Skip to content
2000
Volume 31, Issue 24
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

CNS illnesses specified by slow deprivation of especially preganglionic neurons, as opposed to the selective static neuronal loss caused by a toxic or metabolic condition, are known as Neurodegenerative disorders. Neurodegenerative disorders are differentiated clinically by behavioral or cognitive problems. The management and treatment of neurodegenerative disorders pose significant challenges, necessitating a multidimensional approach. While primarily designed for psychiatric conditions, antipsychotics have shown potential in ameliorating behavioral and psychological symptoms in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. This review explores the existing literature, highlighting the potential benefits, risks, and considerations associated with incorporating antipsychotics into the treatment paradigm for neurodegenerative disorders. Additionally, it discusses the evolving landscape of personalized treatment strategies, emphasizing the need for a multidisciplinary approach to optimize patient outcomes in the complex realm of neurodegenerative disorder management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128344910241211112452
2025-02-07
2025-10-11
Loading full text...

Full text loading...

References

  1. GloriosoC. OhS. DouillardG.G. SibilleE. Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism.Neurobiol. Dis.201141227929010.1016/j.nbd.2010.09.01620887790
    [Google Scholar]
  2. LauretaniF. MaggioM. SilvestriniC. NardelliA. SaccaviniM. CedaG.P. Parkinson’s disease (PD) in the elderly: An example of geriatric syndrome (GS)?Arch. Gerontol. Geriatr.201254124224610.1016/j.archger.2011.03.00221459464
    [Google Scholar]
  3. GitlerA.D. DhillonP. ShorterJ. Neurodegenerative disease: models, mechanisms, and a new hope.Dis. Model. Mech.201710549950210.1242/dmm.03020528468935
    [Google Scholar]
  4. American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders.Diagnostic Stat Man Ment Disord201310.1176/appi.books.9780890425596
    [Google Scholar]
  5. GautamS. JainA. GautamM. GautamA. Clinical practice guideline for management of psychoses in elderly.Indian J. Psychiatry201860736310.4103/0019‑5545.22447529535470
    [Google Scholar]
  6. JavadpourA. SehatpourM. ManiA. SahraianA. Assessing diagnosis and symptoms profiles of late-life psychosis.GeroPsych (Bern)201326420520910.1024/1662‑9647/a000090
    [Google Scholar]
  7. RopackiS.A. JesteD.V. Epidemiology of and risk factors for psychosis of Alzheimer’s disease: a review of 55 studies published from 1990 to 2003.Am. J. Psychiatry2005162112022203010.1176/appi.ajp.162.11.202216263838
    [Google Scholar]
  8. ZuidemaS. KoopmansR. VerheyF. Prevalence and predictors of neuropsychiatric symptoms in cognitively impaired nursing home patients.J Geriatr Psychiatry Neurol.200720141910.1177/0891988706292762
    [Google Scholar]
  9. ZeeshanM. MukhtarM. Ul AinQ. KhanS. AliH. Nanopharmaceuticals: A Boon to the Brain-Targeted Drug Delivery.Pharmaceutical Formulation Design - Recent PracticesIntechopen202012310.5772/intechopen.83040
    [Google Scholar]
  10. BegleyD.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities.Pharmacol. Ther.20041041294510.1016/j.pharmthera.2004.08.00115500907
    [Google Scholar]
  11. CecchelliR. BerezowskiV. LundquistS. CulotM. RenftelM. DehouckM.P. FenartL. Modelling of the blood–brain barrier in drug discovery and development.Nat. Rev. Drug Discov.20076865066110.1038/nrd236817667956
    [Google Scholar]
  12. Fabulas-da CostaA. AijjouR. HachaniJ. LandryC. CecchelliR. CulotM. In vitro blood–brain barrier model adapted to repeated-dose toxicological screening.Toxicol. In Vitro20132761944195310.1016/j.tiv.2013.06.02623850739
    [Google Scholar]
  13. HarrisJ.J. JolivetR. AttwellD. Synaptic energy use and supply.Neuron201275576277710.1016/j.neuron.2012.08.01922958818
    [Google Scholar]
