Skip to content
2000
Volume 31, Issue 35
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Melanoma, an aggressive skin tumor derived from melanocytes, is associated with a high mortality rate attributed to its frequent metastasis, drug resistance, and high invasion rate. The current therapeutic interventions for melanoma, such as surgery, chemotherapy, immunotherapy, and radiation therapy, are not efficient enough to treat melanoma. The current melanoma care is associated with limitations, such as late diagnosis and staging, false positives, treatment resistance, immune-related side effects, lack of standardization, challenges in metastatic melanoma cure, high treatment costs, recurrence, . Conventional therapies have poor anti-cancer efficacy due to premature drug degradation, severe adverse effects owing to systemic drug exposure, and low drug concentration at the malignancy site. Moreover, the current diagnosis for melanoma is associated with painful sample collection techniques, limited imaging techniques, limited understanding of genetic markers, ., leading to misdiagnosis or delayed diagnosis. An extensive literature review on Microneedles (MNs) for melanoma diagnosis and treatment was conducted using PubMed, ScienceDirect, and Google Scholar databases from 2012 to 2025. This mini-review presents the advantages of MNs over current therapy, their formulation aspects, and their advancements for the diagnosis and treatment of melanoma. MNs, an emerging drug delivery system, can efficiently penetrate the skin barriers and form reversible microchannels to deliver the drug at melanoma sites without drug leakage, mitigating the adverse effects and increasing drug accumulation. MNs also provide an excellent platform to integrate novel and conventional therapies by encompassing discrete therapeutic agents in a single matrix. Moreover, MNs can capture biomarkers by absorbing the skin Interstitial Fluid (ISF) and facilitate diagnosis by minimal biological samples.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128384441250422045753
2025-04-28
2025-10-23
Loading full text...

Full text loading...

References

  1. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  2. SwitzerB. PuzanovI. SkitzkiJ.J. HamadL. ErnstoffM.S. Managing metastatic melanoma in 2022: A clinical review.JCO Oncol. Pract.202218533535110.1200/OP.21.0068635133862
    [Google Scholar]
  3. DavisL.E. ShalinS.C. TackettA.J. Current state of melanoma diagnosis and treatment.Cancer Biol. Ther.201920111366137910.1080/15384047.2019.164003231366280
    [Google Scholar]
  4. HasanN. NadafA. ImranM. JibaU. SheikhA. AlmalkiW.H. AlmujriS.S. MohammedY.H. KesharwaniP. AhmadF.J. Skin cancer: Understanding the journey of transformation from conventional to advanced treatment approaches.Mol. Cancer202322116810.1186/s12943‑023‑01854‑337803407
    [Google Scholar]
  5. Melanoma Research Alliance.Available from: www.curemelanoma.org
  6. LiX. ZhaoZ. ZhangM. LingG. ZhangP. Research progress of microneedles in the treatment of melanoma.J. Control. Release202234863164710.1016/j.jconrel.2022.06.02135718209
    [Google Scholar]
  7. HsiehM. HsuS.K. LiuT.Y. WuC.Y. ChiuC.C. Melanoma biology and treatment: A review of novel regulated cell death-based approaches.Cancer Cell Int.20242416310.1186/s12935‑024‑03220‑938336727
    [Google Scholar]
  8. DhanyamrajuP.K. PatelT.N. Melanoma therapeutics: A literature review.J. Biomed. Res.2022362779710.7555/JBR.36.2021016335260531
    [Google Scholar]
  9. WasehS. LeeJ.B. Advances in melanoma: Epidemiology, diagnosis, and prognosis.Front. Med.202310126847910.3389/fmed.2023.126847938076247
