Skip to content
2000
Volume 31, Issue 24
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Nanotechnology has emerged as a promising avenue for targeted drug delivery to the small intestine, offering precise control over drug release and enhanced therapeutic efficacy. This review discusses recent advancements and challenges in nanotechnology-based approaches for targeted drug delivery to the small intestine. The small intestine presents unique challenges for drug delivery, including enzymatic degradation, low permeability, and rapid transit time. Nanotechnology offers solutions to these challenges by providing carriers capable of protecting drugs from degradation, enhancing their absorption, and facilitating site-specific delivery. Various nanocarrier systems have been explored for targeted drug delivery to the small intestine, including liposomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles. These carriers can be functionalized with ligands targeting specific receptors or transporters expressed on the intestinal epithelium, enabling efficient uptake and intracellular delivery of drugs. Additionally, nanotechnology enables the controlled release of drugs, allowing for sustained and/or triggered release profiles tailored to the physiological conditions of the small intestine. This precise control over drug release can improve therapeutic outcomes while minimizing systemic side effects. Despite the significant progress in nanotechnology-based drug delivery to the small intestine, several challenges remain. These include achieving sufficient drug loading capacity, ensuring biocompatibility and safety of nanocarriers, and addressing regulatory concerns associated with their clinical translation. In conclusion, nanotechnology holds immense potential for targeted drug delivery to the small intestine, offering solutions to overcome the limitations of conventional drug delivery systems. Addressing the remaining challenges will be crucial for realizing the full therapeutic benefits of nanotechnology in treating diseases affecting the small intestine.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128347722250109042022
2025-02-10
2025-10-12
Loading full text...

Full text loading...

References

  1. FriendD.R. Drug delivery to the small intestine.Curr. Gastroenterol. Rep.20046537137610.1007/s11894‑004‑0052‑z 15341712
    [Google Scholar]
  2. Gastrointestinal-Targeted Drug Delivery Systems - CD Bioparticles2024Available from: https://www.cd-bioparticles.net/technology/organ/gastrointestinal-targeted-drug-delivery-systems
  3. HaleemA. JavaidM. SinghR.P. RabS. SumanR. Applications of nanotechnology in medical field: A brief review.Global Health J.202372707710.1016/j.glohj.2023.02.008
    [Google Scholar]
  4. LankalaC.R. YasirM. IshakA. MekhailM. KalyankarP. GuptaK. Application of nanotechnology for diagnosis and drug delivery in atherosclerosis: A new horizon of treatment.Curr. Probl. Cardiol.202348610167110.1016/j.cpcardiol.2023.101671 36828044
    [Google Scholar]
  5. MadniA. RehmanS. SultanH. Mechanistic approaches of internalization, subcellular trafficking, and cytotoxicity of nanoparticles for targeting the small intestine.AAPS PharmSciTech2021221310.1208/s12249‑020‑01873‑z 33221968
    [Google Scholar]
  6. GarbatiP. PiccoC. MagrassiR. Targeting the gut: A systematic review of specific drug nanocarriers.Pharmaceutics202416343110.3390/pharmaceutics16030431 38543324
    [Google Scholar]
  7. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  8. HuaS. MarksE. SchneiderJ.J. KeelyS. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue.Nanomedicine20151151117113210.1016/j.nano.2015.02.018 25784453
    [Google Scholar]
  9. CampbellJ. BerryJ. LiangY. Anatomy and Physiology of the Small Intestine.In: Shackelford's Surgery of the Alimentary Tract2 Volume Set (Eighth Edition). : Elsevier2019181774110.1016/B978‑0‑323‑40232‑3.00071‑6
    [Google Scholar]
  10. StillhartC. VučićevićK. AugustijnsP. BasitA.W. BatchelorH. FlanaganT.R. Impact of gastrointestinal physiology on drug absorption in special populations-An UNGAP review.Eur. J. Pharm. Sci.202014710528010.1016/j.ejps.2020.105280
    [Google Scholar]
  11. ChandraP. SachanN. PalD. Glycogen synthase kinase-3 (GSK-3) inhibitors as a new lead for treating breast and ovarian cancer.Curr. Drug Targets202122131548155410.2174/1389450122666210203183351 33538668
    [Google Scholar]
  12. BajpaiP. ChandraP. Relevance of conventional herbal remedies in the prevention and treatment of malignant tumors: Looking toward the future.Curr. Cancer Ther. Rev.202420122