  14. IadecolaC. YaffeK. BillerJ. BratzkeL.C. FaraciF.M. GorelickP.B. GulatiM. KamelH. KnopmanD.S. LaunerL.J. SaczynskiJ.S. SeshadriS. Zeki Al HazzouriA. Impact of hypertension on cognitive function: A scientific statement from the American Heart Association.Hypertension2016686e67e9410.1161/HYP.000000000000005327977393
    [Google Scholar]
  15. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials202215380410.3390/ma1503080435160749
    [Google Scholar]
  16. KhanA.R. LiuM. KhanM.W. ZhaiG. Progress in brain targeting drug delivery system by nasal route.J. Control. Release201726836438910.1016/j.jconrel.2017.09.00128887135
    [Google Scholar]
  17. TaliyanR. KakotyV. SarathlalK.C. KharavtekarS.S. KarennanavarC.R. ChoudharyY.K. SinghviG. RiadiY. DubeyS.K. KesharwaniP. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimer’s disease.J. Control. Release202234352855010.1016/j.jconrel.2022.01.04435114208
    [Google Scholar]
  18. SonG.H. LeeB.J. ChoC.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles.J. Pharm. Investig.201747428729610.1007/s40005‑017‑0320‑1
    [Google Scholar]
  19. HenstridgeC.M. TziorasM. PaolicelliR.C. Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration.Front. Cell. Neurosci.2019136310.3389/fncel.2019.0006330863284
    [Google Scholar]
  20. PoeweW. SeppiK. TannerC.M. HallidayG.M. BrundinP. VolkmannJ. SchragA.E. LangA.E. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.1328332488
    [Google Scholar]
  21. AarslandD. BrønnickK. FladbyT. Mild cognitive impairment in Parkinson’s disease.Curr. Neurol. Neurosci. Rep.201111437137810.1007/s11910‑011‑0203‑121487730
    [Google Scholar]
  22. RentonA.E. ChiòA. TraynorB.J. State of play in amyotrophic lateral sclerosis genetics.Nat. Neurosci.2014171172310.1038/nn.358424369373
    [Google Scholar]
  23. PunS. SantosA.F. SaxenaS. XuL. CaroniP. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF.Nat. Neurosci.20069340841910.1038/nn165316474388
    [Google Scholar]
  24. FischerL.R. CulverD.G. TennantP. DavisA.A. WangM. Castellano-SanchezA. KhanJ. PolakM.A. GlassJ.D. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man.Exp. Neurol.2004185223224010.1016/j.expneurol.2003.10.00414736504
    [Google Scholar]
  25. AggelakopoulouM. KourepiniE. PaschalidisN. SimoesD.C.M. KalavriziotiD. DimisianosN. PapathanasopoulosP. MouzakiA. PanoutsakopoulouV. ERβ-dependent direct suppression of human and murine Th17 cells and treatment of established central nervous system autoimmunity by a neurosteroid.J. Immunol.201619772598260910.4049/jimmunol.160103827549171
    [Google Scholar]
  26. KornT. ReddyJ. GaoW. BettelliE. AwasthiA. PetersenT.R. BäckströmB.T. SobelR.A. WucherpfennigK.W. StromT.B. OukkaM. KuchrooV.K. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation.Nat. Med.200713442343110.1038/nm156417384649
    [Google Scholar]
  27. MironV.E. BoydA. ZhaoJ.W. YuenT.J. RuckhJ.M. ShadrachJ.L. van WijngaardenP. WagersA.J. WilliamsA. FranklinR.J.M. ffrench-ConstantC. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination.Nat. Neurosci.20131691211121810.1038/nn.346923872599
    [Google Scholar]
  28. NisticòR. MoriF. FeligioniM. NicolettiF. CentonzeD. Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916332013016210.1098/rstb.2013.016224298163
    [Google Scholar]
  29. ToydemirRM BamshadMJ Sheldon-hall syndrome.Orphanet J Rare Dis200941110.1186/1750‑1172‑4‑1119309503
    [Google Scholar]
  30. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  31. SeelaarH. RohrerJ.D. PijnenburgY.A.L. FoxN.C. van SwietenJ.C. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review.J. Neurol. Neurosurg. Psychiatry201182547648610.1136/jnnp.2010.21222520971753
    [Google Scholar]
  32. JellingerK.A. Interaction between pathogenic proteins in neurodegenerative disorders.J. Cell. Mol. Med.20121661166118310.1111/j.1582‑4934.2011.01507.x22176890
    [Google Scholar]
