Skip to content
2000
Volume 31, Issue 24
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The human skin, being the largest organ, provides defense against bacteria, toxins, and ultraviolet radiation. The skin may experience changes like dryness, photodamage, oxidative damage, and inflammation. This review explores sources of fatty acids and how they can prevent skin damage, with the goal of determining their potential for preventing skin aging. The role and significance of various mechanistic pathways and molecular targets involved in skin aging are highlighted. By using current research findings, this review contributes to a comprehensive understanding of how fatty acids may serve as a proactive approach to promoting youthful skin and mitigating the signs of skin aging. In addition to treating specific skin conditions, nutraceuticals offer immense potential to minimize, postpone, or prevent premature skin aging. The substances that are most frequently employed include carotenoids, polyunsaturated fatty acids, plant polyphenols, bioactive peptides, oligosaccharides, and vitamins. Numerous human trials have demonstrated the impact of supplementing with these items on indicators of aging. The most pertinent clinical and non-clinical investigations are assessed in this review. Based on the comprehensive understanding of the significant role of fatty acids in addressing skin aging, this review may open doors and offer avenues for future explorations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128357677250116115754
2025-02-06
2025-10-12
Loading full text...

Full text loading...

References

  1. SharmaA. KuhadA. BhandariR. Novel nanotechnological approaches for treatment of skin-aging.J. Tissue Viability202231337438610.1016/j.jtv.2022.04.01035550314
    [Google Scholar]
  2. Ramos-e-SilvaM. CelemL.R. Ramos-e-SilvaS. Fucci-da-CostaA.P. Anti-aging cosmetics: Facts and controversies.Clin. Dermatol.201331675075810.1016/j.clindermatol.2013.05.01324160281
    [Google Scholar]
  3. MohiuddinA.K. Skin aging & modern age anti-aging strategies.Int. J. Clin. Dermatol. Res.2019720924010.19070/2332‑2977‑1900052
    [Google Scholar]
  4. GancevicieneR. LiakouA.I. TheodoridisA. MakrantonakiE. ZouboulisC.C. Skin anti-aging strategies.Dermatoendocrinol20124330831910.4161/derm.2280423467476
    [Google Scholar]
  5. HelfrichY.R. SachsD.L. VoorheesJ.J. Overview of skin aging and photoaging.Dermatol. Nurs.200820317718318649702
    [Google Scholar]
  6. BernsteinE.F. ChenY.Q. KoppJ.B. FisherL. BrownD.B. HahnP.J. RobeyF.A. LakkakorpiJ. UittoJ. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy.J. Am. Acad. Dermatol.1996342 Pt 120921810.1016/S0190‑9622(96)80114‑98642084
    [Google Scholar]
  7. JeongJ.H. KimM.B. KimC. HwangJ.K. Inhibitory effect of vitamin C on intrinsic aging in human dermal fibroblasts and hairless mice.Food Sci. Biotechnol.201727255556410.1007/s10068‑017‑0252‑630263780
    [Google Scholar]
  8. VierkötterA. SchikowskiT. RanftU. SugiriD. MatsuiM. KrämerU. KrutmannJ. Airborne particle exposure and extrinsic skin aging.J. Invest. Dermatol.2010130122719272610.1038/jid.2010.20420664556
    [Google Scholar]
  9. GalanakisC.M. Nutraceutical and functional food components: Effects of innovative processing techniques.Academic Press2021
    [Google Scholar]
  10. TaeymansJ. ClarysP. BarelA.O. Use of food supplements as nutricosmetics in health and fitness.Handbook of cosmetic science and technology4th edCRC Press2014583596
    [Google Scholar]
