Skip to content
2000
Volume 31, Issue 30
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

SARS-CoV-2, the virus responsible for COVID-19, has resulted in a devastating global impact with millions of lives lost. Remdesivir and 2-DG are among the few drugs authorized for emergency use against COVID-19, but concerns about their efficacy and side effects persist. Vaccines have been developed and approved, yet the emergence of viral mutations has raised questions about their effectiveness against new variants. Natural compounds with antiviral properties have shown promise in combating SARS-CoV-2. The review highlights the potential of medicinal plant compounds, particularly in targeting the virus' main protease, a crucial component for viral replication. Natural, plant-derived compounds represent a promising avenue for COVID-19 therapeutics. Further clinical validation is necessary to ascertain their efficacy and safety in treating COVID-19. This underscores the importance of continued research into alternative treatments for combating this global health crisis. This review examines the potential of natural, plant-derived compounds as safe and cost-effective alternatives for combating COVID-19. It summarizes the pathogenesis of SARS-CoV-2 and the ongoing drug studies and identifies natural compounds with known antiviral properties. Additionally, it explores the potential of medicinal plant compounds in targeting the SARS-CoV-2 main protease through and molecular docking studies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128344055250220100720
2025-03-18
2025-09-04
Loading full text...

Full text loading...

References

  1. BulutC. KatoY. Epidemiology of COVID-19.Turk. J. Med. Sci.202050SI-156357010.3906/sag‑2004‑17232299206
    [Google Scholar]
  2. SunY.J. FengY.J. ChenJ. LiB. LuoZ.C. WangP.X. Clinical features of fatalities in patients with COVID-19.Disaster Med. Public Health Prep.2021152e9e1110.1017/dmp.2020.23532665052
    [Google Scholar]
  3. WHO Director-General’s opening remarks at the media briefing on COVID-19.2022Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (Accessed on: 11 March 2020).
  4. UllahR. MdallalA.Q. KhanT. UllahR. AlwanA.B. FaizF. ZhuQ. The dynamics of novel corona virus disease via stochastic epidemiological model with vaccination.Sci. Rep.2023131380510.1038/s41598‑023‑30647‑336882515
    [Google Scholar]
  5. LavoieB. BourqueC.J. CôtéA.J. RajagopalM. ClercP. BourdeauV. AliS. TrottierD.E. CastonguayV. PagéF.É. BursteinB. DesaulniersP. GoldmanR.D. ThompsonG. BerthelotS. LagacéM. GaucherN. The responsibility to care: Lessons learned from emergency department workers’ perspectives during the first wave of the COVID-19 pandemic in Canada.CJEM202224548249210.1007/s43678‑022‑00306‑z35543924
    [Google Scholar]
  6. LiG. HilgenfeldR. WhitleyR. ClercqD.E. Therapeutic strategies for COVID-19: Progress and lessons learned.Nat. Rev. Drug Discov.202322644947510.1038/s41573‑023‑00672‑y37076602
    [Google Scholar]
  7. EsakandariH. AfjadiN.M. AfjadiF.J. FarahmandianN. MiresmaeiliS.M. BahreiniE. A comprehensive review of COVID-19 characteristics.Biol. Proced. Online20202211910.1186/s12575‑020‑00128‑232774178
    [Google Scholar]
  8. WuD. WuT. LiuQ. YangZ. The SARS-CoV-2 outbreak: What we know.Int. J. Infect. Dis.202094444810.1016/j.ijid.2020.03.00432171952
    [Google Scholar]
  9. DewanganH.K. TomarS. Nanovaccine for transdermal delivery system.J. Drug Deliv. Sci. Technol.20226710298810.1016/j.jddst.2021.102988
    [Google Scholar]
  10. CantiniF. GolettiD. PetroneL. FardN.S. NiccoliL. FotiR. Immune therapy, or antiviral therapy, or both for COVID-19: A systematic review.Drugs202080181929194610.1007/s40265‑020‑01421‑w33068263
    [Google Scholar]
  11. DewanganH.K. SinghS. MauryaL. SrivastavaA. HepatitisB. Antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization in BALB/c mice.Curr. Drug Deliv.20181581204121510.2174/156720181566618060411045729866006
    [Google Scholar]
  12. WuR. WangL. KuoH.C.D. ShannarA. PeterR. ChouP.J. LiS. HudlikarR. LiuX. LiuZ. PoianiG.J. AmorosaL. BrunettiL. KongA.N. An update on current therapeutic drugs treating COVID-19.Curr. Pharmacol. Rep.202063567010.1007/s40495‑020‑00216‑732395418
    [Google Scholar]
  13. KumarA. PariharA. BashaS.N. PandaU. Clinically available/under trial drugs and vaccines for treatment of SARS-COV-2.Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection.Academic Press2022451488
    [Google Scholar]
  14. IslamM.A. HaqueM.A. RahmanM.A. HossenF. RezaM. BaruaA. MarzanA.A. DasT. BaralK.S. HeC. AhmedF. BhattacharyaP. JakariyaM. A review on measures to rejuvenate immune system: natural mode of protection against coronavirus infection.Front. Immunol.20221383729010.3389/fimmu.2022.83729035371007
    [Google Scholar]
  15. MhatreS. SrivastavaT. NaikS. PatravaleV. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review.Phytomedicine20218515328610.1016/j.phymed.2020.15328632741697
    [Google Scholar]
  16. XianY. ZhangJ. BianZ. ZhouH. ZhangZ. LinZ. XuH. Bioactive natural compounds against human coronaviruses: A review and perspective.Acta Pharm. Sin. B20201071163117410.1016/j.apsb.2020.06.00232834947
    [Google Scholar]
  17. DewanganH.K. PandeyT. MauryaL. SinghS. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers.Int. J. Biol. Macromol.201811180481210.1016/j.ijbiomac.2018.01.07329343454