    [Google Scholar]
  10. NatarelliN. AlemanS.J. MarkI.M. TranJ.T. KwakS. BottoE. AflatooniS. DiazM.J. LipnerS.R. A review of current and pipeline drugs for treatment of melanoma.Pharmaceuticals202417221410.3390/ph1702021438399429
    [Google Scholar]
  11. LiuC. ZhaoZ. LvH. YuJ. ZhangP. Microneedles-mediated drug delivery system for the diagnosis and treatment of melanoma.Colloids Surf. B Biointerfaces202221911281810.1016/j.colsurfb.2022.11281836084509
    [Google Scholar]
  12. MerlinoG. HerlynM. FisherD.E. BastianB.C. FlahertyK.T. DaviesM.A. WargoJ.A. Curiel-LewandrowskiC. WeberM.J. LeachmanS.A. SoengasM.S. McMahonM. HarbourJ.W. SwetterS.M. AplinA.E. AtkinsM.B. BosenbergM.W. DummerR. GershenwaldJ.E. HalpernA.C. HerlynD. KarakousisG.C. KirkwoodJ.M. KrauthammerM. LoR.S. LongG.V. McArthurG. RibasA. SchuchterL. SosmanJ.A. SmalleyK.S. SteegP. ThomasN.E. TsaoH. TuetingT. WeeraratnaA. XuG. LomaxR. MartinA. SilversteinS. TurnhamT. RonaiZ.A. The state of melanoma: Challenges and opportunities.Pigment Cell Melanoma Res.201629440441610.1111/pcmr.1247527087480
    [Google Scholar]
  13. Qurat-ul-Ain, Ismail M. Metastatic melanoma-A review of current and future perspective.Quant. Biol.2020
    [Google Scholar]
  14. ZhiD. YangT. ZhangT. YangM. ZhangS. DonnellyR.F. Microneedles for gene and drug delivery in skin cancer therapy.J. Control. Release202133515817710.1016/j.jconrel.2021.05.00933984344
    [Google Scholar]
  15. AldawoodF.K. AndarA. DesaiS. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications.Polymers20211316281510.3390/polym1316281534451353
    [Google Scholar]
  16. LuoX. YangL. CuiY. Microneedles: Materials, fabrication, and biomedical applications.Biomed. Microdevices20232532010.1007/s10544‑023‑00658‑y37278852
    [Google Scholar]
  17. HanY. QinX. LinW. WangC. YinX. WuJ. ChenY. ChenX. ChenT. Microneedle-based approaches for skin disease treatment.Nano-Micro Lett.202517113210.1007/s40820‑025‑01662‑y39909997
    [Google Scholar]
  18. KimY.C. ParkJ.H. PrausnitzM.R. Microneedles for drug and vaccine delivery.Adv. Drug Deliv. Rev.201264141547156810.1016/j.addr.2012.04.00522575858
    [Google Scholar]
  19. WangL. WangY. WuX. WangP. LuoX. LvS. Advances in microneedles for transdermal diagnostics and sensing applications.Mikrochim. Acta2024191740610.1007/s00604‑024‑06458‑238898359
    [Google Scholar]
  20. OmidianH. ChowdhurySD Swellable microneedles in drug delivery and diagnostics.Pharmaceuticals202417679110.3390/ph1706079138931458
    [Google Scholar]
  21. JiangX. LillehojP.B. Microneedle-based skin patch for blood-free rapid diagnostic testing.Microsyst. Nanoeng.2020619610.1038/s41378‑020‑00206‑133194222
    [Google Scholar]
  22. PiresL.R. VinayakumarK.B. TurosM. MiguelV. GasparJ. A perspective on microneedle-based drug delivery and diagnostics in paediatrics.J. Pers. Med.2019944910.3390/jpm904004931731656
    [Google Scholar]
  23. LiuG.S. KongY. WangY. LuoY. FanX. XieX. YangB.R. WuM.X. Microneedles for transdermal diagnostics: Recent advances and new horizons.Biomaterials202023211974010.1016/j.biomaterials.2019.11974031918227
    [Google Scholar]
  24. GanesonK. AliasA.H. MurugaiyahV. AmirulA.A.A. RamakrishnaS. VigneswariS. Microneedles for efficient and precise drug delivery in cancer therapy.Pharmaceutics202315374410.3390/pharmaceutics1503074436986606
    [Google Scholar]
  25. HamdanI. Microneedle and drug delivery across the skin: An overview.Pharmacia20247111210.3897/pharmacia.71.e112503
    [Google Scholar]