  11. KimS.K. Marine cosmeceuticals.J. Cosmet. Dermatol.2014131566710.1111/jocd.1205724641607
    [Google Scholar]
  12. BarbaC. AlonsoC. MartíM. CarrerV. YousefI. CoderchL. Selective modification of skin barrier lipids.J. Pharm. Biomed. Anal.20191729410210.1016/j.jpba.2019.04.04031029804
    [Google Scholar]
  13. LópezO. CóceraM. WertzP.W. López-IglesiasC. de la MazaA. New arrangement of proteins and lipids in the stratum corneum cornified envelope.Biochim. Biophys. Acta Biomembr.20071768352152910.1016/j.bbamem.2006.11.02317292323
    [Google Scholar]
  14. IachinaI. AntonescuI.E. DreierJ. SørensenJ.A. BrewerJ.R. The nanoscopic molecular pathway through human skin.Biochim. Biophys. Acta, Gen. Subj.2019186371226123310.1016/j.bbagen.2019.04.01230998962
    [Google Scholar]
  15. KhanAD AlamMN Cosmetics and their associated adverse effects: A review.J. Appl. Pharm. Sci. Res.20191610.31069/japsr.v2i1.1
    [Google Scholar]
  16. BurgerP. LandreauA. AzoulayS. MichelT. FernandezX. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners.Cosmetics2016343610.3390/cosmetics3040036
    [Google Scholar]
  17. GrimesP. NordlundJ.J. PandyaA.G. TaylorS. RendonM. OrtonneJ.P. Increasing our understanding of pigmentary disorders.J. Am. Acad. Dermatol.2006545Suppl. 2S255S26110.1016/j.jaad.2005.12.04216631966
    [Google Scholar]
  18. ZhangM. HwangE. LinP. GaoW. NgoH.T.T. YiT.H. Prunella vulgaris L. exerts a protective effect against extrinsic aging through NF-κB, MAPKs, AP-1, and TGF-β/Smad signaling pathways in UVB-aged normal human dermal fibroblasts.Rejuvenation Res.201821431332210.1089/rej.2017.197129378470
    [Google Scholar]
  19. LuZ. XuS. ERK1/2 MAP kinases in cell survival and apoptosis.IUBMB Life2006581162163110.1080/1521654060095743817085381
    [Google Scholar]
  20. KimE.K. ChoiE.J. Compromised MAPK signaling in human diseases: An update.Arch. Toxicol.201589686788210.1007/s00204‑015‑1472‑225690731
    [Google Scholar]
  21. ArthurJ.S.C. LeyS.C. Mitogen-activated protein kinases in innate immunity.Nat. Rev. Immunol.201313967969210.1038/nri349523954936
    [Google Scholar]
  22. GhersetichI. TroianoM. De GiorgiV. LottiT. Receptors in skin ageing and antiageing agents.Dermatol. Clin.200725465566210.1016/j.det.2007.06.01817903624
    [Google Scholar]
  23. GreenL.J. McCormickA. WeinsteinG.D. Photoaging and the skin.Dermatol. Clin.19931119710510.1016/S0733‑8635(18)30286‑98435921
    [Google Scholar]
  24. Soares-SilvaM. DinizF.F. GomesG.N. BahiaD. The mitogen-activated protein kinase (MAPK) pathway: Role in immune evasion by trypanosomatids.Front. Microbiol.2016718310.3389/fmicb.2016.0018326941717
    [Google Scholar]
  25. SonY. CheongY.K. KimN.H. ChungH.T. KangD.G. PaeH.O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways?J. Signal Transduct.2011201111610.1155/2011/79263921637379
    [Google Scholar]
  26. ThannickalV.J. FanburgB.L. Reactive oxygen species in cell signaling.Am. J. Physiol. Lung Cell. Mol. Physiol.20002796L1005L102810.1152/ajplung.2000.279.6.L100511076791
    [Google Scholar]
  27. ChenT. HouH. Protective effect of gelatin polypeptides from Pacific cod ( Gadus macrocephalus ) against UV irradiation-induced damages by inhibiting inflammation and improving transforming growth factor-β/Smad signaling pathway.J. Photochem. Photobiol. B201616263364010.1016/j.jphotobiol.2016.07.03827491029
    [Google Scholar]
  28. SteenvoordenD.P.T. Beijersbergen van HenegouwenG.M.J. The use of endogenous antioxidants to improve photoprotection.J. Photochem. Photobiol. B1997411-211010.1016/S1011‑1344(97)00081‑X9440308