  33. AhmedZ. AsiY.T. SailerA. LeesA.J. HouldenH. ReveszT. HoltonJ.L. The neuropathology, pathophysiology and genetics of multiple system atrophy.Neuropathol. Appl. Neurobiol.201238142410.1111/j.1365‑2990.2011.01234.x22074330
    [Google Scholar]
  34. BeyerK. Domingo-SàbatM. ArizaA. Molecular pathology of Lewy body diseases.Int. J. Mol. Sci.200910372474510.3390/ijms1003072419399218
    [Google Scholar]
  35. McKeithI.G. DicksonD.W. LoweJ. EmreM. O’BrienJ.T. FeldmanH. CummingsJ. DudaJ.E. LippaC. PerryE.K. AarslandD. AraiH. BallardC.G. BoeveB. BurnD.J. CostaD. Del SerT. DuboisB. GalaskoD. GauthierS. GoetzC.G. Gomez-TortosaE. HallidayG. HansenL.A. HardyJ. IwatsuboT. KalariaR.N. KauferD. KennyR.A. KorczynA. KosakaK. LeeV.M.Y. LeesA. LitvanI. LondosE. LopezO.L. MinoshimaS. MizunoY. MolinaJ.A. Mukaetova-LadinskaE.B. PasquierF. PerryR.H. SchulzJ.B. TrojanowskiJ.Q. YamadaM. Diagnosis and management of dementia with Lewy bodies.Neurology200565121863187210.1212/01.wnl.0000187889.17253.b116237129
    [Google Scholar]
  36. RascovskyK. HodgesJ.R. KnopmanD. MendezM.F. KramerJ.H. NeuhausJ. van SwietenJ.C. SeelaarH. DopperE.G.P. OnyikeC.U. HillisA.E. JosephsK.A. BoeveB.F. KerteszA. SeeleyW.W. RankinK.P. JohnsonJ.K. Gorno-TempiniM.L. RosenH. Prioleau-LathamC.E. LeeA. KippsC.M. LilloP. PiguetO. RohrerJ.D. RossorM.N. WarrenJ.D. FoxN.C. GalaskoD. SalmonD.P. BlackS.E. MesulamM. WeintraubS. DickersonB.C. Diehl-SchmidJ. PasquierF. DeramecourtV. LebertF. PijnenburgY. ChowT.W. ManesF. GrafmanJ. CappaS.F. FreedmanM. GrossmanM. MillerB.L. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia.Brain201113492456247710.1093/brain/awr17921810890
    [Google Scholar]
  37. UwishemaO. MahmoudA. SunJ. CorreiaI.F.S. BejjaniN. AlwanM. NicholasA. OluyemisiA. DostB. Is Alzheimer’s disease an infectious neurological disease? A review of the literature.Brain Behav.2022128e272810.1002/brb3.272835879909
    [Google Scholar]
  38. SimpsonJ.R. DSM-5 and neurocognitive disorders.J. Am. Acad. Psychiatry Law201442215916424986342
    [Google Scholar]
  39. KingwellK. Pimavanserin could be useful for treating psychosis in Parkinson disease.Nat. Rev. Neurol.201391265810.1038/nrneurol.2013.23324247322
    [Google Scholar]
  40. MeltzerH.Y. The mechanism of action of novel antipsychotic drugs.Schizophr. Bull.199117226328710.1093/schbul/17.2.2631679253
    [Google Scholar]
  41. BhiseS. YadavA. AvachatA. MalayandiR. Bioavailability of intranasal drug delivery system.Asian J. Pharm.20082420110.4103/0973‑8398.45032
    [Google Scholar]
  42. NaqviS. PanghalA. FloraS.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs.Front. Neurosci.20201449410.3389/fnins.2020.0049432581676
    [Google Scholar]
  43. AmatoD. BeasleyC.L. HahnM.K. VernonA.C. Neuroadaptations to antipsychotic drugs: Insights from pre-clinical and human post-mortem studies.Neurosci. Biobehav. Rev.201776Pt B31733510.1016/j.neubiorev.2016.10.00427756689
    [Google Scholar]
  44. BastianettoS. DanikM. MennickenF. WilliamsS. QuirionR. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation.BMC Neurosci.2006712810.1186/1471‑2202‑7‑2816573831
    [Google Scholar]
  45. ValentiO. CifelliP. GillK.M. GraceA.A. Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia.J. Neurosci.20113134123301233810.1523/JNEUROSCI.2808‑11.201121865475
    [Google Scholar]
  46. SeoM.S. ScarrE. LaiC.Y. DeanB. Potential molecular and cellular mechanism of psychotropic drugs.Clin. Psychopharmacol. Neurosci.20141229411010.9758/cpn.2014.12.2.9425191500
    [Google Scholar]
  47. GrinchiiD. DremencovE. Mechanism of action of atypical antipsychotic drugs in mood disorders.Int. J. Mol. Sci.20202124953210.3390/ijms2124953233333774
    [Google Scholar]
  48. MillerR. Mechanisms of action of antipsychotic drugs of different classes, refractoriness to therapeutic effects of classical neuroleptics, and individual variation in sensitivity to their actions: Part I.Curr. Neuropharmacol.20097430231410.2174/15701590979003122920514210
    [Google Scholar]