  26. KulkarniD. DamiriF. RojekarS. ZehraviM. RamproshadS. DhokeD. MusaleS. MulaniA.A. ModakP. ParadhiR. VitoreJ. RahmanM.H. BerradaM. GiramP.S. CavaluS. Recent advancements in microneedle technology for multifaceted biomedical applications.Pharmaceutics2022145109710.3390/pharmaceutics1405109735631683
    [Google Scholar]
  27. ChenJ. RenH. ZhouP. ZhengS. DuB. LiuX. XiaoF. Microneedle-mediated drug delivery for cutaneous diseases.Front. Bioeng. Biotechnol.202210103204110.3389/fbioe.2022.103204136324904
    [Google Scholar]
  28. WangM. LiX. DuW. SunM. LingG. ZhangP. Microneedle-mediated treatment for superficial tumors by combining multiple strategies.Drug Deliv. Transl. Res.20231361600162010.1007/s13346‑023‑01297‑936735217
    [Google Scholar]
  29. OliveiraC. TeixeiraJ.A. OliveiraN. FerreiraS. BotelhoC.M. Microneedles’ device: Design, fabrication, and applications.Macromol20244232035510.3390/macromol4020019
    [Google Scholar]
  30. WaghuleT. SinghviG. DubeyS.K. PandeyM.M. GuptaG. SinghM. DuaK. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.Biomed. Pharmacother.20191091249125810.1016/j.biopha.2018.10.07830551375
    [Google Scholar]
  31. LuttonR.E.M. MooreJ. LarrañetaE. LigettS. WoolfsonA.D. DonnellyR.F. Microneedle characterisation: The need for universal acceptance criteria and GMP specifications when moving towards commercialisation.Drug Deliv. Transl. Res.20155431333110.1007/s13346‑015‑0237‑z26022578
    [Google Scholar]
  32. AlrimawiBH LeeJ.Y. NgK.W. GohC.F. In vitro evaluation of microneedle strength: A comparison of test configurations and experimental insights.RSC Pharmaceutics20241222723310.1039/D4PM00024B
    [Google Scholar]
  33. YanQ. ShenS. WangY. WengJ. WanA. YangG. FengL. The finite element analysis research on microneedle design strategy and transdermal drug delivery system.Pharmaceutics2022148162510.3390/pharmaceutics1408162536015251
    [Google Scholar]
  34. TsubokoY. SakodaH. OkamotoY. NomuraY. YamamotoE. Mechanical characterization of individual needles in microneedle arrays: Factors affecting compression test results.Pharmaceutics20241611148010.3390/pharmaceutics1611148039598602
    [Google Scholar]
  35. MakvandiP. KirkbyM. HuttonA.R.J. ShabaniM. YiuC.K.Y. BaghbantaraghdariZ. JamaledinR. CarlottiM. MazzolaiB. MattoliV. DonnellyR.F. Engineering microneedle patches for improved penetration: Analysis, skin models and factors affecting needle insertion.Nano-Micro Lett.20211319310.1007/s40820‑021‑00611‑934138349
    [Google Scholar]
  36. LarrañetaE. MooreJ. Vicente-PérezE.M. González-VázquezP. LuttonR. WoolfsonA.D. DonnellyR.F. A proposed model membrane and test method for microneedle insertion studies.Int. J. Pharm.20144721-2657310.1016/j.ijpharm.2014.05.04224877757
    [Google Scholar]
  37. AndoD. MiyatsujiM. SakodaH. YamamotoE. MiyazakiT. KoideT. SatoY. IzutsuK. Mechanical characterization of dissolving microneedles: Factors affecting physical strength of needles.Pharmaceutics202416220010.3390/pharmaceutics1602020038399254
    [Google Scholar]
  38. HuangJ. WangX. LiZ. Dissolving microneedles: Standing out in melanoma treatment.J. Mater. Chem. B Mater. Biol. Med.20241245115731159510.1039/D4TB01142B39431729
    [Google Scholar]
  39. AlimardaniV. AbolmaaliS.S. YousefiG. RahiminezhadZ. AbediM. TamaddonA. AhadianS. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics.J. Clin. Med.202110218110.3390/jcm1002018133419118
    [Google Scholar]
  40. SinghM. ShuklaR. Leveraging nanoengineered microneedle-augmented drug delivery in oncological intervention.Part. Part. Syst. Charact.2024424240018110.1002/ppsc.202400181
    [Google Scholar]