    [Google Scholar]
  13. Small intestine: Anatomy, location and function.2024Available from: https://www.kenhub.com/en/library/anatomy/the-small-intestine
  14. RajG.M. RaveendranR. Introduction to basics of pharmacology and toxicology.Springer2019
    [Google Scholar]
  15. RastogiV. JainA. KumarP. A critical review on the role of nanotheranostics mediated approaches for targeting β amyloid in alzheimer’s.J. Drug Target.202331772574410.1080/1061186X.2023.2238250 37459647
    [Google Scholar]
  16. SabriM. AnjaniA.H. MustaffaQ.K. HamidM.F. AzmanM. SabriA.H. Intestinal absorption study: Challenges and absorption enhancement strategies in improving oral drug delivery.Pharmaceuticals202215897510.3390/ph15080975
    [Google Scholar]
  17. HelanderH.F. FändriksL. Surface area of the digestive tract - Revisited.Scand. J. Gastroenterol.201449668168910.3109/00365521.2014.898326 24694282
    [Google Scholar]
  18. MieleE. SpinelliG.P. MieleE. Nanoparticle-based delivery of small interfering RNA: Challenges for cancer therapy.Int. J. Nanomedicine2012736373657 22915840
    [Google Scholar]
  19. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.D.P. Acosta-TorresL.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnol.2018167113310.1186/s12951‑018‑0392‑8
    [Google Scholar]
  20. WangX.Q. ZhangQ. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs.Eur. J. Pharm. Biopharm.201282221922910.1016/j.ejpb.2012.07.014 22885229
    [Google Scholar]
  21. DateA.A. HanesJ. EnsignL.M. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art.J. Control. Release201624050452610.1016/j.jconrel.2016.06.016 27292178
    [Google Scholar]
  22. KumarP. PandeyS.N. AhmadF. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.202420676980010.2174/0115734137271865231105070727
    [Google Scholar]
  23. ZeeshanA. FarhanM. Nanomedicine and drug delivery: A mini review.Int. Nano Lett.201449417
    [Google Scholar]
  24. ChengX. XieQ. SunY. Advances in nanomaterial-based targeted drug delivery systems.Front. Bioeng. Biotechnol.202311117715110.3389/fbioe.2023.1177151 37122851
    [Google Scholar]
  25. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  26. Zielí NskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules202025163731
    [Google Scholar]
  27. KumarP. ChandraP. VermaN. Gold nanoparticles: An emerging novel technology for targeted delivery system for site-specific diseases.Curr. Drug Ther.20241911710.2174/0115748855314069240709091743
    [Google Scholar]
  28. García-PinelB. Porras-AlcaláC. Ortega-RodríguezA. SarabiaF. PradosJ. MelguizoC. Lipid-based nanoparticles: Application and recent advances in cancer treatment.Nanomaterials201994638
    [Google Scholar]
  29. OzpolatB. SoodA.K. Lopez-BeresteinG. Liposomal siRNA nanocarriers for cancer therapy.Adv. Drug Deliv. Rev.201466110116
    [Google Scholar]
  30. AshiqueS. BhowmickM. PalR. KhatoonH. KumarP. SharmaH. Multi drug resistance in colorectal cancer- Approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis202410100114
    [Google Scholar]
  31. OnteruS. Lipid-based nanoparticles and their recent advances.GSC Advanced Research and Reviews202418318218810.30574/gscarr.2024.18.3.0096
    [Google Scholar]
  32. MehtaM. BuiT.A. YangX. AksoyY. GoldysE.M. DengW. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development.ACS Materials Au20233660061910.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  33. AndonovaV. PenevaP. Characterization methods for solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC).Curr. Pharm. Des.201823436630664210.2174/1381612823666171115105721 29141534
    [Google Scholar]
  34. PaulW. SharmaC.P. Inorganic nanoparticles for targeted drug delivery.Biointegr Med Implant Mater202033337310.1533/9781845699802.2.204
    [Google Scholar]
  35. Silica Nanoparticles - nanoComposix2024Available from: https://nanocomposix.com/pages/silica-nanoparticles
  36. InaM. Dendrimer: A novel drug delivery system.J. Drug Deliv. Ther.2011201127074
    [Google Scholar]
  37. MittalP. SaharanA. VermaR. AltalbawyF.M.A. AlfaidiM.A. BatihaG.E.S. Dendrimers: A new race of pharmaceutical nanocarriers.Biomed Res. Int.2021884403010.1155/2021/8844030
    [Google Scholar]
  38. SultanaS. AlzahraniN. AlzahraniR. Stability issues and approaches to stabilised nanoparticles based drug delivery system.J. Drug Target.202028546848610.1080/1061186X.2020.1722137 31984810
    [Google Scholar]
  39. KumarR. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: A literature survey.J. Drug Deliv. Sci. Technol.20195310122110.1016/j.jddst.2019.101221