  49. WhicherC.A. PriceH.C. HoltR.I.G. Mechanisms in endocrinology: Antipsychotic medication and type 2 diabetes and impaired glucose regulation.Eur. J. Endocrinol.20181786R245R25810.1530/EJE‑18‑002229559497
    [Google Scholar]
  50. NuciforaF.C.Jr MihaljevicM. LeeB.J. SawaA. Clozapine as a model for antipsychotic development.Neurotherapeutics201714375076110.1007/s13311‑017‑0552‑928653280
    [Google Scholar]
  51. PatergnaniS. BonoraM. IngusciS. PreviatiM. MarchiS. ZucchiniS. PerroneM. WieckowskiM.R. CastellazziM. PugliattiM. GiorgiC. SimonatoM. PintonP. Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis.Proc. Natl. Acad. Sci. USA202111824e202007811810.1073/pnas.202007811834099564
    [Google Scholar]
  52. PotkinS.G. SahaA.R. KujawaM.J. CarsonW.H. AliM. StockE. Aripiprazole, an antipsychotic with a novel mechanism of action, and risperidone vs placebo in patients with schizophrenia and schizoaff ective disorder. Psychiatry, Psychother. Clin. Psychol.20189236245
    [Google Scholar]
  53. AmatoD. CannevaF. CummingP. MaschauerS. GroosD. DahlmannsJ.K. GrömerT.W. ChiofaloL. DahlmannsM. ZhengF. KornhuberJ. PranteO. AlzheimerC. von HörstenS. MüllerC.P. A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter.Mol. Psychiatry20202592101211810.1038/s41380‑018‑0114‑530038229
    [Google Scholar]
  54. JauharS. YoungA.H. Controversies in bipolar disorder; role of second-generation antipsychotic for maintenance therapy.Int. J. Bipolar Disord.2019711010.1186/s40345‑019‑0145‑030915592
    [Google Scholar]
  55. LallyJ. MacCabeJ.H. Antipsychotic medication in schizophrenia: a review.Br. Med. Bull.2015114116917910.1093/bmb/ldv01725957394
    [Google Scholar]
  56. DrummondN. McClearyL. FreiheitE. MolnarF. DalzielW. CohenC. TurnerD. MiyagishimaR. SilviusJ. Antidepressant and antipsychotic prescribing in primary care for people with dementia.Can. Fam. Physician20186411e488e49730429194
    [Google Scholar]
  57. FadenJ. CitromeL. Resistance is not futile: treatment-refractory schizophrenia – overview, evaluation and treatment.Expert Opin. Pharmacother.2019201112410.1080/14656566.2018.154340930407873
    [Google Scholar]
  58. ReusV.I. FochtmannL.J. EylerA.E. HiltyD.M. Horvitz-LennonM. JibsonM.D. LopezO.L. MahoneyJ. PasicJ. TanZ.S. WillsC.D. RhoadsR. YagerJ. The American psychiatric association practice guideline on the use of antipsychotics to treat agitation or psychosis in patients with dementia.Am. J. Psychiatry2016173554354610.1176/appi.ajp.2015.17350127133416
    [Google Scholar]
  59. LuoS. MaC. ZhuM.Q. JuW.N. YangY. WangX. Application of iron oxide nanoparticles in the diagnosis and treatment of neurodegenerative diseases with emphasis on Alzheimer’s Disease.Front. Cell. Neurosci.2020142110.3389/fncel.2020.0002132184709
    [Google Scholar]
  60. AgraharamG. SaravananN. GirigoswamiA. GirigoswamiK. Future of Alzheimer’s Disease: Nanotechnology-based diagnostics and therapeutic approach.Bionanoscience20221231002101710.1007/s12668‑022‑00998‑8
    [Google Scholar]
  61. OuyangQ. MengY. ZhouW. TongJ. ChengZ. ZhuQ. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease.J. Drug Target.2022301618110.1080/1061186X.2021.192705533983096
    [Google Scholar]
  62. LiX. TsibouklisJ. WengT. ZhangB. YinG. FengG. CuiY. SavinaI.N. MikhalovskaL.I. SandemanS.R. HowelC.A. MikhalovskyS.V. Nano carriers for drug transport across the blood–brain barrier.J. Drug Target.2017251172810.1080/1061186X.2016.118427227126681
    [Google Scholar]
  63. TapeinosC. BattagliniM. CiofaniG. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases.J. Control. Release201726430633210.1016/j.jconrel.2017.08.03328844756
    [Google Scholar]
  64. YuB. LeeR.J. LeeL.J. Microfluidic methods for production of liposomes.Methods Enzymol.200946512914110.1016/S0076‑6879(09)65007‑219913165
    [Google Scholar]
  65. MehmoodT. AhmedA. Tween 80 and soya-lecithin-based food-grade nanoemulsions for the effective delivery of vitamin D.Langmuir202036112886289210.1021/acs.langmuir.9b0394432118445