  41. MarshallS. FlemingA. MooreA.C. SahmL.J. Acceptability of microneedle-patch vaccines: A qualitative analysis of the opinions of parents.Vaccine201735374896490410.1016/j.vaccine.2017.07.08328780122
    [Google Scholar]
  42. AryaJ. HenryS. KalluriH. McAllisterD.V. PewinW.P. PrausnitzM.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects.Biomaterials20171281710.1016/j.biomaterials.2017.02.04028285193
    [Google Scholar]
  43. NormanJ.J. AryaJ.M. McClainM.A. FrewP.M. MeltzerM.I. PrausnitzM.R. Microneedle patches: Usability and acceptability for self-vaccination against influenza.Vaccine201432161856186210.1016/j.vaccine.2014.01.07624530146
    [Google Scholar]
  44. PoursharifiN. HassanpouramiriM. ZinkA. UcuncuM. ParlakO. Transdermal sensing of enzyme biomarker enabled by chemo-responsive probe-modified epidermal microneedle patch in human skin tissue.Adv. Mater.20243630240375810.1002/adma.20240375838733567
    [Google Scholar]
  45. CiuiB. MartinA. MishraR.K. BrunettiB. NakagawaT. DawkinsT.J. LyuM. CristeaC. SandulescuR. WangJ. Wearable wireless tyrosinase bandage and microneedle sensors: Toward melanoma screening.Adv. Healthc. Mater.201877170126410.1002/adhm.20170126429345430
    [Google Scholar]
  46. YangH. JiangX. ZengY. ZhangW. YuanQ. YinM. WuG. LiW. A swellable bilateral microneedle patch with core-shell structure for rapid lactate analysis and early melanoma diagnosis.Chem. Eng. J.202345514073010.1016/j.cej.2022.140730
    [Google Scholar]
  47. TottiS. NgK.W. DaleL. LianG. ChenT. VelliouE.G. A novel versatile animal-free 3D tool for rapid low-cost assessment of immunodiagnostic microneedles.Sens. Actuators B Chem.201929612665210.1016/j.snb.2019.126652
    [Google Scholar]
  48. WangG. ZhangY. KwongH.K. ZhengM. WuJ. CuiC. ChanK.W.Y. XuC. ChenT.H. On-site melanoma diagnosis utilizing a swellable microneedle-assisted skin interstitial fluid sampling and a microfluidic particle dam for visual quantification of S100A1.Adv. Sci.20241116230618810.1002/advs.20230618838417122
    [Google Scholar]
  49. KeumD.H. JungH.S. WangT. ShinM.H. KimY.E. KimK.H. AhnG.O. HahnS.K. Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy.Adv. Healthc. Mater.2015481153115810.1002/adhm.20150001225728402
    [Google Scholar]
  50. HuY. ChatzilakouE. PanZ. TraversoG. YetisenA.K. Microneedle sensors for point-of-care diagnostics.Adv. Sci.20241112230656010.1002/advs.20230656038225744
    [Google Scholar]
  51. MaY. LiuY. WangY. GaoP. Transdermal codelivery system of resveratrol nanocrystals and fluorouracil@ HP-β-CD by dissolving microneedles for cutaneous melanoma treatment.J. Drug Deliv. Sci. Technol.20249110525710.1016/j.jddst.2023.105257
    [Google Scholar]
  52. NaguibY.W. KumarA. CuiZ. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil.Acta Pharm. Sin. B201441949910.1016/j.apsb.2013.12.01325313350
    [Google Scholar]
  53. Martínez-RazoG. PiresP.C. Avilez-ColinA. Domínguez-LópezM.L. VeigaF. Conde-VázquezE. Paiva-SantosA.C. Vega-LópezA. Evaluation of a norcantharidin nanoemulsion efficacy for treating b16f1-induced melanoma in a syngeneic murine model.Int. J. Mol. Sci.2025263121510.3390/ijms2603121539940982
    [Google Scholar]
  54. DesaiV.M. PriyaS. GorantlaS. SinghviG. Revolutionizing therapeutic delivery with microneedle technology for tumor treatment.Pharmaceutics20221511410.3390/pharmaceutics1501001436678643
    [Google Scholar]
  55. ThamH.P. XuK. LimW.Q. ChenH. ZhengM. ThngT.G.S. VenkatramanS.S. XuC. ZhaoY. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma.ACS Nano20181212119361194810.1021/acsnano.8b0300730444343
    [Google Scholar]