    [Google Scholar]
  40. AgrawalY.K. PatelV.R. Nanosuspension: An approach to enhance solubility of drugs.J. Adv. Pharm. Technol. Res.201122818710.4103/2231‑4040.82950 22171298
    [Google Scholar]
  41. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m 19206243
    [Google Scholar]
  42. LangerR. New methods of drug delivery.Science199024949761527153310.1126/science.2218494 2218494
    [Google Scholar]
  43. ThwalaL.N. NdlovuS.C. MpofuK.T. LugongoloM.Y. Mthunzi-KufaP. Nanotechnology-based diagnostics for diseases prevalent in developing countries: Current advances in point-of-care tests.Nanomaterials2023137124710.3390/nano13071247 37049340
    [Google Scholar]
  44. JainK.K. Nanodiagnostics: application of nanotechnology in molecular diagnostics.Expert Rev. Mol. Diagn.20033215316110.1586/14737159.3.2.153 12647993
    [Google Scholar]
  45. RakowskaP.D. RyadnovM.G. Nano-enabled biomarker discovery and detection.Biomarkers Med.20115338739610.2217/bmm.11.26 21657848
    [Google Scholar]
  46. LiottaL. LuchiniA. EspinaV. C-109 Nanotechnology.J. Acquir. Immune Defic. Syndr.201467Suppl. 35310.1097/01.qai.0000456085.52169.85
    [Google Scholar]
  47. LuchiniA. GehoD.H. BishopB. Smart hydrogel particles: biomarker harvesting: One-step affinity purification, size exclusion, and protection against degradation.Nano Lett.20088135036110.1021/nl072174l 18076201
    [Google Scholar]
  48. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑9 14678737
    [Google Scholar]
  49. YeoY. SvenssonC. WenH. JungH. LiX. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges.AAPS J.20151713271340
    [Google Scholar]
  50. CarvalhoF.C. BruschiM.L. EvangelistaR.C. GremiãoM.P.D. Mucoadhesive drug delivery systems.Braz. J. Pharm. Sci.201046111710.1590/S1984‑82502010000100002
    [Google Scholar]
  51. SmartJ. The basics and underlying mechanisms of mucoadhesion.Adv. Drug Deliv. Rev.200557111556156810.1016/j.addr.2005.07.001 16198441
    [Google Scholar]
  52. HäGerströmH EdsmanK StrømmeM. Low-frequency dielectric spectroscopy as a tool for studying the compatibility between pharmaceutical gels and mucous tissue.J. Pharm. Sci.20039291869188110.1002/jps.10451 12950005
    [Google Scholar]
  53. PhilipA. PhilipB. Colon targeted drug delivery systems: A review on primary and novel approaches.Oman Med. J.2010252707810.5001/omj.2010.24 22125706
    [Google Scholar]
  54. ChelakkotC. GhimJ. RyuS.H. Mechanisms regulating intestinal barrier integrity and its pathological implications.Exp. Mol. Med.20185081910.1038/s12276‑018‑0126‑x 30115904
    [Google Scholar]
  55. AmidonS. BrownJ.E. DaveV.S. Colon-targeted oral drug delivery systems: Design trends and approaches.AAPS PharmSciTech201516473174110.1208/s12249‑015‑0350‑9 26070545
    [Google Scholar]
  56. LeeS.H. BajracharyaR. MinJ.Y. HanJ.W. ParkB.J. HanH.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements.Pharmaceutics20201216810.3390/pharmaceutics12010068 31952340
    [Google Scholar]
  57. LemmensG. Van CampA. KourulaS. VanuytselT. AugustijnsP. Drug disposition in the lower gastrointestinal tract: Targeting and monitoring.Pharmaceutics202113216110.3390/pharmaceutics13020161 33530468
    [Google Scholar]
  58. AgrahariV. AgrahariV. MitraA.K. Nanocarrier fabrication and macromolecule drug delivery: Challenges and opportunities.Ther. Deliv.20167425727810.4155/tde‑2015‑0012 27010987
    [Google Scholar]
  59. ChengM. YangR. LiH. LuZ. JinY. FengJ. Research progress on the mechanism of nanoparticles crossing the intestinal epithelial cell membrane.Pharmaceutics20231571816
    [Google Scholar]
  60. MoorA.E. HarnikY. Ben-MosheS. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis.Cell2018175411561167.e1510.1016/j.cell.2018.08.063 30270040
    [Google Scholar]
  61. CaiY. QiJ. LuY. HeH. WuW. The in vivo fate of polymeric micelles.Adv. Drug Deliv. Rev.202218811446310.1016/j.addr.2022.114463 35905947
    [Google Scholar]
  62. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease.Int. J. Pharm. Investig.2024141117126
    [Google Scholar]
  63. ElkinS.R. LakodukA.M. SchmidS.L. Endocytic pathways and endosomal trafficking: A primer.Wien. Med. Wochenschr.20161667-819620410.1007/s10354‑016‑0432‑7 26861668
    [Google Scholar]
  64. KumariS. MgS. MayorS. Endocytosis unplugged: Multiple ways to enter the cell.Cell Res.201020325627510.1038/cr.2010.19 20125123
    [Google Scholar]
  65. TraubL.M. Endocytosis.Cell2001107327227410.1016/S0092‑8674(01)00554‑2
    [Google Scholar]