    [Google Scholar]
  18. PatnaikKC RajputD Role of antioxidant herbs and yoga practices in prevention of infectious diseases with special reference to COVID-19 pandemic.Inter. J. Res. Pharm. Sci.20201131722
    [Google Scholar]
  19. SotoM.E. LansG.V. CastroS.E. PechM.L. TorresP.I. Is antioxidant therapy a useful complementary measure for COVID-19 treatment? An algorithm for its application.Medicina202056838610.3390/medicina5608038632752010
    [Google Scholar]
  20. DerouicheS. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease-a systematic review.J. Infect. Dis. Epidemiol.202063121126
    [Google Scholar]
  21. AntonioA.S. WiedemannL.S.M. JuniorV.V.F. Natural products’ role against COVID-19.RSC Advances20201039233792339310.1039/D0RA03774E35693131
    [Google Scholar]
  22. HuangJ. TaoG. LiuJ. CaiJ. HuangZ. ChenJ. Current prevention of COVID-19: Natural products and herbal medicine.Front. Pharmacol.20201158850810.3389/fphar.2020.58850833178026
    [Google Scholar]
  23. RaghuvanshiA. ShahK. DewanganH.K. Ethosome as antigen delivery carrier: Optimisation, evaluation and induction of immunological response via nasal route against hepatitis B.J. Microencapsul.202239435236310.1080/02652048.2022.208416935635238
    [Google Scholar]
  24. PandeyM.M. RastogiS. RawatA.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation.Evid. Based Complement. Alternat. Med.20132013111210.1155/2013/37632723864888
    [Google Scholar]
  25. JaiswalY.S. WilliamsL.L. A glimpse of Ayurveda – The forgotten history and principles of Indian traditional medicine.J. Tradit. Complement. Med.201771505310.1016/j.jtcme.2016.02.00228053888
    [Google Scholar]
  26. DwibediV. JainS. SinghalD. MittalA. RathS.K. SaxenaS. Inhibitory activities of grape bioactive compounds against enzymes linked with human diseases.Appl. Microbiol. Biotechnol.202210641399141710.1007/s00253‑022‑11801‑935106636
    [Google Scholar]
  27. TilluG. ChaturvediS. ChopraA. PatwardhanB. Public health approach of ayurveda and yoga for COVID-19 prophylaxis.J. Altern. Complement. Med.202026536036410.1089/acm.2020.012932310670
    [Google Scholar]
  28. AcharyyaA. Prospect of ayurveda system of medicine in recent COVID-19 pandemic in India.Int. J. Ayurv. Tradit. Medi.2020222629
    [Google Scholar]
  29. PatwardhanB. GautamC.P. GautamM. TilluG. ChopraA. GairolaS. JadhavS. Ayurveda rasayana in prophylaxis of COVID-19.Curr. Sci.2020118811581160
    [Google Scholar]
  30. SinghN.A. KumarP. Jyoti KumarN. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID‐19.Phytother. Res.20213552745275710.1002/ptr.701933511704
    [Google Scholar]
  31. ShankarA. DubeyA. SainiD. PrasadC.P. Role of complementary and alternative medicine in prevention and treatment of COVID-19: An overhyped hope.Chin. J. Integr. Med.202026856556710.1007/s11655‑020‑2851‑y32761336
    [Google Scholar]
  32. MarwahH. PantJ. YadavJ. ShahK. DewanganH.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and Mucin signaling insights.Curr. Pharm. Des.202329433442345710.2174/011381612827694823120411153138270161
    [Google Scholar]
  33. DewanganH.K. ShahK. SharmaR. SharmaS. KumarA. KhanM.I. AlghamdiA.A. AbbasM. Emerging trends on nano-vaccines administration and functionalization strategies for immunization.J. Computat. Biophys. Chem.202423557560410.1142/S2737416524500066
    [Google Scholar]
  34. ChojnackaK. KrowiakW.A. SkrzypczakD. MikulaK. MłynarzP. Phytochemicals containing biologically active polyphenols as an effective agent against COVID-19-inducing coronavirus.J. Funct. Foods20207310414610.1016/j.jff.2020.10414632834835
    [Google Scholar]
  35. RenjithM.R.D. SankarM. Scope of phytochemicals in the management of COVID-19.Pharm. Res.2020312629
    [Google Scholar]
  36. SharmaP. ReddyP.K. KumarB. Trace element zinc, a nature’s gift to fight unprecedented global pandemic COVID-19.Biol. Trace Elem. Res.202119993213322110.1007/s12011‑020‑02462‑833170448
    [Google Scholar]
  37. DewanganH.K. RaghuvanshiA. ShahK. Emerging nanovaccine technology: Defense against infection by oral administration.Micro Nanosyst.2023151465410.2174/1876402914666220523105129
    [Google Scholar]
  38. AbulmeatyM.M.A. AljuraibanG.S. ShaikhS.M. ALEidN.E. MazrouL.R.A. TurjomanA.A. AldosariM.S. RazakS. SayedE.M.M. AreabiT.M. AlsalafiR.M. HelioA.Y.S. AlmutairyA.B. MollaH.N. The efficacy of antioxidant oral supplements on the progression of COVID-19 in non-critically Ill patients: a randomized controlled trial.Antioxidants202110580410.3390/antiox1005080434069549
    [Google Scholar]
  39. MrityunjayaM. PavithraV. NeelamR. JanhaviP. HalamiP.M. RavindraP.V. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19.Front. Immunol.20201157012210.3389/fimmu.2020.57012233117359
    [Google Scholar]
  40. JoshiT. JoshiT. SharmaP. MathpalS. PundirH. BhattV. ChandraS. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking.Eur. Rev. Med. Pharmacol. Sci.20202484529453632373991
    [Google Scholar]
  41. ShaghaghiN. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants.ChemRxiv20204517919910.26434/chemrxiv.11935722.v1
    [Google Scholar]