    [Google Scholar]
  29. KongS.Z. ChenH.M. YuX.T. ZhangX. FengX.X. KangX.H. LiW.J. HuangN. LuoH. SuZ.R. The protective effect of 18β-Glycyrrhetinic acid against UV irradiation induced photoaging in mice.Exp. Gerontol.20156114715510.1016/j.exger.2014.12.00825498537
    [Google Scholar]
  30. ParkS.H. JeongS.H. KimS.W. β-Lapachone regulates the transforming growth factor-β–Smad signaling pathway associated with collagen biosynthesis in human dermal fibroblasts.Biol. Pharm. Bull.201639452453110.1248/bpb.b15‑0073026804133
    [Google Scholar]
  31. FitzpatrickR.E. RostanE.F. Reversal of photodamage with topical growth factors: A pilot study.J. Cosmet. Laser Ther.200351253410.1080/1476417031000081712745596
    [Google Scholar]
  32. ParkB. HwangE. SeoS.A. ChoJ.G. YangJ.E. YiT.H. Eucalyptus globulus extract protects against UVB-induced photoaging by enhancing collagen synthesis via regulation of TGF-β/Smad signals and attenuation of AP-1.Arch. Biochem. Biophys.2018637313910.1016/j.abb.2017.11.00729154781
    [Google Scholar]
  33. QuanT. HeT. KangS. VoorheesJ.J. FisherG.J. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling.Am. J. Pathol.2004165374175110.1016/S0002‑9440(10)63337‑815331399
    [Google Scholar]
  34. TanakaK. AsamitsuK. UranishiH. IddamalgodaA. ItoK. KojimaH. OkamotoT. Protecting skin photoaging by NF-kappaB inhibitor.Curr. Drug Metab.201011543143510.2174/13892001079152605120540695
    [Google Scholar]
  35. BarrosoM. KaoD. BlomH.J. Tavares de AlmeidaI. CastroR. LoscalzoJ. HandyD.E. S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation.Biochim. Biophys. Acta Mol. Basis Dis.201618621829210.1016/j.bbadis.2015.10.01926506125
    [Google Scholar]
  36. MadonnaR. De CaterinaR. Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease.Vascul. Pharmacol.2012571414710.1016/j.vph.2012.02.00522366375
    [Google Scholar]
  37. KuoY.H. ChenC.W. ChuY. LinP. ChiangH.M. In vitro and in vivo studies on protective action of N-phenethyl caffeamide against photodamage of skin.PLoS One2015109e013677710.1371/journal.pone.013677726367260
    [Google Scholar]
  38. DivyaS.P. WangX. PratheeshkumarP. SonY.O. RoyR.V. KimD. DaiJ. HitronJ.A. WangL. AshaP. ShiX. ZhangZ. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin.Toxicol. Appl. Pharmacol.20152841929910.1016/j.taap.2015.02.00325680589
    [Google Scholar]
  39. AfaqF. AdhamiV.M. AhmadN. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice part of this work was conducted at the department of dermatology, case western reserve university and the research institute of university hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106.Toxicol. Appl. Pharmacol.20031861283710.1016/S0041‑008X(02)00014‑512583990
    [Google Scholar]
  40. IghodaroO.M. AkinloyeO.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid.Alex. J. Med.201854428729310.1016/j.ajme.2017.09.001
    [Google Scholar]
  41. RahmanK. Studies on free radicals, antioxidants, and co-factors.Clin. Interv. Aging20072221923618044138
    [Google Scholar]
  42. YounusH. Therapeutic potentials of superoxide dismutase.Int. J. Health Sci.2018123889329896077
    [Google Scholar]
  43. ScibiorD. CzeczotH. Catalase – Structure, properties, functions.Postepy Hig. Med. Dosw.200660170180
    [Google Scholar]
  44. AdachiS. NaganoS. IshimoriK. WatanabeY. MorishimaI. EgawaT. KitagawaT. MakinoR. Roles of proximal ligand in heme proteins: replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase.Biochemistry199332124125210.1021/bi00052a0318380334
    [Google Scholar]