  66. ScherrmannJ.M. Drug delivery to brain via the blood–brain barrier.Vascul. Pharmacol.200238634935410.1016/S1537‑1891(02)00202‑1 12529929
    [Google Scholar]
  67. SharmaB LuhachK KulkarniGT In vitro and in vivo models of BBB to evaluate brain targeting drug delivery.Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates201853101
    [Google Scholar]
  68. TajesM. Ramos-FernándezE. Weng-JiangX. The blood-brain barrier: Structure, function and therapeutic approaches to cross it.Mol. Membr. Biol.201431515216710.3109/09687688.2014.937468 25046533
    [Google Scholar]
  69. KumarP. SharmaH. SinghA. Targeting the interplay of proteins through protacs for management cancer and associated disorders.Curr. Cancer Ther. Rev.20242011610.2174/0115733947304806240417092449
    [Google Scholar]
  70. HaripriyaaM. SuthindhiranK. Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery.Future J. Pharm. Sci.2023911311310.1186/s43094‑023‑00569‑y
    [Google Scholar]
  71. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.012
    [Google Scholar]
  72. ChengY.H. HeC. RiviereJ.E. Monteiro-RiviereN.A. LinZ. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach.ACS Nano20201433075309510.1021/acsnano.9b08142 32078303
    [Google Scholar]
  73. GuoS. LiangY. LiuL. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: Size, surface charge and pro-hydrophobics.J. Nanobiotechnol.20211913210.1186/s12951‑021‑00770‑2 33499885
    [Google Scholar]
  74. des RieuxA. FievezV. GarinotM. SchneiderY.J. PréatV. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach.J. Control. Release2006116112710.1016/j.jconrel.2006.08.013 17050027
    [Google Scholar]
  75. ParanjpeM. Müller-GoymannC.C. Nanoparticle-mediated pulmonary drug delivery: A review.Int. J. Mol. Sci.20141545852587310.3390/ijms15045852
    [Google Scholar]
  76. ZhangA. MengK. LiuY. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences.Adv. Colloid Interface Sci.202028410226110.1016/j.cis.2020.102261 32942181
    [Google Scholar]
  77. ZhaoZ. UkidveA. KrishnanV. MitragotriS. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers.Adv. Drug Deliv. Rev.201914332110.1016/j.addr.2019.01.002 30639257
    [Google Scholar]
  78. GaoD. XuH. PhilbertM.A. KopelmanR. Bioeliminable nanohydrogels for drug delivery.Nano Lett.20088103320332410.1021/nl8017274 18788823
    [Google Scholar]
  79. PoonW. ZhangY.N. OuyangB. Elimination pathways of nanoparticles.ACS Nano20191355785579810.1021/acsnano.9b01383 30990673
    [Google Scholar]
  80. VituloM. GnodiE. MeneveriR. BarisaniD. Interactions between nanoparticles and intestine.Int. J. Mol. Sci.2022238433910.3390/ijms23084339 35457155
    [Google Scholar]
  81. AmaraS. BourlieuC. HumbertL. RainteauD. CarrièreF. Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: Possible impact on oral lipid-based drug delivery systems.Adv. Drug Deliv. Rev.201914231510.1016/j.addr.2019.03.005 30926476
    [Google Scholar]
  82. CuevaC. Gil-SánchezI. TamargoA. Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota.Food Chem. Toxicol.201913211065710.1016/j.fct.2019.110657 31276746
    [Google Scholar]
  83. PereiraC. AraújoF. GranjaP. SantosH. SarmentoB. Targeting membrane transporters and receptors as a mean to optimize orally delivered biotechnological based drugs through nanoparticle delivery systems.Curr. Pharm. Biotechnol.201415765065810.2174/1389201015666140915152330 25219864
    [Google Scholar]
  84. DanyliukN. TomaszewskaJ. TatarchukT. Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications.J. Mol. Liq.202030911307710.1016/j.molliq.2020.113077
    [Google Scholar]
  85. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.3330
    [Google Scholar]
  86. JhaveriA. TorchilinV. Intracellular delivery of nanocarriers and targeting to subcellular organelles.Expert Opin. Drug Deliv.2016131497010.1517/17425247.2015.1086745 26358656
    [Google Scholar]
  87. FeiY. MaY. ZhangH. LiH. FengG. FangJ. Nanotechnology for research and treatment of the intestine.J. Nanobiotechnol.202220143010.1186/s12951‑022‑01517‑3
    [Google Scholar]
  88. SteinbachJ.M. SeoY.E. SaltzmanW.M. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.Acta Biomater.201630496110.1016/j.actbio.2015.11.029 26602822
    [Google Scholar]
  89. ZhangX. DongW. ChengH. ZhangM. KouY. GuanJ. Modulating intestinal mucus barrier for nanoparticles penetration by surfactants.AJPS201914554355110.1016/j.ajps.2018.09.002
    [Google Scholar]
  90. ChoiE.J. Nanotechnology in cancer therapy: Overview and applications.J. Pharm. Investig.2011412596510.4333/KPS.2011.41.2.059
    [Google Scholar]