  42. SersegT. BenarousK. YousfiM. Hispidin and lepidine E: Two natural compounds and folic acid as potential inhibitors of 2019-novel coronavirus main protease (2019-nCoVMpro), molecular docking and SAR study.Curr. Computeraided Drug Des.202117346947910.2174/15734099MTA1lOTgfz32321407
    [Google Scholar]
  43. OwisA.I. HawaryE.M.S. AmirE.D. AlyO.M. AbdelmohsenU.R. KamelM.S. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease.RSC Advances20201033195701957510.1039/D0RA03582C35515460
    [Google Scholar]
  44. SharmaA.D. KaurI. Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection.arXiv:2004.00217202016
    [Google Scholar]
  45. MahmudS. UddinM.A.R. ZamanM. SujonK.M. RahmanM.E. ShehabM.N. IslamA. AlomM.W. AminA. AkashA.S. Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2.J. Biomol. Struct. Dyn.2020241932705962
    [Google Scholar]
  46. GaoS. TanH. LiD. Oridonin suppresses gastric cancer SGC‐7901 cell proliferation by targeting the TNF‐alpha/androgen receptor/ TGF‐beta signalling pathway axis.J. Cell. Mol. Med.202327182661267410.1111/jcmm.1784137431884
    [Google Scholar]
  47. ChanJ.F.W. KokK.H. ZhuZ. ChuH. ToK.K.W. YuanS. YuenK.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.Emerg. Microbes Infect.20209122123610.1080/22221751.2020.171990231987001
    [Google Scholar]
  48. YadavR. ChaudharyJ.K. JainN. ChaudharyP.K. KhanraS. DhamijaP. SharmaA. KumarA. HanduS. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19.Cells202110482110.3390/cells1004082133917481
    [Google Scholar]
  49. MirzaeiR. KarampoorS. SholehM. MoradiP. RanjbarR. GhasemiF. A contemporary review on pathogenesis and immunity of COVID-19 infection.Mol. Biol. Rep.20204775365537610.1007/s11033‑020‑05621‑132601923
    [Google Scholar]
  50. LangeC. WolfJ. HaedrichA.C. SchlechtA. BonevaS. LappT. HorresR. AgostiniH. MartinG. ReinhardT. SchlunckG. Expression of the COVID‐19 receptor ACE2 in the human conjunctiva.J. Med. Virol.202092102081208610.1002/jmv.2598132374427
    [Google Scholar]
  51. KumarA. Molecular profiling of Neprilysin expression and its interactions with SARS-CoV-2 spike proteins to develop evidence base pharmacological approaches for therapeutic intervention.Res. Square.20217210.5530/bems.7.2.7
    [Google Scholar]
  52. GoothyS.S.K. Network proteins of angiotensin-converting enzyme 2 but not angiotensin-converting enzyme 2 itself are host cell receptors for SARS-Coronavirus-2 attachment. BEMS Reports, 2020.Bio. Eng. Med. Sci. Rep.202061105
    [Google Scholar]
  53. XuH. ZhongL. DengJ. PengJ. DanH. ZengX. LiT. ChenQ. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa.Int. J. Oral Sci.2020121810.1038/s41368‑020‑0074‑x32094336
    [Google Scholar]
  54. HouY. ZhaoJ. MartinW. KallianpurA. ChungM.K. JehiL. SharifiN. ErzurumS. EngC. ChengF. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis.BMC Med.202018121610.1186/s12916‑020‑01673‑z32664879
    [Google Scholar]
  55. GaoZ. XuY. SunC. WangX. GuoY. QiuS. MaK. A systematic review of asymptomatic infections with COVID-19.J. Microbiol. Immunol. Infect.2021541121610.1016/j.jmii.2020.05.00132425996
    [Google Scholar]
  56. AlimohamadiY. SepandiM. TaghdirM. HosamirudsariH. Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis.J. Prev. Med. Hyg.2020613E304E31233150219
    [Google Scholar]
  57. HadiA.G. KadhomM. HairunisaN. YousifE. MohammedS.A. A review on COVID-19: Origin, spread, symptoms, treatment, and prevention.Bio. Res. Appl. Chem.20201067234724210.33263/BRIAC106.72347242
    [Google Scholar]
  58. HuB. HuangS. YinL. The cytokine storm and COVID‐19.J. Med. Virol.202193125025610.1002/jmv.2623232592501
    [Google Scholar]
  59. BaqiH.R. FaragH.A.M. BilbeisiE.A.H.H. AskandarR.H. AfifiE.A.M. Oxidative stress and its association with COVID-19: A narrative review.J. Appl. Res.202097105
    [Google Scholar]
  60. ChangR. MamunA. DominicA. LeN.T. SARS-CoV-2 mediated endothelial dysfunction: The potential role of chronic oxidative stress.Front. Physiol.20211160590810.3389/fphys.2020.60590833519510
    [Google Scholar]
  61. VerdecchiaP. CavalliniC. SpanevelloA. AngeliF. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection.Eur. J. Intern. Med.202076142010.1016/j.ejim.2020.04.03732336612
    [Google Scholar]
  62. RobertsK.A. ColleyL. AgbaedengT.A. HughesE.G.M. RossM.D. Vascular manifestations of COVID-19–thromboembolism and microvascular dysfunction.Front. Cardiovasc. Med.2020759840010.3389/fcvm.2020.59840033195487
    [Google Scholar]
  63. KermaniK.E. KhaliliH. KarimzadehI. Pathogenesis, clinical manifestations and complications of coronavirus disease 2019 (COVID-19).Future Microbiol.2020151287130510.2217/fmb‑2020‑011032851877
    [Google Scholar]
  64. DeepikaD. DewanganH.K. MauryaL. SinghS. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting.J. Pharm. Sci.2019108285185910.1016/j.xphs.2018.07.01330053555
    [Google Scholar]
  65. DewanganH.K. PandeyT. SinghS. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model.Artif. Cells Nanomed. Biotechnol.20184682033204229179600
    [Google Scholar]
  66. GargA. DewanganH.K. Nanoparticles as adjuvants in vaccine delivery.Crit. Rev. Ther. Drug Carrier Syst.202037218320410.1615/CritRevTherDrugCarrierSyst.202003327332865905
    [Google Scholar]
  67. HattatoğluD.G. YıldızB.P. Comparison of clinical and biochemical features of hospitalized COVID‐19 and influenza pneumonia patients.J. Med. Virol.202193126619662710.1002/jmv.2721834289142
