google Scholar]
  286. FDA approves abiraterone acetate in combination with prednisone for high-risk metastatic castration-sensitive prostate cancer.U.S. Food And Drug Administration.2018Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-abiraterone-acetate-combination-prednisone-high-risk-metastatic-castration-sensitive
    [Google Scholar]
  287. McKayR.R. WernerL. JacobusS.J. A phase 2 trial of abiraterone acetate without glucocorticoids for men with metastatic castration‐resistant prostate cancer.Cancer2019125452453210.1002/cncr.31836 30427533
    [Google Scholar]
  288. EfstathiouE. TitusM. TsavachidouD. Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone.J. Clin. Oncol.201230663764310.1200/JCO.2010.33.7675 22184395
    [Google Scholar]
  289. RyanC.J. SmithM.R. FongL. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy.J. Clin. Oncol.20102891481148810.1200/JCO.2009.24.1281 20159824
    [Google Scholar]
  290. AttardG. ReidA.H.M. A’HernR. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer.J. Clin. Oncol.200927233742374810.1200/JCO.2008.20.0642 19470933
    [Google Scholar]
  291. SlovinS. HussainS. SaadF. Pharmacodynamic and Clinical Results from a Phase I/II Study of the HSP90 Inhibitor Onalespib in Combination with Abiraterone Acetate in Prostate Cancer.Clin. Cancer Res.201925154624463310.1158/1078‑0432.CCR‑18‑3212 31113841
    [Google Scholar]
  292. NordquistLT ShoreND Open-label phase II study evaluating the efficacy of concurrent administration of radium Ra 223 dichloride and abiraterone acetate in men with castration-resistant prostate cancer patients with symptomatic bone metastases.J Clin Oncol20163415_suppl)(Suppl.e16546-610.1200/JCO.2016.34.15_suppl.e16546
    [Google Scholar]
  293. ZaretskyJM BansalD SaeedMA CABIOS trial: A phase Ib study of cabozantinib and nivolumab in combination with abiraterone in patients (pts) with metastatic hormone sensitive prostate cancer (mHSPC).J Clin Oncol20234116_suppl)(Suppl.508410.1200/JCO.2023.41.16_suppl.5084
    [Google Scholar]
  294. AntonarakisE.S. ParkS.H. GohJ.C. Pembrolizumab Plus Olaparib for Patients With Previously Treated and Biomarker-Unselected Metastatic Castration-Resistant Prostate Cancer: The Randomized, Open-Label, Phase III KEYLYNK-010 Trial.J. Clin. Oncol.202341223839385010.1200/JCO.23.00233 37290035
    [Google Scholar]
  295. MistryS. Abiraterone Plus LHRH Is Active and Safe for Androgen Receptor-Positive Salivary Gland Tumors.2023Available from: https://www.cancertherapyadvisor.com/home/cancer-topics/head-and-neck-cancer/salivary-gland-carcinoma-abiraterone-lhrh-active-safe-treatment-risk/
    [Google Scholar]
  296. García-DonásJ. HurtadoA. GarrigósL. Open-label phase II clinical trial of ketoconazole as CYP17 inhibitor in metastatic or advanced non-resectable granulosa cell ovarian tumors: the GREKO (GRanulosa Et KetOconazole) trial, GETHI 2011-03.Clin. Transl. Oncol.20232572090209810.1007/s12094‑023‑03085‑w 36708371
    [Google Scholar]
  297. Garcia-DonasJ. HurtadoA. García-CasadoZ. Cytochrome P17 inhibition with ketoconazole as treatment for advanced granulosa cell ovarian tumor.J. Clin. Oncol.20133110e165e16610.1200/JCO.2012.45.0346 23358981
    [Google Scholar]
  298. TorenP.J. KimS. PhamS. Anticancer activity of a novel selective CYP17A1 inhibitor in preclinical models of castrate-resistant prostate cancer.Mol. Cancer Ther.2015141596910.1158/1535‑7163.MCT‑14‑0521 25351916