  91. JainK.K. Advances in the field of nanooncology.BMC Med.2010818310.1186/1741‑7015‑8‑83 21144040
    [Google Scholar]
  92. SisayB. AbrhaS. YilmaZ. Cancer nanotheranostics: A new paradigm of simultaneous diagnosis and therapy.J. Drug Deliv. Ther.201445798610.22270/jddt.v4i5.967
    [Google Scholar]
  93. TyagiS. KumarA. ChourasiaA. SainiS. Revolutionizing cancer treatment: The role of nanotechnology in modern oncology.Int J Res Granthaalayah2023116122
    [Google Scholar]
  94. Hristova-PanushevaK. XenodochidisC. GeorgievaM. KrastevaN. Nanoparticle-mediated drug delivery systems for precision targeting in oncology.Pharmaceuticals202417667710.3390/ph17060677
    [Google Scholar]
  95. TiwariH. GuptaP. VermaA. SinghS. KumarR. GautamH.K. Advancing era and rising concerns in nanotechnology-based cancer treatment.J. Chem. Health Saf.202431215316110.1021/acs.chas.3c00104
    [Google Scholar]
  96. SinglaM Smriti GuptaS Unlocking the power of nanomedicine: the future of nutraceuticals in oncology treatment.Front. Nutr.202310125851610.3389/fnut.2023.1258516 38045808
    [Google Scholar]
  97. FiocchiC. Towards a ‘Cure’ for IBD.Dig. Dis.201230442843310.1159/000338148 22796811
    [Google Scholar]
  98. PithadiaA.B. JainS. Treatment of inflammatory bowel disease (IBD).Pharmacol. Rep.201163362964210.1016/S1734‑1140(11)70575‑8 21857074
    [Google Scholar]
  99. LinW.C. ChangC.W. ChenM.J. Challenges in the diagnosis of ulcerative colitis with concomitant bacterial infections and chronic infectious colitis.PLoS One20171212e018937710.1371/journal.pone.0189377 29211811
    [Google Scholar]
  100. AroraZ. ShenB. Biological therapy for ulcerative colitis.Gastroenterol. Rep. (Oxf.)20153210310910.1093/gastro/gou070 25344680
    [Google Scholar]
  101. TaghipourY.D. BahramsoltaniR. MarquesA.M. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: Drug delivery and pharmacological targets.Daru201826222923910.1007/s40199‑018‑0222‑4 30382546
    [Google Scholar]
  102. AnanthakrishnanA.N. DonaldsonT. LaschK. YajnikV. Management of inflammatory bowel disease in the elderly patient.Inflamm. Bowel Dis.201723688289310.1097/MIB.0000000000001099 28375885
    [Google Scholar]
  103. LarsonD.W. PembertonJ.H. Current concepts and controversies in surgery for IBD.Gastroenterol200412661611161910.1053/j.gastro.2004.03.063 15168371
    [Google Scholar]
  104. TriantafillidisJ. MerikasE. GeorgopoulosF. Current and emerging drugs for the treatment of inflammatory bowel disease.Drug Des. Devel. Ther.2011518521010.2147/DDDT.S11290 21552489
    [Google Scholar]
  105. ZahinN. AnwarR. TewariD. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery.Environ. Sci. Pollut. Res. Int.20202716191511916810.1007/s11356‑019‑05211‑0 31079299
    [Google Scholar]
  106. SiX.Y. MerlinD. XiaoB. Recent advances in orally administered cell-specific nanotherapeutics for inflammatory bowel disease.World J. Gastroenterol.201622347718772610.3748/wjg.v22.i34.7718 27678353
    [Google Scholar]
  107. ZhangM. MerlinD. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis.Inflamm. Bowel Dis.20182471401141510.1093/ibd/izy123 29788186
    [Google Scholar]
  108. LundquistP ArturssonP Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.Adv Drug Deliv Rev2016106Pt B256276
    [Google Scholar]
  109. YadavV.R. SureshS. DeviK. YadavS. Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-inflammatory activity for optimization of therapy of inflammatory bowel disease.J. Pharm. Pharmacol.200961331132110.1211/jpp.61.03.0005 19222903
    [Google Scholar]
  110. GaoC. LiuL. ZhouY. BianZ. WangS. WangY. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease.Chin. Med.20191412310.1186/s13020‑019‑0245‑x 31236131
    [Google Scholar]
  111. BadamaranahalliS.S. KopparamM. BhagawatiS.T. DurgS. Embelin lipid nanospheres for enhanced treatment of ulcerative colitis - Preparation, characterization and in vivo evaluation.Eur. J. Pharm. Sci.201576738210.1016/j.ejps.2015.05.003 25957524
    [Google Scholar]
  112. SchmidtC. LautenschlaegerC. CollnotE.M. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa-A first in vivo study in human patients.J. Control. Release2013165213914510.1016/j.jconrel.2012.10.019 23127508
    [Google Scholar]
  113. LuL. ChenG. QiuY. Nanoparticle-based oral delivery systems for colon targeting: Principles and design strategies.Sci. Bull. (Beijing)201661967068110.1007/s11434‑016‑1056‑4
    [Google Scholar]
  114. ZhangX. WuW. Ligand-mediated active targeting for enhanced oral absorption.Drug Discov. Today201419789890410.1016/j.drudis.2014.03.001 24631680