    [Google Scholar]
  68. ZhamankulovA. RozensonR. MorenkoM. AkhmetovaU. TyoA. PoddigheD. Comparison between SARS-CoV-2 positive and negative pneumonia in children: A retrospective analysis at the beginning of the pandemic.World J. Exp. Med.2022122263510.5493/wjem.v12.i2.2635433317
    [Google Scholar]
  69. PasomsubE. WatcharanananS.P. WatthanachockchaiT. RakmaneeK. TassaneetrithepB. KiertiburanakulS. PhuphuakratA. Saliva sample pooling for the detection of SARS‐CoV‐2.J. Med. Virol.20219331506151110.1002/jmv.2646032841429
    [Google Scholar]
  70. MunneK. BhanothuV. BhorV. PatelV. MahaleS.D. PandeS. Detection of SARS-CoV-2 infection by RT-PCR test: Factors influencing interpretation of results.Virusdisease202132218718910.1007/s13337‑021‑00692‑533969149
    [Google Scholar]
  71. RaiA. ShahK. DewanganH.K. Review on the artificial intelligence-based nanorobotics targeted drug delivery system for brain-specific targeting.Curr. Pharm. Des.202329443519353110.2174/011381612827924823121017205338111114
    [Google Scholar]
  72. TranN.K. AlbahraS. RashidiH. MayL. Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future.Clin. Biochem.2023117101510.1016/j.clinbiochem.2021.12.01134998789
    [Google Scholar]
  73. BekbossynovaM. AkhmaltdinovaL. DossybayevaK. TauekelovaA. SmagulovaZ. TsechoevaT. TurebayevaG. SailybayevaA. KalilaZ. MirashirovaT. MuratovT. PoddigheD. Central and effector memory T cells in peripheral blood of patients with interstitial pneumonia: Preliminary clues from a COVID-19 study.Respir. Res.202223127810.1186/s12931‑022‑02190‑836217141
    [Google Scholar]
  74. SaihatiA.H.A. HusseinH.A.M. ThabetA.A. WardanyA.A. MahmoudS.Y. FarragE.S. MohamedT.I.A. FathyS.M. ElnosaryM.E. SobhyA. AhmedA.E. AdlyE.A.M. ShenawyE.F.S. ElsadekA.A. RayanA. ZahranZ.A.M. BadawyE.O. NaggarE.M.G.M. AfifiM.M. ZahranA.M. MemoryT. Memory T cells discrepancies in COVID-19 patients.Microorganisms20231111273710.3390/microorganisms1111273738004749
    [Google Scholar]
  75. LeeH.G. ChoM.J. ChoiJ.M. Bystander CD4+ T cells: Crossroads between innate and adaptive immunity.Exp. Mol. Med.20205281255126310.1038/s12276‑020‑00486‑732859954
    [Google Scholar]
  76. DewanganH.K. RaghuvanshiA. ShahK. Review: Emerging trends and future challenges of nanovaccine delivery via nasal route.Curr. Drug Targets202324326127310.2174/138945012466622120516225636475350
    [Google Scholar]
  77. StembergerC. NeuenhahnM. GebhardtF.E. SchiemannM. BuchholzV.R. BuschD.H. Stem cell-like plasticity of naïve and distinct memory CD8+ T cell subsets.Semin. Immunol.2009212626810.1016/j.smim.2009.02.00419269852
    [Google Scholar]
  78. PengY. MentzerA.J. LiuG. YaoX. YinZ. DongD. DejnirattisaiW. RostronT. SupasaP. LiuC. CamachoL.C. CamposS.J. ZhaoY. StuartD.I. PaesenG.C. GrimesJ.M. AntsonA.A. BayfieldO.W. HawkinsD.E.D.P. KerD.S. WangB. TurtleL. SubramaniamK. ThomsonP. ZhangP. DoldC. RatcliffJ. SimmondsP. Silvad.T. SoppP. WellingtonD. RajapaksaU. ChenY.L. SalioM. NapolitaniG. PaesW. BorrowP. KesslerB.M. FryJ.W. SchwabeN.F. SempleM.G. BaillieJ.K. MooreS.C. OpenshawP.J.M. AnsariM.A. DunachieS. BarnesE. FraterJ. KerrG. GoulderP. LockettT. LevinR. ZhangY. JingR. HoL.P. BarnesE. DongD. DongT. DunachieS. FraterJ. GoulderP. KerrG. KlenermanP. LiuG. McMichaelA. NapolitaniG. OggG. PengY. SalioM. YaoX. YinZ. BaillieK.J. KlenermanP. MentzerA.J. MooreS.C. OpenshawP.J.M. SempleM.G. StuartD.I. TurtleL. CornallR.J. ConlonC.P. KlenermanP. ScreatonG.R. MongkolsapayaJ. McMichaelA. KnightJ.C. OggG. DongT. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19.Nat. Immunol.202021111336134510.1038/s41590‑020‑0782‑632887977
    [Google Scholar]
  79. LiuJ. LiuS. The management of coronavirus disease 2019 (COVID‐19).J. Med. Virol.20209291484149010.1002/jmv.2596532369222
    [Google Scholar]
  80. US Food and Drug Administration FDA approves first treatment for COVID-19. Food and Drug Administration news release.Published2020October22
    [Google Scholar]
  81. JainS. KhaiboullinaS.F. BaranwalM. Immunological perspective for ebola virus infection and various treatment measures taken to fight the disease.Pathogens202091085010.3390/pathogens910085033080902
    [Google Scholar]
  82. SantoroM.G. CarafoliE. Remdesivir: From ebola to COVID-19.Biochem. Biophys. Res. Commun.202153814515010.1016/j.bbrc.2020.11.04333388129
    [Google Scholar]
  83. DebS. ReevesA.A. HopeflR. BejuscaR. ADME and pharmacokinetic properties of remdesivir: Its drug interaction potential.Pharmaceuticals202114765510.3390/ph1407065534358081
    [Google Scholar]
  84. BucklandM.S. GallowayJ.B. FhogartaighC.N. MeredithL. ProvineN.M. BloorS. OgbeA. ZelekW.M. SmielewskaA. YakovlevaA. MannT. BergamaschiL. TurnerL. MesciaF. ToonenE.J.M. HacksteinC.P. AktherH.D. VieiraV.A. GutierrezC.L. PeriselnerisJ. AlikhanK.S. GrigoriadouS. VaghelaD. LearS.E. TörökM.E. HamiltonW.L. StocktonJ. QuickJ. NelsonP. HunterM. CoulterT.I. DevlinL. BradleyJ.R. SmithK.G.C. OuwehandW.H. EstcourtL. HarvalaH. RobertsD.J. WilkinsonI.B. ScreatonN. LomanN. DoffingerR. LyonsP.A. MorganB.P. GoodfellowI.G. KlenermanP. LehnerP.J. MathesonN.J. ThaventhiranJ.E.D. Treatment of COVID-19 with remdesivir in the absence of humoral immunity: A case report.Nat. Commun.2020111638510.1038/s41467‑020‑19761‑233318491
    [Google Scholar]