  45. LiangY. SuW. WangF. Skin ageing: A progressive, multi-factorial condition demanding an integrated, multilayer-targeted remedy.Clin. Cosmet. Investig. Dermatol.2023161215122910.2147/CCID.S40876537192990
    [Google Scholar]
  46. WollinaU. LottiT. VojvodicA. NowakA. Dermatoporosis–the chronic cutaneous fragility syndrome.Open Access Maced. J. Med. Sci.20197183046304910.3889/oamjms.2019.76631850120
    [Google Scholar]
  47. PanduranganA.K. SaadatdoustZ. Dietary cocoa protects against colitis-associated cancer by activating the N rf2/K eap1 pathway.Biofactors20154111410.1002/biof.119525545372
    [Google Scholar]
  48. SchäferM. WernerS. Nrf2—A regulator of keratinocyte redox signaling.Free Radic. Biol. Med.201588Pt B24325210.1016/j.freeradbiomed.2015.04.01825912479
    [Google Scholar]
  49. CircuM.L. AwT.Y. Reactive oxygen species, cellular redox systems, and apoptosis.Free Radic. Biol. Med.201048674976210.1016/j.freeradbiomed.2009.12.02220045723
    [Google Scholar]
  50. Ben Yehuda GreenwaldM. Frušić-ZlotkinM. SorokaY. Ben SassonS. BittonR. Bianco-PeledH. KohenR. Curcumin protects skin against UVB-induced cytotoxicity via the Keap1-Nrf2 pathway: The use of a microemulsion delivery system.Oxid. Med. Cell. Longev.201720171520547110.1155/2017/520547128757910
    [Google Scholar]
  51. Dinkova-KostovaA.T. TalalayP. Direct and indirect antioxidant properties of inducers of cytoprotective proteins.Mol. Nutr. Food Res.200852S1S128S13810.1002/mnfr.20070019518327872
    [Google Scholar]
  52. QuanT. XiangY. LiuY. QinZ. YangY. Bou-GhariosG. VoorheesJ.J. DlugoszA.A. FisherG.J. Dermal fibroblast CCN1 expression in mice recapitulates human skin dermal aging.J. Invest. Dermatol.202114141007101610.1016/j.jid.2020.07.01932800875
    [Google Scholar]
  53. ChenC.C. MoF.E. LauL.F. The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts.J. Biol. Chem.200127650473294733710.1074/jbc.M10766620011584015
    [Google Scholar]
  54. SchmitzC.R.R. MaurmannR.M. GumaF.T.C.R. BauerM.E. Barbé- TuanaF.M. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging.Front. Immunol.202314113265310.3389/fimmu.2023.113265336926349
    [Google Scholar]
  55. GirishK.S. KemparajuK. The magic glue hyaluronan and its eraser hyaluronidase: A biological overview.Life Sci.200780211921194310.1016/j.lfs.2007.02.03717408700
    [Google Scholar]
  56. AfifyA.M. SternM. GuntenhönerM. SternR. Purification and characterization of human serum hyaluronidase.Arch. Biochem. Biophys.1993305243444110.1006/abbi.1993.14438373180
    [Google Scholar]
  57. AntonicelliF. BellonG. DebelleL. HornebeckW. Elastin-elastases and inflamm-aging.Curr. Top. Dev. Biol.2007799915510.1016/S0070‑2153(06)79005‑617498549
    [Google Scholar]
  58. AilawadiG. EliasonJ.L. UpchurchG.R.Jr Current concepts in the pathogenesis of abdominal aortic aneurysm.J. Vasc. Surg.200338358458810.1016/S0741‑5214(03)00324‑012947280
    [Google Scholar]
  59. PapaemmanouilC.D. Peña-GarcíaJ. Banegas-LunaA.J. KostagianniA.D. GerothanassisI.P. Pérez-SánchezH. TzakosA.G. ANTIAGE-DB: A database and server for the prediction of anti-aging compounds targeting elastase, hyaluronidase, and tyrosinase.Antioxidants20221111226810.3390/antiox1111226836421454
    [Google Scholar]
  60. ShinS.H. LeeY.H. RhoN.K. ParkK.Y. Skin aging from mechanisms to interventions: Focusing on dermal aging.Front. Physiol.202314119527210.3389/fphys.2023.119527237234413
    [Google Scholar]
  61. ZouboulisC.C. BoschnakowA. Chronological ageing and photoageing of the human sebaceous gland.Clin. Exp. Dermatol.200126760060710.1046/j.1365‑2230.2001.00894.x11696064