  56. ChenG. ChenZ. WenD. WangZ. LiH. ZengY. DottiG. WirzR.E. GuZ. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy.Proc. Natl. Acad. Sci. USA202011773687369210.1073/pnas.191789111732029590
    [Google Scholar]
  57. LiX. YuW. YangJ. ChenY. QianX. WangJ. WangY. JiJ. Microneedle patch with “spongy coating” to co-load multiple drugs to treat multidrug-resistant melanoma.Biomater. Sci.202210216282629010.1039/D2BM01275H36129142
    [Google Scholar]
  58. RuanW. ZhaiY. YuK. WuC. XuY. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment.Int. J. Pharm.20185531-229830910.1016/j.ijpharm.2018.10.04330347273
    [Google Scholar]
  59. HuangS. LiuH. HuangS. FuT. XueW. GuoR. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma.Carbohydr. Polym.202024611665010.1016/j.carbpol.2020.11665032747282
    [Google Scholar]
  60. XingM. YangG. LiuH. ZhouZ. ZhangS. GaoY. Industrializable approach for preparing hydrogel microneedles and their application in melanoma treatment.Int. J. Pharm.202465312388310.1016/j.ijpharm.2024.12388338341048
    [Google Scholar]
  61. LiF. YangY. YueH. WangS. ZhangX. WeiW. Microneedle patch loaded with ferritin-nanocaged doxorubicin for locally targeted drug delivery and efficient skin cancer treatment.Particuology20248828228910.1016/j.partic.2023.09.017
    [Google Scholar]
  62. ZengY. ZhouH. DingJ. ZhouW. Cell membrane inspired nano-shell enabling long-acting glucose oxidase for melanoma starvation therapy via microneedles-based percutaneous delivery.Theranostics202111178270828210.7150/thno.6075834373741
    [Google Scholar]
  63. WeiS. QuanG. LuC. PanX. WuC. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy.Biomater. Sci.20208205739575010.1039/D0BM00914H32945301
    [Google Scholar]
  64. BianQ. HuangL. XuY. WangR. GuY. YuanA. MaX. HuJ. RaoY. XuD. WangH. GaoJ. A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect.ACS Nano20211512194681947910.1021/acsnano.1c0622534859990
    [Google Scholar]
  65. LiuF. ChengZ. YiH. NIR light-activatable dissolving microneedle system for melanoma ablation enabled by a combination of ROS-responsive chemotherapy and phototherapy.J. Nanobiotechnol20232116110.1186/s12951‑023‑01815‑436814244
    [Google Scholar]
  66. HanW. YuL. LiuZ. WangC. ZhangQ. LiH. XuY. LiuF. SunS. NIR enhanced pH-responsive microneedles for synergetic therapy of melanoma.ChemMedChem2025201e20240053710.1002/cmdc.20240053739349408
    [Google Scholar]
  67. MohantyS. DesaiV.M. JainR. AgrawalM. DubeyS.K. SinghviG. Unveiling the potential of photodynamic therapy with nanocarriers as a compelling therapeutic approach for skin cancer treatment: Current explorations and insights.RSC Advances20241430219152193710.1039/D4RA02564D38989245
    [Google Scholar]
  68. WuX. ParkJ. ChowS.Y.A. KasuyaM.C.Z. IkeuchiY. KimB. Localised light delivery on melanoma cells using optical microneedles.Biomed. Opt. Express20221321045106010.1364/BOE.45045635284152
    [Google Scholar]
  69. ChenJ. CaoY. LinS. NiuH. ZhangH. GuanL. ShuC. WuA. BianY. ZhuY. A responsive microneedle system for efficient anti-melanoma by combining self-enhanced chemodynamic therapy with photothermal therapy.Chem. Eng. J.202243113346610.1016/j.cej.2021.133466
    [Google Scholar]
  70. PuX.Q. JuX.J. LiuW.Y. LiuY-Q. LiX-J. LiY. XieR. WangW. LiuZ. ChuL-Y. Stimulus-responsive nanoparticle-integrated dissolving microneedles for synergetic chemo-photothermal therapy of superficial skin tumors.Ind. Eng. Chem. Res.202261237982799510.1021/acs.iecr.2c00831
    [Google Scholar]
  71. ZhaoY. ZhouY. YangD. GaoX. WenT. FuJ. WenX. QuanG. PanX. WuC. Intelligent and spatiotemporal drug release based on multifunctional nanoparticle-integrated dissolving microneedle system for synergetic chemo-photothermal therapy to eradicate melanoma.Acta Biomater.202113516417810.1016/j.actbio.2021.09.00934530140