  85. AschenbrennerDS Remdesivir Receives emergency use authorization for severely ill patients with COVID-19.AJN Amer. j. Nur.202012072610.1097/01.NAJ.0000688196.83625.b1
    [Google Scholar]
  86. LehrerS RheinsteinPH Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2.In Vivo.202034530233026
    [Google Scholar]
  87. ZaidiA.K. MobarakiD.P. The mechanisms of action of Ivermectin against SARS-CoV-2: An evidence-based clinical review article.J. Antibiot.202111334127807
    [Google Scholar]
  88. BrayM. RaynerC. NoëlF. JansD. WagstaffK. Ivermectin and COVID-19: A report in antiviral research, widespread interest, an FDA warning, two letters to the editor and the authors’ responses.Antiviral Res.202017810480510480510.1016/j.antiviral.2020.10480532330482
    [Google Scholar]
  89. HebbaniA.V. PulakuntlaS. PannuruP. AramgamS. BadriK.R. ReddyV.D. COVID-19: Comprehensive review on mutations and current vaccines.Arch. Microbiol.20222041810.1007/s00203‑021‑02606‑x34873656
    [Google Scholar]
  90. DewanganH.K. Rational application of nanoadjuvant for mucosal vaccine delivery system.J. Immunol. Methods2020481-48211279110.1016/j.jim.2020.11279132387695
    [Google Scholar]
  91. DubeyR.K. ShuklaS. ShahK. DewanganH.K. A comprehensive review of self-assembly techniques used to fabricate as DNA origami, block copolymers, and colloidal nanostructures.Curr. Nanosci.2024202010.2174/0115734137283662240129073747
    [Google Scholar]
  92. MouraA. LopesL. MatosL.C. MachadoJ. CriadoM.B. Converging paths: A comprehensive review of the synergistic approach between complementary medicines and western medicine in addressing COVID-19 in 2020.BioMed20233228230810.3390/biomed3020025
    [Google Scholar]
  93. RainsfordK.D. ParkeA.L. RashotteC.M. KeanW.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases.Inflammopharmacology201523523126910.1007/s10787‑015‑0239‑y26246395
    [Google Scholar]
  94. Recommendation for empiric use of hydroxychloroquine for prophylaxis of SARS-CoV-2 infection.Indian Counc. Med. Res.202011
    [Google Scholar]
  95. RajniS.K. ShahK. DewanganH.K. Delivery of nano-emulgel carrier: Optimization, evaluation and in vivo anti-inflammation estimations for osteoarthritis.Ther. Deliv.202415318119210.4155/tde‑2023‑010938356357
    [Google Scholar]
  96. SinhaN. BalaylaG. Hydroxychloroquine and COVID-19.Postgrad. Med. J.202096113955055510.1136/postgradmedj‑2020‑13778532295814
    [Google Scholar]
  97. ZouL. DaiL. ZhangX. ZhangZ. ZhangZ. Hydroxychloroquine and chloroquine: A potential and controversial treatment for COVID-19.Arch. Pharm. Res.202043876577210.1007/s12272‑020‑01258‑732740801
    [Google Scholar]
  98. SharmaV. DewanganH.K. MauryaL. VatsK. VermaH. SinghS. Rational design and in-vivo estimation of ivabradine hydrochloride loaded nanoparticles for management of stable angina.J. Drug Deliv. Sci. Technol.20195410133710134610.1016/j.jddst.2019.101337
    [Google Scholar]
  99. DubeyK.R. ShahK. ObaidullahA.J. AlanaziM.M. AlotaibiF.H. DewanganK.H. Nanostructured lipid carriers of ivabradine hydrochloride: Optimization, characterization and in-vivo estimation for management of stable angina.Arab. J. Chem.2023161010517710.1016/j.arabjc.2023.105177
    [Google Scholar]
  100. ThomsonK. NachlisH. Emergency use authorizations during the COVID-19 pandemic: Lessons from hydroxychloroquine for vaccine authorization and approval.JAMA2020324131282128310.1001/jama.2020.1625332870235
    [Google Scholar]
  101. ChandwaniA. ShuterJ. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review.Ther. Clin. Risk Manag.2008451023103319209283
    [Google Scholar]
  102. DalerbaP. LevinB. ThompsonJ.L. A Trial of Lopinavir-Ritonavir in COVID-19.N. Engl. J. Med.202038221e6832369281
    [Google Scholar]
  103. CaoB. WangY. WenD. LiuW. WangJ. FanG. RuanL. SongB. CaiY. WeiM. LiX. XiaJ. ChenN. XiangJ. YuT. BaiT. XieX. ZhangL. LiC. YuanY. ChenH. LiH. HuangH. TuS. GongF. LiuY. WeiY. DongC. ZhouF. GuX. XuJ. LiuZ. ZhangY. LiH. ShangL. WangK. LiK. ZhouX. DongX. QuZ. LuS. HuX. RuanS. LuoS. WuJ. PengL. ChengF. PanL. ZouJ. JiaC. WangJ. LiuX. WangS. WuX. GeQ. HeJ. ZhanH. QiuF. GuoL. HuangC. JakiT. HaydenF.G. HorbyP.W. ZhangD. WangC. A trial of lopinavir ritonavir in adults hospitalized with severe COVID-19.N. Engl. J. Med.2020382191787179910.1056/NEJMoa200128232187464
    [Google Scholar]
  104. YeX.T. LuoY.L. XiaS.C. SunQ.F. DingJ.G. ZhouY. ChenW. WangX.F. ZhangW.W. DuW.J. RuanZ.W. HongL. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019.Eur. Rev. Med. Pharmacol. Sci.20202463390339632271456
    [Google Scholar]
  105. PaivaV.F. IzcovichA. RagusaM. RadaG. Lopinavir/ritonavir for COVID-19: A living systematic review.Medwave2020206e796610.5867/medwave.2020.06.796632678815
    [Google Scholar]
  106. MeiniS. PagottoA. LongoB. VendraminI. PecoriD. TasciniC. Role of Lopinavir/Ritonavir in the treatment of COVID-19: A review of current evidence, guideline recommendations, and perspectives.J. Clin. Med.202097205010.3390/jcm907205032629768
    [Google Scholar]
  107. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.00624769245
    [Google Scholar]
  108. ZhuZ. LuZ. XuT. ChenC. YangG. ZhaT. LuJ. XueY. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19.J. Infect.2020811e21e2310.1016/j.jinf.2020.03.06032283143
    [Google Scholar]