    [Google Scholar]
  115. LiuJ. LiM. LuoZ. DaiL. GuoX. CaiK. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy.Nano Today201715569010.1016/j.nantod.2017.06.010
    [Google Scholar]
  116. LautenschlägerC. SchmidtC. FischerD. StallmachA. Drug delivery strategies in the therapy of inflammatory bowel disease.Adv. Drug Deliv. Rev.201471587610.1016/j.addr.2013.10.001 24157534
    [Google Scholar]
  117. LiW. LiuD. ZhangH. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy.Acta Biomater.20174823824610.1016/j.actbio.2016.10.042 27815166
    [Google Scholar]
  118. OshiM.A. LeeJ. NaeemM. Curcumin nanocrystal/pH-responsive polyelectrolyte multilayer core-shell nanoparticles for inflammation-targeted alleviation of ulcerative colitis.Biomacromolecules20202193571358110.1021/acs.biomac.0c00589 32701266
    [Google Scholar]
  119. WeiX. LiaoJ. DavoudiZ. ZhengH. ChenJ. LiD. Folate receptor-targeted and GSH-responsive carboxymethyl chitosan nanoparticles containing covalently entrapped 6-Mercaptopurine for enhanced intracellular drug delivery in leukemia.Mar. Drugs20181611439
    [Google Scholar]
  120. FortinaP. KrickaL.J. GravesD.J. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer.Trends Biotechnol.200725414515210.1016/j.tibtech.2007.02.005 17316852
    [Google Scholar]
  121. LambeU. PM. BrarB. Nanodiagnostics: A new frontier for veterinary and medical sciences.J. Exp. Biol. Agric. Sci.201643S30732010.18006/2016.4(3S).307.320
    [Google Scholar]
  122. PrasadM. LambeU.P. BrarB. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world.Biomed. Pharmacother.2018971521153710.1016/j.biopha.2017.11.026 29793315
    [Google Scholar]
  123. BrarB. RanjanK. PalriaA. KumarR. GhoshM. SihagS. Nanotechnology in colorectal cancer for precision diagnosis and therapy.Front. Nanotechnol.2021369926610.3389/fnano.2021.699266
    [Google Scholar]
  124. PerezJ.M. SimeoneF.J. SaekiY. JosephsonL. WeisslederR. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media.J. Am. Chem. Soc.200312534101921019310.1021/ja036409g 12926940
    [Google Scholar]
  125. KoraniM. GhaffariS. AttarH. MashreghiM. JaafariM.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma.Nanomedicine20192010201310.1016/j.nano.2019.04.016 31103736
    [Google Scholar]
  126. AdiseshaiahP.P. ClogstonJ.D. McLelandC.B. Synergistic combination therapy with nanoliposomal C6-ceramide and vinblastine is associated with autophagy dysfunction in hepatocarcinoma and colorectal cancer models.Cancer Lett.2013337225426510.1016/j.canlet.2013.04.034 23664889
    [Google Scholar]
  127. BochicchioS. DapasB. RussoI. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer.Int. J. Pharm.2017525237738710.1016/j.ijpharm.2017.02.020 28189855
    [Google Scholar]
  128. AhmadJ. SinghalM. AminS. Bile salt stabilized vesicles (Bilosomes): A novel nano-pharmaceutical design for oral delivery of proteins and peptides.Curr. Pharm. Des.201723111575158810.2174/1381612823666170124111142 28120725
    [Google Scholar]
  129. GiriT.K. BhowmickS. MaityS. Entrapment of capsaicin loaded nanoliposome in pH responsive hydrogel beads for colonic delivery.J. Drug Deliv. Sci. Technol.20173941742210.1016/j.jddst.2017.05.002
    [Google Scholar]
  130. Momtazi-BorojeniA.A. Ebrahimi NikM. Reza JaafariM. BanachM. SahebkarA. Potential anti-tumor effect of a nanoliposomal antiPCSK9 vaccine in mice bearing colorectal cancer.Arch. Med. Sci.201915355956910.5114/aoms.2019.84732 31110520
    [Google Scholar]
  131. LinJ. YuY. ShigdarS. Enhanced antitumor efficacy and reduced systemic toxicity of sulfatide-containing nanoliposomal doxorubicin in a xenograft model of colorectal cancer.PLoS One2012711e4927710.1371/journal.pone.0049277 23145140
    [Google Scholar]
  132. TayelS.A. El-NabarawiM.A. TadrosM.I. Abd-ElsalamW.H. Duodenum-triggered delivery of pravastatin sodium: II. Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions.Drug Deliv.20162393266327810.3109/10717544.2016.1172367 27094305
    [Google Scholar]
  133. TiroshB. KhatibN. BarenholzY. NissanA. RubinsteinA. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa.Mol. Pharm.2009641083109110.1021/mp9000926 19603812
    [Google Scholar]
  134. Nanoliposome-mediated FL/TRAIL double-gene therapy for colon cancer: In vitro and in vivo evaluation.Cancer Letters201231516977
    [Google Scholar]
  135. SuciuM. IonescuC.M. CioritaA. Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements.Beilstein J. Nanotechnol.2020111092110910.3762/bjnano.11.94 32802712
    [Google Scholar]