    [Google Scholar]
  62. BurdgeG.C. CalderP.C. Introduction to fatty acids and lipids.World Rev. Nutr. Diet.201511211610.1159/00036542325471798
    [Google Scholar]
  63. PigeoletE. CorbisierP. HoubionA. LambertD. MichielsC. RaesM. ZacharyM.D. RemacleJ. Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals.Mech. Ageing Dev.199051328329710.1016/0047‑6374(90)90078‑T2308398
    [Google Scholar]
  64. LeeD.H. OhJ.H. ChungJ.H. Glycosaminoglycan and proteoglycan in skin aging.J. Dermatol. Sci.201683317418110.1016/j.jdermsci.2016.05.01627378089
    [Google Scholar]
  65. AnanthapadmanabhanK.P. MukherjeeS. ChandarP. Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing.Int. J. Cosmet. Sci.201335433734510.1111/ics.1204223363400
    [Google Scholar]
  66. RustanAC DrevonCA Fatty acids: Structures and properties.Encyclopedia of life sciencesWiley-Blackwell20051710.1038/npg.els.0003894
    [Google Scholar]
  67. WangX. WuJ. Modulating effect of fatty acids and sterols on skin aging.J. Funct. Foods20195713514010.1016/j.jff.2019.04.011
    [Google Scholar]
  68. AkamatsuH. NiwaY. MatsunagaK. Effect of palmitic acid on neutrophil functions in vitro.Int. J. Dermatol.2001401064064310.1046/j.1365‑4362.2001.01292.x11737424
    [Google Scholar]
  69. RennertB. MelzigM.F. Free fatty acids inhibit the activity of Clostridium histolyticum collagenase and human neutrophil elastase.Planta Med.200268976776910.1055/s‑2002‑3441112357383
    [Google Scholar]
  70. DeckelbaumR.J. TorrejonC. The omega-3 fatty acid nutritional landscape: Health benefits and sources.J. Nutr.20121423587S591S10.3945/jn.111.14808022323763
    [Google Scholar]
  71. OsterR.T. TishinskyJ.M. YuanZ. RobinsonL.E. Docosahexaenoic acid increases cellular adiponectin mRNA and secreted adiponectin protein, as well as PPARγ mRNA, in 3T3-L1 adipocytes.Appl. Physiol. Nutr. Metab.201035678378910.1139/H10‑07621164549
    [Google Scholar]
  72. EliasP.M. BrownB.E. ZibohV.A. The permeability barrier in essential fatty acid deficiency: Evidence for a direct role for linoleic acid in barrier function.J. Invest. Dermatol.198074423023310.1111/1523‑1747.ep125417757373078
    [Google Scholar]
  73. FeingoldK.R. The outer frontier: The importance of lipid metabolism in the skin.J. Lipid Res.200950SupplS417S42210.1194/jlr.R800039‑JLR20018980941
    [Google Scholar]
  74. FliegerJ. Raszewska-FamielecM. Radzikowska-BüchnerE. FliegerW. Skin protection by carotenoid pigments.Int. J. Mol. Sci.2024253143110.3390/ijms2503143138338710
    [Google Scholar]
  75. BalićA. MokosM. Do we utilize our knowledge of the skin protective effects of carotenoids enough?Antioxidants20198825910.3390/antiox808025931370257
    [Google Scholar]
  76. DarvinM.E. LademannJ. von HagenJ. LohanS.B. KolmarH. MeinkeM.C. JungS. Carotenoids in human skin in vivo: Antioxidant and photo-protectant role against external and internal stressors.Antioxidants2022118145110.3390/antiox1108145135892651
    [Google Scholar]
  77. ZerresS. StahlW. Carotenoids in human skin.Biochim. Biophys. Acta Mol. Cell Biol. Lipids202018651115858810.1016/j.bbalip.2019.15858831838152
    [Google Scholar]
  78. BakacE.R. PercinE. Gunes-BayirA. DadakA. A narrative review: The effect and importance of carotenoids on aging and aging-related diseases.Int. J. Mol. Sci.202324201519910.3390/ijms24201519937894880
    [Google Scholar]
  79. DanbyS.G. AlEneziT. SultanA. LavenderT. ChittockJ. BrownK. CorkM.J. Effect of olive and sunflower seed oil on the adult skin barrier: implications for neonatal skin care.Pediatr. Dermatol.2013301425010.1111/j.1525‑1470.2012.01865.x22995032