  109. LiY XieZ LinW CaiW WenC GuanY MoX WangJ WangY PengP Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/moderate COVID-19: An exploratory randomized controlled trial.Med.20201105113
    [Google Scholar]
  110. DengL. LiC. ZengQ. LiuX. LiX. ZhangH. HongZ. XiaJ. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study.J. Infect.2020811e1e510.1016/j.jinf.2020.03.00232171872
    [Google Scholar]
  111. DewanganH.K. RaiA. ShahK. SharmaR. A comprehensive review on COVID-19: Emphasis on current vaccination and nanotechnology aspects.Recent Pat. Nanotechnol.202317435937710.2174/187221051666622081910485335986540
    [Google Scholar]
  112. HuangD. YuH. WangT. YangH. YaoR. LiangZ. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID‐19): A systematic review and meta‐analysis.J. Med. Virol.202193148149010.1002/jmv.2625632617989
    [Google Scholar]
  113. FurutaY. KomenoT. NakamuraT. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201793744946310.2183/pjab.93.02728769016
    [Google Scholar]
  114. YamamuraH. MatsuuraH. NakagawaJ. FukuokaH. DomiH. ChujohS. Effect of favipiravir and an anti-inflammatory strategy for COVID-19.Crit. Care202024141310.1186/s13054‑020‑03137‑532646499
    [Google Scholar]
  115. RattanaumpawanP. JirajariyavejS. LerdlamyongK. PalavutitotaiN. SaiyarinJ. Real-world experience with favipiravir for treatment of COVID-19 in Thailand: Results from a multi-center observational study.Antibiotics.202011680510.1101/2020.06.24.20133249
    [Google Scholar]
  116. Siripongboonsitti, T, Muadchimkaew, M, Tawinprai, K, et al. Favipiravir treatment in non-severe COVID-19: Promising results from multicenter propensity score-matched study (FAVICOV). Sci Rep20231311488410.1038/s41598‑023‑42195‑x37689754
  117. PilkingtonV. PepperrellT. HillA. A review of the safety of favipiravir – a potential treatment in the COVID-19 pandemic?J. Virus Erad.202062455110.1016/S2055‑6640(20)30016‑932405421
    [Google Scholar]
  118. McClellanK. PerryC.M. Oseltamivir.Drugs200161226328310.2165/00003495‑200161020‑0001111270942
    [Google Scholar]
  119. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e20230146810.1002/cbdv.20230146838206170
    [Google Scholar]
  120. AdhikariB. MarasiniB.P. RayamajheeB. BhattaraiB.R. LamichhaneG. KhadayatK. AdhikariA. KhanalS. ParajuliN. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID‐19: A review.Phytother. Res.20213531298131210.1002/ptr.689333037698
    [Google Scholar]
  121. MirzaieA. HalajiM. DehkordiF.S. RanjbarR. NoorbazarganH. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19).Complement. Ther. Clin. Pract.20204010121410.1016/j.ctcp.2020.10121432891290
    [Google Scholar]
  122. PeñalozaE.M.C. CostaS.S. CalderonH.O. Medicinal plants in peru as a source of immunomodulatory drugs potentially useful against COVID-19.Rev. Bras. Farmacogn.202333223725810.1007/s43450‑023‑00367‑w36855527
    [Google Scholar]
  123. ZhangL. VirgousC. SiH. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals.J. Nutr. Biochem.201969193010.1016/j.jnutbio.2019.03.00931048206
    [Google Scholar]
  124. DeviA. DwibediV. RathS.K. KhanZ.A. Theories and mechanism of aging and longevity through evolutionary lens: A coalition of plant anti-oxidants.Rev. Bras. Farmacogn.202232329132010.1007/s43450‑022‑00254‑w
    [Google Scholar]
  125. JoS. KimS. ShinD.H. KimM.S. Inhibition of SARS-CoV 3CL protease by flavonoids.J. Enzyme Inhib. Med. Chem.202035114515110.1080/14756366.2019.169048031724441
    [Google Scholar]
  126. GiordanoD. FacchianoA. CarboneV. Food plant secondary metabolites antiviral activity and their possible roles in SARS-CoV-2 treatment: An overview.Molecules2023286247010.3390/molecules2806247036985442
    [Google Scholar]
  127. ZhangZ. ZhangX. BiK. HeY. YanW. YangC.S. ZhangJ. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19.Trends Food Sci. Technol.2021114112410.1016/j.tifs.2021.05.02334054222
    [Google Scholar]
  128. BaranovaA. SongY. CaoH. YueW. ZhangF. Causal associations of tea intake with COVID-19 infection and severity.Front. Nutr.20239100546610.3389/fnut.2022.100546636687732
    [Google Scholar]
  129. SolnierJ. FladererJ.P. Flavonoids: A complementary approach to conventional therapy of COVID-19?Phytochem. Rev.202120477379510.1007/s11101‑020‑09720‑632982616
    [Google Scholar]
  130. GoothyS ChoudharyA ChakrabortyH. PoteyG. ChakrabortyH. KumarA.H. MahadikV. Ayurveda’s holistic lifestyle approach for the management of Coronavirus disease (COVID-19): Possible role of tulsi.Inter. J. Res. Pharm. Sci.202011SPL1161810.26452/ijrps.v11iSPL1.1976
    [Google Scholar]
  131. RemaliJ. AizatW.M. A review on plant bioactive compounds and their modes of action against coronavirus infection.Front. Pharmacol.20211158904410.3389/fphar.2020.58904433519449
    [Google Scholar]
  132. RoyS BhattacharyyaP Possible role of traditional medicinal plant Neem (Azadirachta indica) for the management of COVID-19 infection.Int. J. Res. Pharm. Sci.202011SPL 1122125
    [Google Scholar]
  133. JinZ. DuX. XuY. DengY. LiuM. ZhaoY. ZhangB. LiX. ZhangL. PengC. DuanY. YuJ. WangL. YangK. LiuF. JiangR. YangX. YouT. LiuX. YangX. BaiF. LiuH. LiuX. GuddatL.W. XuW. XiaoG. QinC. ShiZ. JiangH. RaoZ. YangH. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors.Nature2020582781128929310.1038/s41586‑020‑2223‑y32272481
    [Google Scholar]