  136. PalzerJ. EcksteinL. SlabuI. ReisenO. NeumannU.P. RoethA.A. Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies.Nanomaterials20211111301310.3390/nano11113013 34835777
    [Google Scholar]
  137. DabaghiM. RasaS.M.M. CirriE. Iron oxide nanoparticles carrying 5-fluorouracil in combination with magnetic hyperthermia induce thrombogenic collagen fibers, cellular stress, and immune responses in heterotopic human colon cancer in mice.Pharmaceutics20211310162510.3390/pharmaceutics13101625 34683917
    [Google Scholar]
  138. LiT. SmetM. DehaenW. XuH. Selenium–Platinum coordination dendrimers with controlled anti-cancer activity.ACS Appl. Mater. Interfaces2016863609361410.1021/acsami.5b07877 26390019
    [Google Scholar]
  139. LiJ. YuF. ChenY. OupickýD. Polymeric drugs: Advances in the development of pharmacologically active polymers.J. Control. Release201521936938210.1016/j.jconrel.2015.09.043 26410809
    [Google Scholar]
  140. GogoiP. KaurG. SinghN.K. Nanotechnology for colorectal cancer detection and treatment.World Journal of Gastroenterology202228466497651110.3748/wjg.v28.i46.6497
    [Google Scholar]
  141. RaiD.B. MedicherlaK. PoojaD. KulhariH. Dendrimer-mediated delivery of anticancer drugs for colon cancer treatment.Pharmaceutics202315380110.3390/pharmaceutics15030801 36986662
    [Google Scholar]
  142. PatelP. GaralaK. SinghS. PrajapatiB.G. ChittasuphoC. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy.Pharmaceuticals202417332910.3390/ph17030329 38543115
    [Google Scholar]
  143. DalvandS. NiksimaS.H. MeshkaniR. Prevalence of metabolic syndrome among iranian population: A systematic review and meta-analysis.Iran. J. Public Health2017464456467 28540261
    [Google Scholar]
  144. Ebrahimi-MameghaniM. Asghari-JafarabadiM. RezazadehK. TCF7L2-rs7903146 polymorphism modulates the effect of artichoke leaf extract supplementation on insulin resistance in metabolic syndrome: A randomized, double-blind, placebo-controlled trial.J. Integr. Med.201816532933410.1016/j.joim.2018.05.006 30177026
    [Google Scholar]
  145. KaurJ. A comprehensive review on metabolic syndrome.Cardiol. Res. Pract.2014201494316210.1155/2014/943162
    [Google Scholar]
  146. KesharwaniP. GorainB. LowS.Y. Nanotechnology based approaches for anti-diabetic drugs delivery.Diabetes Res. Clin. Pract.2018136527710.1016/j.diabres.2017.11.018 29196152
    [Google Scholar]
  147. SubramaniK. PathakS. HosseinkhaniH. Recent trends in diabetes treatment using nanotechnology.Dig. J. Nanomater. Biostruct.2012718595
    [Google Scholar]
  148. PonnappanN. ChughA. Nanoparticle-mediated delivery of therapeutic drugs.Pharmaceut. Med.201529315516710.1007/s40290‑015‑0096‑4
    [Google Scholar]
  149. ZhangX. QiJ. LuY. HuX. HeW. WuW. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: Effect of formulation variables, intracellular trafficking, and cytotoxicity.Nanoscale Res. Lett.20149118510.1186/1556‑276X‑9‑185 24739082
    [Google Scholar]
  150. WuZ.H. PingQ.N. WeiY. LaiJ.M. Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice.Acta Pharmacol. Sin.2004257966972 15210073
    [Google Scholar]
  151. LeeY.S. KimS.H. YukH.J. LeeG.J. KimD.S. Tetragonia tetragonoides (Pall.) Kuntze (New Zealand Spinach) prevents obesity and hyperuricemia in high-fat diet-induced obese mice.Nutrients2018108108710.3390/nu10081087 30110943
    [Google Scholar]
  152. de Freitas JuniorL.M. de Almeida EBJr Medicinal plants for the treatment of obesity: Ethnopharmacological approach and chemical and biological studies.Am. J. Transl. Res.20179520502064 28559960
    [Google Scholar]
  153. GhanbarzadehB. BabazadehA. HamishehkarH. Nano-phytosome as a potential food-grade delivery system.Food Biosci.20161512613510.1016/j.fbio.2016.07.006
    [Google Scholar]
  154. ChiC. ZhangC. LiuY. NieH. ZhouJ. DingY. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy.Eur. J. Pharm. Sci.202014410521210.1016/j.ejps.2020.105212 31923602
    [Google Scholar]
  155. SinghB.P. VijS. HatiS. Functional significance of bioactive peptides derived from soybean.Peptides20145417117910.1016/j.peptides.2014.01.022
    [Google Scholar]
  156. PathakR. BhandariM. MishraR. KaurV. SharmaS. SaxenaA. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors.Afr J Biol Sci202469
    [Google Scholar]
  157. KaushikM. KumarS. SinghM. SharmaH. BhowmickM. BhowmickP. Bio-inspired Nanomaterials in Cancer Theranostics.Springer20249512310.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  158. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑4 22407288
    [Google Scholar]