    [Google Scholar]
  66. KarakotiA.S. DasS. ThevuthasanS. SealS. PEGylated inorganic nanoparticles.Angew. Chem. Int. Ed.20115091980199410.1002/anie.20100296921275011
    [Google Scholar]
  67. Silki SinhaV.R. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles.AAPS PharmSciTech20181931264127310.1208/s12249‑017‑0944‑529313261
    [Google Scholar]
  68. PiazzaJ. HoareT. MolinaroL. TerpstraK. BhandariJ. SelvaganapathyP.R. GuptaB. MishraR.K. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d,l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia.Eur. J. Pharm. Biopharm.2014871303910.1016/j.ejpb.2014.02.00724560967
    [Google Scholar]
  69. PintoF. de BarrosD.P.C. ReisC. FonsecaL.P. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design.J. Mol. Liq.201929311146810.1016/j.molliq.2019.111468
    [Google Scholar]
  70. PatelM.H. MundadaV.P. SawantK.K. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia.Drug Dev. Ind. Pharm.20194581242125710.1080/03639045.2019.159343430880488
    [Google Scholar]
  71. AgrawalM. SarafS. PradhanM. PatelR.J. SinghviG. Ajazuddin AlexanderA. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design.Biomed. Pharmacother.202114111191910.1016/j.biopha.2021.11191934328108
    [Google Scholar]
  72. ShreyaA.B. ManaguliR.S. MenonJ. KondapalliL. HegdeA.R. AvadhaniK. ShettyP.K. AmirthalingamM. KalthurG. MutalikS. Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations.J. Liposome Res.201626322123210.3109/08982104.2015.109865926621370
    [Google Scholar]
  73. PatelM.R. PatelR.B. BhattK.K. PatelB.G. GaikwadR.V. Paliperidone microemulsion for nose-to-brain targeted drug delivery system: pharmacodynamic and pharmacokinetic evaluation.Drug Deliv.201623134635410.3109/10717544.2014.91460224865295
    [Google Scholar]
  74. MuthuM.S. SahuA.K. Sonali AbdullaA. KaklotarD. RajeshC.V. SinghS. PandeyB.L. Solubilized delivery of paliperidone palmitate by d- alpha-tocopheryl polyethylene glycol 1000 succinate micelles for improved short-term psychotic management.Drug Deliv.201623123023710.3109/10717544.2014.90990724853962
    [Google Scholar]
  75. HelalH.M. MortadaS.M. SallamM.A. Paliperidone-loaded nanolipomer system for sustained delivery and enhanced intestinal permeation: Superiority to polymeric and solid lipid nanoparticles.AAPS PharmSciTech20171861946195910.1208/s12249‑016‑0657‑127914041
    [Google Scholar]
  76. ShahB. KhuntD. MisraM. PadhH. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route.Int. J. Biol. Macromol.20168920621810.1016/j.ijbiomac.2016.04.07627130654
    [Google Scholar]
  77. UpadhyayP. TrivediJ. PundarikakshuduK. ShethN. Direct and enhanced delivery of nanoliposomes of anti schizophrenic agent to the brain through nasal route.Saudi Pharm. J.201725334635810.1016/j.jsps.2016.07.00328344488
    [Google Scholar]
  78. BocheM. PokharkarV. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency.AAPS PharmSciTech201718368669610.1208/s12249‑016‑0552‑927207184
    [Google Scholar]
  79. ShahB. KhuntD. MisraM. PadhH. Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: Formulation, physicochemical and pharmacokinetic consideration.Eur. J. Pharm. Sci.20169119620710.1016/j.ejps.2016.05.00827174656
    [Google Scholar]
  80. LiJ.C. ZhangW.J. ZhuJ.X. ZhuN. ZhangH.M. WangX. ZhangJ. WangQ.Q. Preparation and brain delivery of nasal solid lipid nanoparticles of quetiapine fumarate in situ gel in rat model of schizophrenia.Int. J. Clin. Exp. Med.2015810175901760026770349
    [Google Scholar]
  81. SejuU. KumarA. SawantK.K. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: In vitro and in vivo studies.Acta Biomater.20117124169417610.1016/j.actbio.2011.07.02521839863
    [Google Scholar]
  82. BaltzleyS. MohammadA. MalkawiA.H. Al-GhananeemA.M. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles.AAPS PharmSciTech20141561598160210.1208/s12249‑014‑0189‑525142821
    [Google Scholar]