    [Google Scholar]
  299. De BonoJ.S. PezaroC.J. GillessenS. The oral CYP17-Lyase (L) inhibitor VT-464 in patients with CRPC.J. Clin. Oncol.2015337_suppl187710.1200/jco.2015.33.7_suppl.187
    [Google Scholar]
  300. GucalpA. DansoM.A. EliasA.D. BardiaA. AliH.Y. PotterD. Phase (Ph) 2 stage 1 clinical activity of seviteronel, a selective CYP17-lyase and androgen receptor (AR) inhibitor, in women with advanced AR+ triple-negative breast cancer (TNBC) or estrogen receptor (ER)+ BC: CLARITY-01.J. Clin. Oncol.20173515Suppl.1102210.1200/JCO.2017.35.15_suppl.1102
    [Google Scholar]
  301. VaccarinoL. Di NotoL. SantiniG. BovaM. Di GangiP. BalistreriC.R. Polymorphism of cytochrome P450 (CYP) genes and response to chemiotherapy in patients with colorectal cancer (CRC). In: Abstract of the 2nd Joint Meeting of Pathology and Laboratory Diagnostics.Elsevier Health Sciences20143Available from: https://iris.unipa.it/handle/10447/99935
    [Google Scholar]
  302. ChaiL. NiJ. NiX. Association of CYP24A1 gene polymorphism with colorectal cancer in the Jiamusi population.PLoS One2021166e025347410.1371/journal.pone.0253474 34191826
    [Google Scholar]
  303. HoffmanE. MielickiW.P. [All-trans retinoic acid (ATRA) in prevention and cancer therapy].Postepy Hig. Med. Dosw.201064284290 20558866
    [Google Scholar]
  304. SonneveldE. van den BrinkC.E. van der LeedeB.M. Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoma cells.Cell Growth Differ.199898629637 9716180
    [Google Scholar]
  305. AhmedD. EideP.W. EilertsenI.A. Epigenetic and genetic features of 24 colon cancer cell lines.Oncogenesis201329e7110.1038/oncsis.2013.35 24042735
    [Google Scholar]
  306. BergK.C.G. EideP.W. EilertsenI.A. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies.Mol. Cancer201716111610.1186/s12943‑017‑0691‑y 28683746
    [Google Scholar]
  307. TyzackJ.D. KirchmairJ. Computational methods and tools to predict cytochrome P450 metabolism for drug discovery.Chem. Biol. Drug Des.201993437738610.1111/cbdd.13445 30471192
    [Google Scholar]
  308. RahmanM.M. IslamM.R. RahmanF. Emerging promise of computational techniques in anti-cancer research: At a Glance.Bioengineering (Basel)20229833510.3390/bioengineering9080335 35892749
    [Google Scholar]
  309. BarziA. LenzA.M. LabonteM.J. LenzH.J. Molecular pathways: Estrogen pathway in colorectal cancer.Clin. Cancer Res.201319215842584810.1158/1078‑0432.CCR‑13‑0325 23965904
    [Google Scholar]
  310. CaiazzaF. RyanE.J. DohertyG. WinterD.C. SheahanK. Estrogen receptors and their implications in colorectal carcinogenesis.Front. Oncol.201551910.3389/fonc.2015.00019 25699240
    [Google Scholar]
  311. MartínezC. García-MartínE. LaderoJ.M. Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk.Carcinogenesis20012281323132610.1093/carcin/22.8.1323 11470765
    [Google Scholar]
  312. KissI. OrsósZ. GombosK. Association between allelic polymorphisms of metabolizing enzymes (CYP 1A1, CYP 1A2, CYP 2E1, mEH) and occurrence of colorectal cancer in Hungary.Anticancer Res.2007274C29312937 17695473
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128341167250520063502
Loading
/content/journals/cpd/10.2174/0113816128341167250520063502
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; cancer; CRC; cytochrome P450; inhibitor; metabolism; reprogramming
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test