  134. VuongW. KhanM.B. FischerC. ArutyunovaE. LamerT. ShieldsJ. SaffranH.A. McKayR.T. BelkumV.M.J. JoyceM.A. YoungH.S. TyrrellD.L. VederasJ.C. LemieuxM.J. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication.Nat. Commun.2020111428210.1038/s41467‑020‑18096‑232855413
    [Google Scholar]
  135. ChenY. YangW-H. HuangL-M. WangY-C. YangC-S. LiuY-L. HouM-H. TsaiC-L. ChouY-Z. HuangB-Y. HungC-F. HungY-L. ChenJ-S. ChiangY-P. ChoD-Y. JengL-B. TsaiC-H. HungM-C. Inhibition of severe acute respiratory syndrome coronavirus 2 main protease by tafenoquine in vitro.J. Biol. Chem.20202983101658
    [Google Scholar]
  136. TripathiM.K. SinghP. SharmaS. SinghT.P. EthayathullaA.S. KaurP. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor.J. Biomol. Struct. Dyn.202139155668568110.1080/07391102.2020.179042532643552
    [Google Scholar]
  137. KalraS. ChauhanA. Identification of potent COVID-19 main protease (MPRO) inhibitors from flavonoids: In silico approach: Identification of potent COVID-19 main protease (MPRO) inhibitors from flavonoids.J. Ayurveda Holist. Med.2023112
    [Google Scholar]
  138. ShaldamM.A. YahyaG. MohamedN.H. DaimA.M.M. NaggarA.Y. In silico screening of potent bioactive compounds from honeybee products against COVID-19 target enzymes.Environ. Sci. Pollut. Res. Int.20212830405074051410.1007/s11356‑021‑14195‑933934306
    [Google Scholar]
  139. GillM.K. KumarS. SharmaM. SinghT.P. KumarK. KaurR. Role of ashwagandha incorporated functional foods for betterment of human health: A review.J Agric Eng Food Technol201962161165
    [Google Scholar]
  140. BhartiV.K. MalikJ.K. GuptaR.C. Ashwagandha: Multiple health benefits.Nutraceuticals.Elsevier201671773310.1016/B978‑0‑12‑802147‑7.00052‑8
    [Google Scholar]
  141. DeviA. JainS. SinghalD. GhoshA. KumarV. DwibediV. GeorgeN. KhanZ.A. Multiple ligand simultaneous docking analysis of epigallocatechin-o-gallate (green tea) and withaferin a (ashwagandha) effects on skin-aging related enzymes.Indian J. Pharm. Sci.2023854
    [Google Scholar]
  142. MishraA.K. RaniL. SinghR. DewanganH.K. SahooP.K. KumarV. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review.J. Drug Deliv. Sci. Technol.20249310544610.1016/j.jddst.2024.105446
    [Google Scholar]
  143. GuravN.S. GuravS.S. SakharwadeS.N. Studies on Ashwagandha Ghrita with reference to murcchana process and storage conditions.J. Ayurveda Integr. Med.202011324324910.1016/j.jaim.2019.10.00432139244
    [Google Scholar]
  144. JainR. MathurK. An insight to curative effects of Ashwagandha (Withania somnifera), an Ayurveda herb.Faslnamah-i Giyahan-i Daruyi20208227235
    [Google Scholar]
  145. GayenK.C. JanaP. GiriA. Use of Ashwagandha to Boost Immunity to Combat COVID-19.Immunity Boosting Functional Foods to Combat COVID-19.CRC Press2021475210.1201/9781003242604‑4
    [Google Scholar]
  146. CharanJ. KaurR. BhardwajP. KanchanT. MitraP. YadavD. SharmaP. MisraS. Snapshot of COVID-19 related clinical trials in India.Indian J. Clin. Biochem.202035441842210.1007/s12291‑020‑00918‑132837035
    [Google Scholar]
  147. DhanjalJ.K. KumarV. GargS. SubramaniC. AgarwalS. WangJ. ZhangH. KaulA. KalraR.S. KaulS.C. VratiS. SundarD. WadhwaR. Molecular mechanism of anti-SARS-CoV2 activity of ashwagandha-derived withanolides.Int. J. Biol. Macromol.202118429731210.1016/j.ijbiomac.2021.06.01534118289
    [Google Scholar]
  148. PanditM LathaN In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection.Res. Squa.202012268710.21203/rs.3.rs‑22687/v1
    [Google Scholar]
  149. ShreeP. MishraP. SelvarajC. SinghS.K. ChaubeR. GargN. TripathiY.B. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study.J. Biomol. Struct. Dyn.202240119020310.1080/07391102.2020.181077832851919
    [Google Scholar]
  150. RavindranP. BabuK.N. SivaramanK. Turmeric: The genus Curcuma.In: Environment & Agriculture, Food Science & Technology, Physical Sciences1st Ed.CRC pressBoca Raton200750410.1201/9781420006322
    [Google Scholar]
  151. GopinathH. KarthikeyanK. Turmeric: A condiment, cosmetic and cure.Indian J. Dermatol. Venereol. Leprol.2018841162110.4103/ijdvl.IJDVL_1143_1629243674
    [Google Scholar]
  152. HayE. LucarielloA. ContieriM. EspositoT. LucaD.A. GuerraG. PernaA. Therapeutic effects of turmeric in several diseases: An overview.Chem. Biol. Interact.201931010872910.1016/j.cbi.2019.10872931255636
    [Google Scholar]
  153. PrasadS. TyagiA.K. Curcumin and its analogues: A potential natural compound against HIV infection and AIDS.Food Funct.20156113412341910.1039/C5FO00485C26404185
    [Google Scholar]
  154. QinY. LinL. ChenY. WuS. SiX. WuH. ZhaiX. WangY. TongL. PanB. ZhongX. WangT. ZhaoW. ZhongZ. Curcumin inhibits the replication of enterovirus 71 in vitro.Acta Pharm. Sin. B20144428429410.1016/j.apsb.2014.06.00626579397
    [Google Scholar]
  155. ChenD.Y. ShienJ.H. TileyL. ChiouS.S. WangS.Y. ChangT.J. LeeY.J. ChanK.W. HsuW.L. Curcumin inhibits influenza virus infection and haemagglutination activity.Food Chem.201011941346135110.1016/j.foodchem.2009.09.011
    [Google Scholar]
  156. Anggakusuma ColpittsC.C. SchangL.M. RachmawatiH. FrentzenA. PfaenderS. BehrendtP. BrownR.J.P. BankwitzD. SteinmannJ. OttM. MeulemanP. RiceC.M. PlossA. PietschmannT. SteinmannE. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells.Gut20146371137114910.1136/gutjnl‑2012‑30429923903236