  159. RoguedaP. Novel hydrofluoroalkane suspension formulations for respiratory drug delivery.Expert Opin. Drug Deliv.20052462563810.1517/17425247.2.4.625 16296790
    [Google Scholar]
  160. WuL. ZhangJ. WatanabeW. Physical and chemical stability of drug nanoparticles.Adv. Drug Deliv. Rev.201163645646910.1016/j.addr.2011.02.001 21315781
    [Google Scholar]
  161. RabinowB.E. Nanosuspensions in drug delivery.Nat. Rev. Drug Discov.20043978579610.1038/nrd1494 15340388
    [Google Scholar]
  162. VerweyE.J.W. Theory of the stability of lyophobic colloids.J. Phys. Colloid Chem.194751363163610.1021/j150453a001 20238663
    [Google Scholar]
  163. DerjaguinB. LandauL. DerjaguinB. LandauL. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes.Progress in Surface Science1993431-4305910.1016/0079‑6816(93)90013‑L
    [Google Scholar]
  164. WilliamsD.F. On the mechanisms of biocompatibility.Biomaterials200829202941295310.1016/j.biomaterials.2008.04.023 18440630
    [Google Scholar]
  165. SzetoG.L. LavikE.B. Materials design at the interface of nanoparticles and innate immunity.J. Mater. Chem. B Mater. Biol. Med.2016491610161810.1039/C5TB01825K 27453783
    [Google Scholar]
  166. KimJ. KimH.N. LangY. PanditA. Biologically inspired micro- and nanoengineering systems for functional and complex tissues.Tissue Eng. Part A20142015-162127213010.1089/ten.tea.2013.0707 24617725
    [Google Scholar]
  167. Najafi-HajivarS. Zakeri-MilaniP. MohammadiH. Overview on experimental models of interactions between nanoparticles and the immune system.Biomed. Pharmacother.2016831365137810.1016/j.biopha.2016.08.060 27580456
    [Google Scholar]
  168. ZolnikB.S. González-FernándezÁ. SadriehN. DobrovolskaiaM.A. Nanoparticles and the immune system.Endocrinology2010151245846510.1210/en.2009‑1082 20016026
    [Google Scholar]
  169. Rodríguez-IbarraC. Déciga-AlcarazA. Ispanixtlahuatl-MerázO. Medina-ReyesE.I. Delgado-BuenrostroN.L. ChirinoY.I. International landscape of limits and recommendations for occupational exposure to engineered nanomaterials.Toxicol. Lett.202032211111910.1016/j.toxlet.2020.01.016 31981686
    [Google Scholar]
  170. LiX. WangL. FanY. FengQ. CuiF. Biocompatibility and Toxicity of Nanoparticles and Nanotubes.J. Nanomater.20122012154838910.1155/2012/548389
    [Google Scholar]
  171. CooperK.P. WachterR.F. Nanomanufacturing: Path to implementing nanotechnology.Int. J. Nanomanuf.201395/654055410.1504/IJNM.2013.057598
    [Google Scholar]
  172. CooperK.P. Controlling high-throughput manufacturing at the nano-scale.Instrum Metrol Stand Nanomanuf Opt Semicond VII2013881988190210.1117/12.2026714
    [Google Scholar]
  173. DesaiN. Challenges in Development of Nanoparticle-Based Therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑4
    [Google Scholar]
  174. ZhuJ. XueJ. GuoZ. MarchantR.E. Vesicle size and stability of biomimetic liposomes from 3′-sulfo-Lewis a (SuLea) containing glycolipids.Colloids and Surfaces B Biointerfaces2007582242249
    [Google Scholar]
  175. AllenC. Dos SantosN. GallagherR. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol).Biosci. Rep.200222222525010.1023/A:1020186505848 12428902
    [Google Scholar]
  176. Rovira-BruM. ThompsonD.H. SzleiferI. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures.Biophys. J.20028352419243910.1016/S0006‑3495(02)75255‑7 12414678
    [Google Scholar]
  177. Handbook of Clinical Nanomedicine.Jenny Stanford Publishing2016
    [Google Scholar]
  178. BawaR. Regulating nanomedicine - Can the FDA handle it?Curr. Drug Deliv.20118322723410.2174/156720111795256156 21291376
    [Google Scholar]
  179. ParadiseJ. Regulating nanomedicine at the food and drug administration.AMA J. Ethics2019214E347E35510.1001/amajethics.2019.347 31012422
    [Google Scholar]
  180. KrollA. PillukatM.H. HahnD. SchnekenburgerJ. Current in vitro methods in nanoparticle risk assessment: Limitations and challenges.Eur. J. Pharm. Biopharm.200972237037710.1016/j.ejpb.2008.08.009 18775492
    [Google Scholar]
  181. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w
    [Google Scholar]
  182. MayM. Why drug delivery is the key to new medicines.Nat. Med.20222861100110210.1038/s41591‑022‑01826‑y 35668179
    [Google Scholar]
  183. De JongW.H. GeertsmaR.E. BorchardG. Regulatory safety evaluation of nanomedical products: Key issues to refine.Drug Deliv. Transl. Res.20221292042204710.1007/s13346‑022‑01208‑4 35908133
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128347722250109042022
Loading
/content/journals/cpd/10.2174/0113816128347722250109042022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test