    [Google Scholar]
  80. AdenikeA.A. AdegbolaP. FadahunsiO.S. Antioxidant property and GCMS profile of oil extracted from Cocos nucifera using a fermentation method. BioTechnologia.J. Biotechnol. Comput. Biol. Bionanotechnol.2019100410.5114/bta.2019.90236
    [Google Scholar]
  81. SimõesT. FerreiraJ. LemosM.F.L. AugustoA. FélixR. SilvaS.F.J. Ferreira-DiasS. TecelãoC. Argan oil as a rich source of linoleic fatty acid for dietetic structured lipids production.Life20211111111410.3390/life1111111434832990
    [Google Scholar]
  82. JeongE.H. YangH. KimJ.E. LeeK.W. Safflower seed oil and its active compound acacetin inhibit UVB-induced skin photoaging.J. Microbiol. Biotechnol.202030101567157310.4014/jmb.2003.0306432522955
    [Google Scholar]
  83. de OliveiraA.P. FrancoE.S. Rodrigues BarretoR. CordeiroD.P. de MeloR.G. de AquinoC.M.F. e SilvaA.A.R. de MedeirosP.L. da SilvaT.G. GóesA.J.S. MaiaM.B.S. Effect of semisolid formulation of persea americana mill (avocado) oil on wound healing in rats.Evid. Based Complement. Alternat. Med.2013201311810.1155/2013/47238223573130
    [Google Scholar]
  84. PardoJ.E. RonceroJ.M. Álvarez-OrtíM. Pardo-GiménezA. GómezR. RabadánA. Virgin almond oil: Extraction methods and composition.Grasas Aceites2016673e14310.3989/gya.0993152
    [Google Scholar]
  85. MiwaT.K. Jojoba oil wax esters and derived fatty acids and alcohols: Gas chromatographic analyses.J. Am. Oil Chem. Soc.197148625926410.1007/BF02638458
    [Google Scholar]
  86. Fernández-AcostaK. SalmeronI. Chavez-FloresD. Perez-ReyesI. RamosV. NgadiM. KwofieE.M. Perez-VegaS. Evaluation of different variables on the supercritical CO2 extraction of oat (Avena sativa L.) oil; Main fatty acids, polyphenols, and antioxidant content.J. Cereal Sci.20198811812410.1016/j.jcs.2019.05.017
    [Google Scholar]
  87. IlyasoğluH. Characterization of rosehip (Rosa canina L.) seed and seed oil.Int. J. Food Prop.20141771591159810.1080/10942912.2013.777075
    [Google Scholar]
  88. FullerI.D. CummingA.H. CardA. BurgessE.J. BarrowC.J. PerryN.B. KilleenD.P. Free fatty acids in commercial krill oils: Concentrations, compositions, and implications for oxidative stability.J. Am. Oil Chem. Soc.202097888990010.1002/aocs.12368
    [Google Scholar]
  89. DeviP ShridharMP D’SouzaL NaikCG Cellular fatty acid composition of marine-derived fungi.Indian J. Mar. Sci.2006354359363
    [Google Scholar]
  90. HashimotoM. OrikasaY. HayashiH. WatanabeK. YoshidaK. OkuyamaH. Occurrence of trans monounsaturated and polyunsaturated fatty acids in Colwellia psychrerythraea strain 34H.J. Basic Microbiol.201555783884510.1002/jobm.20140081525707451
    [Google Scholar]
  91. Ruyter, RØsjØ, Einen, Thomassen. Essential fatty acids in Atlantic salmon: effects of increasing dietary doses of n-6 and n-3 fatty acids on growth, survival and fatty acid composition of liver, blood and carcass.Aquacult. Nutr.20006211912710.1046/j.1365‑2095.2000.00137.x
    [Google Scholar]
  92. KaminskasA. BriedisV. BudrionieneR. HendrixsonV. PetraitisR. KucinskieneZ. Fatty acid composition of sea buckthorn (Hippophae rhamnoides L.) pulp oil of Lithuanian origin stored at different temperatures.Biologija200623941
    [Google Scholar]
  93. ZemourK. LabdelliA. AddaA. DellalA. TalouT. MerahO. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.).Cosmetics2019635510.3390/cosmetics6030055
    [Google Scholar]