  83. NatarajanJ. BaskaranM. HumtsoeL.C. VadivelanR. JustinA. Enhanced brain targeting efficacy of Olanzapine through solid lipid nanoparticles.Artif. Cells Nanomed. Biotechnol.201745236437110.3109/21691401.2016.116040227002542
    [Google Scholar]
  84. AbdelbaryG.A. TadrosM.I. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies.Int. J. Pharm.20134521-230031010.1016/j.ijpharm.2013.04.08423684658
    [Google Scholar]
  85. GadhaveD.G. TagalpallewarA.A. KokareC.R. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS Delivery: Optimization and hematological toxicity studies.AAPS PharmSciTech20192012210.1208/s12249‑018‑1213‑y30604305
    [Google Scholar]
  86. FonsecaF.N. BettiA.H. CarvalhoF.C. GremiãoM.P.D. DimerF.A. GuterresS.S. TebaldiM.L. RatesS.M.K. PohlmannA.R. Mucoadhesive amphiphilic methacrylic copolymer-functionalized poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of olanzapine.J. Biomed. Nanotechnol.20151181472148110.1166/jbn.2015.207826295147
    [Google Scholar]
  87. QureshiM. AqilM. ImamS.S. AhadA. SultanaY. Formulation and evaluation of neuroactive drug loaded chitosan nanoparticle for nose to brain delivery: In vitro characterization and in-vivo behavior study.Curr. Drug Deliv.201816212313510.2174/156720181566618101112175030317997
    [Google Scholar]
  88. PatelS. ChavhanS. SoniH. BabbarA.K. MathurR. MishraA.K. SawantK. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route.J. Drug Target.201119646847410.3109/1061186X.2010.52378720958095
    [Google Scholar]
  89. KumarM. MisraA. MishraA.K. MishraP. PathakK. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting.J. Drug Target.2008161080681410.1080/1061186080247650418988064
    [Google Scholar]
  90. RukmangathenR. YallamalliI.M. YalavarthiP.R. Formulation and biopharmaceutical evaluation of risperidone-loaded chitosan nanoparticles for intranasal delivery.Drug Dev. Ind. Pharm.20194581342135010.1080/03639045.2019.161975931094571
    [Google Scholar]
  91. MarderS.R. MeibachR.C. Risperidone in the treatment of schizophrenia.Am. J. Psychiatry1994151682583510.1176/ajp.151.6.8257514366
    [Google Scholar]
  92. CheungR. NgT. WongJ. ChanW. Chitosan: an update on potential biomedical and pharmaceutical applications.Mar. Drugs20151385156518610.3390/md1308515626287217
    [Google Scholar]
  93. NarayanR. SinghM. RanjanO. NayakY. GargS. ShaviG.V. NayakU.Y. Development of risperidone liposomes for brain targeting through intranasal route.Life Sci.2016163384510.1016/j.lfs.2016.08.03327593571
    [Google Scholar]
  94. KozlovskayaL. Abou-KaoudM. StepenskyD. Quantitative analysis of drug delivery to the brain via nasal route.J. Control. Release201418913314010.1016/j.jconrel.2014.06.05324997277
    [Google Scholar]
  95. PandianS.R.K. Liposomes: An emerging carrier for targeting Alzheimer's and Parkinson's diseases.Heliyon.202286e0957510.1016/j.heliyon.2022.e09575
    [Google Scholar]
  96. VosT. FlaxmanA.D. NaghaviM. LozanoR. MichaudC. EzzatiM. ShibuyaK. SalomonJ.A. AbdallaS. AboyansV. AbrahamJ. AckermanI. AggarwalR. AhnS.Y. AliM.K. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. BahalimA.N. Barker-ColloS. BarreroL.H. BartelsD.H. BasáñezM-G. BaxterA. BellM.L. BenjaminE.J. BennettD. BernabéE. BhallaK. BhandariB. BikbovB. AbdulhakA.B. BirbeckG. BlackJ.A. BlencoweH. BloreJ.D. BlythF. BolligerI. BonaventureA. BoufousS. BourneR. BoussinesqM. BraithwaiteT. BrayneC. BridgettL. BrookerS. BrooksP. BrughaT.S. Bryan-HancockC. BucelloC. BuchbinderR. BuckleG. BudkeC.M. BurchM. BurneyP. BursteinR. CalabriaB. CampbellB. CanterC.E. CarabinH. CarapetisJ. CarmonaL. CellaC. CharlsonF. ChenH. ChengA.T-A. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahiyaM. DahodwalaN. Damsere-DerryJ. DanaeiG. DavisA. De LeoD. DegenhardtL. DellavalleR. DelossantosA. DenenbergJ. DerrettS. Des JarlaisD.C. DharmaratneS.D. DheraniM. Diaz-TorneC. DolkH. DorseyE.R. DriscollT. DuberH. EbelB. EdmondK. ElbazA. AliS.E. ErskineH. ErwinP.J. EspindolaP. EwoigbokhanS.E. FarzadfarF. FeiginV. FelsonD.T. FerrariA. FerriC.P. FèvreE.M. FinucaneM.M. FlaxmanS. FloodL. ForemanK. ForouzanfarM.H. FowkesF.G.R. FranklinR. FransenM. FreemanM.K. GabbeB.J. GabrielS.E. GakidouE. GanatraH.A. GarciaB. GaspariF. GillumR.F. GmelG. GosselinR. GraingerR. GroegerJ. GuilleminF. GunnellD. GuptaR. HaagsmaJ. HaganH. HalasaY.A. HallW. HaringD. HaroJ.M. HarrisonJ.E. HavmoellerR. HayR.J. HigashiH. HillC. HoenB. HoffmanH. HotezP.J. HoyD. HuangJ.J. IbeanusiS.E. JacobsenK.H. JamesS.L. JarvisD. JasrasariaR. JayaramanS. JohnsN. JonasJ.B. KarthikeyanG. KassebaumN. KawakamiN. KerenA. KhooJ-P. KingC.H. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LallooR. LaslettL.L. LathleanT. LeasherJ.L. LeeY.Y. LeighJ. LimS.S. LimbE. LinJ.K. LipnickM. LipshultzS.E. LiuW. LoaneM. OhnoS.L. LyonsR. MaJ. MabweijanoJ. MacIntyreM.F. MalekzadehR. MallingerL. ManivannanS. MarcenesW. MarchL. MargolisD.J. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGillN. McGrathJ. Medina-MoraM.E. MeltzerM. MemishZ.A. MensahG.A. MerrimanT.R. MeyerA-C. MiglioliV. MillerM. MillerT.R. MitchellP.B. MocumbiA.O. MoffittT.E. MokdadA.A. MonastaL. MonticoM. Moradi-LakehM. MoranA. MorawskaL. MoriR. MurdochM.E. MwanikiM.K. NaidooK. NairM.N. NaldiL. NarayanK.M.V. NelsonP.K. NelsonR.G. NevittM.C. NewtonC.R. NolteS. NormanP. NormanR. O’DonnellM. O’HanlonS. OlivesC. OmerS.B. OrtbladK. OsborneR. OzgedizD. PageA. PahariB. PandianJ.D. RiveroA.P. PattenS.B. PearceN. PadillaR.P. Perez-RuizF. PericoN. PesudovsK. PhillipsD. PhillipsM.R. PierceK. PionS. PolanczykG.V. PolinderS. PopeC.A.III PopovaS. PorriniE. PourmalekF. PrinceM. PullanR.L. RamaiahK.D. RanganathanD. RazaviH. ReganM. RehmJ.T. ReinD.B. RemuzziG. RichardsonK. RivaraF.P. RobertsT. RobinsonC. De LeònF.R. RonfaniL. RoomR. RosenfeldL.C. RushtonL. SaccoR.L. SahaS. SampsonU. Sanchez-RieraL. SanmanE. SchwebelD.C. ScottJ.G. Segui-GomezM. ShahrazS. ShepardD.S. ShinH. ShivakotiR. SilberbergD. SinghD. SinghG.M. SinghJ.A. SingletonJ. SleetD.A. SliwaK. SmithE. SmithJ.L. StapelbergN.J.C. SteerA. SteinerT. StolkW.A. StovnerL.J. SudfeldC. SyedS. TamburliniG. TavakkoliM. TaylorH.R. TaylorJ.A. TaylorW.J. ThomasB. ThomsonW.M. ThurstonG.D. TleyjehI.M. TonelliM. TowbinJ.A. TruelsenT. TsilimbarisM.K. UbedaC. UndurragaE.A. van der WerfM.J. van OsJ. VavilalaM.S. VenketasubramanianN. WangM. WangW. WattK. WeatherallD.J. WeinstockM.A. WeintraubR. WeisskopfM.G. WeissmanM.M. WhiteR.A. WhitefordH. WiersmaS.T. WilkinsonJ.D. WilliamsH.C. WilliamsS.R.M. WittE. WolfeF. WoolfA.D. WulfS. YehP-H. ZaidiA.K.M. ZhengZ-J. ZoniesD. LopezA.D. MurrayC.J.L. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010.Lancet201238098592163219610.1016/S0140‑6736(12)61729‑223245607
    [Google Scholar]
  97. HowesO. McCutcheonR. StoneJ. Glutamate and dopamine in schizophrenia: An update for the 21st century.J. Psychopharmacol.20152929711510.1177/026988111456363425586400
    [Google Scholar]
  98. KurtzM.M. Symptoms versus neurocognitive skills as correlates of everyday functioning in severe mental illness.Expert Rev. Neurother.200661475610.1586/14737175.6.1.4716466311
    [Google Scholar]
  99. ZhaoY. ZhengZ. YuC-Y. WeiH. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications.J. Mater. Chem. B Mater. Biol. Med.2024121396310.1039/D3TB02101G38078497
    [Google Scholar]
  100. LeonardI. Chapter 2 - Nanoemulsions for drug delivery.In: Systems of Nanovesicular Drug DeliveryAcademic Press20221737
    [Google Scholar]
  101. JampilekJ. KralovaK. Potential of nanonutraceuticals in increasing immunity.Nanomaterials20201011222410.3390/nano1011222433182343
    [Google Scholar]
  102. PeitlV. VlahovićD. Brilaroxazine.Archives of Psychiatry Research201955219319610.20471/dec.2019.55.02.08
    [Google Scholar]
  103. SinghR. HahnM.K. BansalY. AgarwalS.M. RemingtonG. Evenamide: A potential pharmacotherapeutic alternative for treatment-resistant schizophrenia.Int. J. Neuropsychopharmacol.2024272pyae00510.1093/ijnp/pyae00538195245
    [Google Scholar]