    [Google Scholar]
  72. LiP. LiuC.H. ZhaoY.Y. CaoD.D. ChenB.Z. GuoX.D. ZhangW. Multifunctional covalent organic framework-based microneedle patch for melanoma treatment.Biomacromolecules20232483846385710.1021/acs.biomac.3c0048837475132
    [Google Scholar]
  73. SinghP. ChenY. YoudenB. OakleyD. CarrierA. OakesK. ServosM. JiangR. ZhangX. Accelerated cascade melanoma therapy using enzyme-nanozyme-integrated dissolvable polymeric microneedles.Int. J. Pharm.202465212381410.1016/j.ijpharm.2024.12381438280502
    [Google Scholar]
  74. AvcilM. ÇelikA. Microneedles in drug delivery: Progress and challenges.Micromachines20211211132110.3390/mi1211132134832733
    [Google Scholar]
  75. YangL. YangY. ChenH. MeiL. ZengX. Polymeric microneedle-mediated sustained release systems: Design strategies and promising applications for drug delivery.Asian J. Pharm. Sci.2022171708610.1016/j.ajps.2021.07.00235261645
    [Google Scholar]
  76. Regulatory considerations for microneedling products; Guidance for industry and food and drug administration staff 2020.Available from: https://www.regulations.gov/document/FDA-2017-D- 4792-0011
  77. DahisD. DionM.Z. CryerA.M. DostaP. GilboaT. AlonsoM. LewandowskiM. PuigmalN. TaboadaG.M. AzhariH. AhmadR. WaltD.R. ArtziN. Monitoring melanoma responses to sting agonism and focused ultrasound thermal ablation using microneedles and ultrasensitive single molecule arrays.Adv. Funct. Mater.20233350230165910.1002/adfm.202301659
    [Google Scholar]
  78. JooS.H. KimJ. HongJ. LahijiSF KimY.H. Dissolvable self-locking microneedle patches integrated with immunomodulators for cancer immunotherapy.Adv. Mater.20233510220996610.1002/adma.20220996636528846
    [Google Scholar]
  79. DuongH.T.T. YinY. ThambiT. NguyenT.L. Giang PhanV.H. LeeM.S. LeeJ.E. KimJ. JeongJ.H. LeeD.S. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy.Biomaterials2018185132410.1016/j.biomaterials.2018.09.00830216806
    [Google Scholar]
  80. TianY. JingH. WangQ. HuS. WuZ. DuanY. Dissolving microneedles-based programmed delivery system for enhanced chemo-immunotherapy of melanoma.J. Control. Release202336063064610.1016/j.jconrel.2023.07.00237414221
    [Google Scholar]
  81. LiM. WangM. LiL. ZhangL. MaB. WangW. A composite peptide-supramolecular microneedle system for melanoma immunotherapy.Nano Res.20231645335534510.1007/s12274‑022‑5236‑z
    [Google Scholar]
  82. WangC. YeY. HochuG.M. SadeghifarH. GuZ. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody.Nano Lett.20161642334234010.1021/acs.nanolett.5b0503026999507
    [Google Scholar]
  83. EdwardsC. ShahS.A. GebhardtT. JewellC.M. Exploiting unique features of microneedles to modulate immunity.Adv. Mater.20233552230241010.1002/adma.20230241037380199
    [Google Scholar]
  84. LiJ. WangX. WangZ. ZhaoY. ZhangZ. LiL. DingD. GuoJ. ZhangJ. LiuH. LiZ. A transdermal drug delivery system based on dissolving microneedles for boron neutron capture therapy of melanoma.Biomater. Sci.202311237568757810.1039/D3BM01262J37861462
    [Google Scholar]
  85. ZengQ. GammonJ.M. TostanoskiL.H. ChiuY.C. JewellC.M. In vivo expansion of melanoma-specific T cells using microneedle arrays coated with immune-polyelectrolyte multilayers.ACS Biomater. Sci. Eng.20173219520510.1021/acsbiomaterials.6b0041428286864
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128384441250422045753
Loading
/content/journals/cpd/10.2174/0113816128384441250422045753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test