  94. LohaniA. VermaA. HemaG. PathakK. Topical delivery of geranium/calendula essential oil-entrapped ethanolic lipid vesicular cream to combat skin aging.BioMed Res. Int.20212021111310.1155/2021/459375934552986
    [Google Scholar]
  95. ChuC.C. HasanZ.A.B.A. TanC.P. NyamK.L. In vitro antiaging evaluation of sunscreen formulated from nanostructured lipid carrier and tocotrienol-rich fraction.J. Pharm. Sci.2021110123929393610.1016/j.xphs.2021.08.02034425132
    [Google Scholar]
  96. SalemM.A. ManaaE.G. OsamaN. AborehabN.M. RagabM.F. HaggagY.A. IbrahimM.T. HamdanD.I. Coriander (Coriandrum sativum L.) essential oil and oil-loaded nano-formulations as an anti-aging potentiality via TGFβ/SMAD pathway.Sci. Rep.2022121657810.1038/s41598‑022‑10494‑435449437
    [Google Scholar]
  97. KaroudW. GhlissiZ. KrichenF. KallelR. BougatefH. ZaraiZ. BoudawaraT. SahnounZ. SilaA. BougatefA. Oil from hake (Merluccius merluccius): Characterization, antioxidant activity, wound healing and anti-inflammatory effects.J. Tissue Viability202029213814710.1016/j.jtv.2020.01.00232007336
    [Google Scholar]
  98. ChoH.S. LeeM.H. LeeJ.W. NoK.O. ParkS.K. LeeH.S. KangS. ChoW.G. ParkH.J. OhK.W. HongJ.T. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation.Photodermatol. Photoimmunol. Photomed.200723515516210.1111/j.1600‑0781.2007.00298.x17803593
    [Google Scholar]
  99. KimH.J. KimD. KimN.Y. KimJ. JangA. Anti-wrinkle and anti-inflammatory effects of a combination of topically applied horse oil and dietary enzyme hydrolysates from horse bone.Process Biochem.20209025726710.1016/j.procbio.2019.11.010
    [Google Scholar]
  100. SultanaY. KohliK. AtharM. KharR.K. AqilM. Effect of pre-treatment of almond oil on ultraviolet B–induced cutaneous photoaging in mice.J. Cosmet. Dermatol.200761141910.1111/j.1473‑2165.2007.00293.x17348990
    [Google Scholar]
  101. DakhilI.A. AbbasI.S. MarieN.K. Preparation, evaluation, and clinical application of safflower cream as topical nutritive agent.Asian J. Pharm. Clin. Res.201811849549710.22159/ajpcr.2018.v11i8.27431
    [Google Scholar]
  102. NaeimifarA. Ahmad NasrollahiS. SamadiA. TalariR. Sajad Ale-nabiS. Massoud HossiniA. FiroozA. Preparation and evaluation of anti-wrinkle cream containing saffron extract and avocado oil.J. Cosmet. Dermatol.20201992366237310.1111/jocd.1328431957954
    [Google Scholar]
  103. PhetcharatL. WongsuphasawatK. WintherK. The effectiveness of a standardized rose hip powder, containing seeds and shells of Rosa canina, on cell longevity, skin wrinkles, moisture, and elasticity.Clin. Interv. Aging2015101849185626604725
    [Google Scholar]
  104. YangB. BonfigliA. PaganiV. IsohanniT. von-KnorringA. JutilaA. JudinV.P. Effects of oral supplementation and topical application of supercritical CO2 extracted sea buckthorn oil on skin ageing of female subjects.J. Appl. Cosmetol.200927113
    [Google Scholar]
  105. BoucettaK.Q. CharroufZ. AguenaouH. DerouicheA. BensoudaY. The effect of dietary and/or cosmetic argan oil on postmenopausal skin elasticity.Clin. Interv. Aging20151033934925673976
    [Google Scholar]
  106. TichotaD.M. SilvaA.C. Sousa LoboJ.M. AmaralM.H. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.Int. J. Nanomedicine201493855386425143733
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128357677250116115754
Loading
/content/journals/cpd/10.2174/0113816128357677250116115754
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): fatty acids; mechanistic pathways; MUFA; oligosaccharides; PUFA; Ultra violet radiation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test