  104. AchtyesE.D. HopkinsS.C. DedicN. DworakH. ZeniC. KoblanK. Ulotaront: review of preliminary evidence for the efficacy and safety of a TAAR1 agonist in schizophrenia.Eur. Arch. Psychiatry Clin. Neurosci.202327371543155610.1007/s00406‑023‑01580‑3
    [Google Scholar]
  105. DavisJ. ZamoraD. HorowitzM. LeuchtS. Evaluating pimavanserin as a treatment for psychiatric disorders: A pharmacological property in search of an indication.Expert Opin. Pharmacother.202122131651166010.1080/14656566.2021.194245534404290
    [Google Scholar]
  106. BhatL MohapatraPP AdieyK Compositions, synthesis, and methods of utilizing arylpiperazine derivatives.U.S. Patent 8188072012
  107. BhatL MohapatraPP AdieyK Methods of utilizing arylpiperazine derivatives.U.S. Patent 84315702013
  108. MelloniP RestivoA IzzoE FrancisconiS ColomboE Sabido-DavidC Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 85190002013
  109. MelloniP RestivoA IzzoE FrancisconiS ColomboE Sabido-DavidC Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 90512402015
  110. MelloniP. RestivoA. IzzoE. FrancisconiS. ColomboE. Sabido-DavidC. Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 95858692017
  111. MelloniP RestivoA IzzoE FrancisconiS ColomboE Sabido-DavidC Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 94747372016
  112. MelloniP RestivoA IzzoE FrancisconiS ColomboE Sabido-DavidC Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 94747382016
  113. MelloniP RestivoA IzzoE FrancisconiS ColomboE Sabido-DavidC Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 94747392016
  114. MelloniP RestivoA IzzoE FrancisconiS ColomboE Sabido-DavidC Substituted 2-[2-(phenyl) ethylamino] alkaneamide derivatives and their use as sodium and/or calcium channel modulators.U.S. Patent 96038322017
  115. ShaoL CampbellJE HewittMC CampbellU HananiaTG Multicyclic compounds and methods of use thereof.U.S. Patent 100859682018
  116. ShaoL CampbellJE HewittMC CampbellU HananiaTG Multicyclic compounds and methods of use thereof.U.S. Patent 108940332021
  117. ThurieauC GonzalezJ MoinetC 4-aminopiperidine and their use as a medicine.U.S. Patent 71156342006
  118. WeinerDM DavisRE BrannMR AnderssonCA UldamAK Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases.U.S. Patent 76017402009
  119. KirolaDB BursteinES Pimavanserin for treating schizophrenia or for treating psychosis secondary to neurodegenerative disorders or depressive disorder.U.S. Patent 202202880482022
  120. WeinerDM DavisRE BrannMR AnderssonCA UldamAK Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases.U.S. Patent 76592852010
  121. ThygesenMB SchliengerN TolfB AnderssonCA BlatterF BerghausenJ N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and crystalline forms.U.S. Patent 77326152010
  122. ThygesenM.B. SchliengerN. TolfB. AnderssonC.A. BlatterF. BerghausenJ. Synthesis of N-(4-fluorobenzyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy) phenylmethyl)carbamide and its tartrate salt and crystalline forms.U.S. Patent 79235642011
  123. WeinerDM DavisRE BrannMR AnderssonCA UldamAK Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases.U.S. Patent 86181302013
  124. WeinerDM DavisRE BrannMR AnderssonCA UldamAK Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases.U.S. Patent 89213932014
  125. WeinerD.M. DavisR.E. BrannM.R. AnderssonC.A. UldamA.K. Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases.U.S. Patent 95662712017
  126. WeinerDM DavisRE BrannMR AnderssonCA UldamAK Selective serotonin 2A/2C receptor inverse agonists as therapeutics for neurodegenerative diseases.U.S. Patent 100289442018
  127. ParkinsonA Combination of pimavanserin and cytochrome P450 modulators.U.S. Patent 105178602019
/content/journals/cpd/10.2174/0113816128344910241211112452
Loading
/content/journals/cpd/10.2174/0113816128344910241211112452
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antipsychotics; brain; CNS; neurodegenerative disorder; neurons; psychological symptoms
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test