    [Google Scholar]
  157. GaoS. TanH. GangJ. Inhibition of hepatocellular carcinoma cell proliferation through regulation of the Cell Cycle, AGE-RAGE, and Leptin signaling pathways by a compound formulation comprised of andrographolide, wogonin, and oroxylin A derived from Andrographis Paniculata(Burm.f.) Nees.J. Ethnopharmacol.202432911800110.1016/j.jep.2024.11800138467318
    [Google Scholar]
  158. Lakshmi SinghS. VijayakumarM.R. DewanganH.K. Lipid-based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration.Curr. Drug Deliv.20181591284129310.2174/156720181566618071611245730009708
    [Google Scholar]
  159. MenonVP SudheerAR Antioxidant and anti-inflammatory properties of curcumin.Adv. Exp. Med. Biol.200759510512510.1007/978‑0‑387‑46401‑5_3
    [Google Scholar]
  160. AkT. Gülçinİ. Antioxidant and radical scavenging properties of curcumin.Chem. Biol. Interact.20081741273710.1016/j.cbi.2008.05.00318547552
    [Google Scholar]
  161. TrujilloJ. ChirinoY.I. JijónM.E. RomeroA.A.C. TapiaE. ChaverríP.J. Renoprotective effect of the antioxidant curcumin: Recent findings.Redox Biol.20131144845610.1016/j.redox.2013.09.00324191240
    [Google Scholar]
  162. DeviA. DwibediV. KhanZ.A. Natural antioxidants in new age-related diseases.Rev. Bras. Farmacogn.202131438740710.1007/s43450‑021‑00175‑0
    [Google Scholar]
  163. RattisB.A.C. RamosS.G. CelesM.R.N. Curcumin as a potential treatment for COVID-19.Front. Pharmacol.20211267528710.3389/fphar.2021.67528734025433
    [Google Scholar]
  164. BabaeiF. AslN.M. HosseinzadehH. Curcumin (a constituent of turmeric): New treatment option against COVID‐19.Food Sci. Nutr.20208105215522710.1002/fsn3.185833133525
    [Google Scholar]
  165. SoniV.K. MehtaA. RatreY.K. TiwariA.K. AmitA. SinghR.P. SonkarS.C. ChaturvediN. ShuklaD. VishvakarmaN.K. Curcumin, a traditional spice component, can hold the promise against COVID-19?Eur. J. Pharmacol.202088617355110.1016/j.ejphar.2020.17355132931783
    [Google Scholar]
  166. PazG.LA LossadaCA MoncayoLS RomeroF PazJ VillalobosV.J PérezAE BlasS.E AlvaradoYJ Theoretical molecular docking study of the structural disruption of the viral 3cl-protease of COVID19 induced by binding of capsaicin, piperine and curcumin part 1: A comparative study with chloroquine and hydrochloroquine two antimalaric drugsRes. Square202045179199
    [Google Scholar]
  167. EmirikM. Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: In silico study.J. Biomol. Struct. Dyn.20224052024203710.1080/07391102.2020.183571933078675
    [Google Scholar]
  168. KhaerunnisaS. KurniawanH. AwaluddinR. SuhartatiS. SoetjiptoS. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study.Preprints. Org.2020445179199
    [Google Scholar]
  169. HassaniazadM. InchehsablaghB.R. KamaliH. TousiA. EftekharE. JaafariM.R. FathalipourM. SahlabadiN.S. GouklaniH. AlizadeH. NikpoorA.R. The clinical effect of Nano micelles containing curcumin as a therapeutic supplement in patients with COVID-19 and the immune responses balance changes following treatment: A structured summary of a study protocol for a randomised controlled trial.Trials202021187610.1186/s13063‑020‑04824‑y33092653
    [Google Scholar]
  170. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  171. MorrisG.M. GoodsellD.S. HallidayR.S. HueyR. HartW.E. BelewR.K. OlsonA.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J. Comput. Chem.199819141639166210.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  172. DamanhouriZ.A. AhmadA. A review on therapeutic potential of Piper nigrum L. (Black pepper): The king of spices.Med. Aromat. Plants20143316110.4172/2167‑0412.1000161
    [Google Scholar]
  173. JoshiD.R. ShresthaA.C. AdhikariN. A review on diversified use of the king of spices: Piper nigrum (black pepper).IJPSR2018940894101
    [Google Scholar]
  174. LassoP. RojasL. ArévaloC. UrueñaC. MurilloN. NossaP. SandovalT. ChitivaL.C. BarretoA. CostaG.M. FiorentinoS. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma.Cancer Immunol. Immunother.202372103279329210.1007/s00262‑023‑03487‑337464192
    [Google Scholar]
  175. SethiyaN.K. AhmedN.M. ShekhR.M. KumarV. SinghK.P. KumarV. Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: An overview.J. Integr. Med.201816529931110.1016/j.joim.2018.07.00230007830
    [Google Scholar]
  176. ChanderM.P. KartickC. VijayachariP. Ethnomedicinal knowledge among Karens of Andaman & Nicobar Islands, India.J. Ethnopharmacol.201516212713310.1016/j.jep.2014.12.03325557035
    [Google Scholar]
  177. BhatP. HegdeG.R. HegdeG. MulgundG.S. Ethnomedicinal plants to cure skin diseases: An account of the traditional knowledge in the coastal parts of Central Western Ghats, Karnataka, India.J. Ethnopharmacol.2014151149350210.1016/j.jep.2013.10.06224239890
    [Google Scholar]
  178. EsakkimuthuS. MutheeswaranS. ArvinthS. PaulrajM.G. PandikumarP. IgnacimuthuS. Quantitative ethnomedicinal survey of medicinal plants given for cardiometabolic diseases by the non-institutionally trained siddha practitioners of Tiruvallur district, Tamil Nadu, India.J. Ethnopharmacol.201618632934210.1016/j.jep.2016.04.01727090346
    [Google Scholar]
  179. SureshkumarJ. SilambarasanR. AyyanarM. An ethnopharmacological analysis of medicinal plants used by the Adiyan community in Wayanad district of Kerala, India.Eur. J. Integr. Med.201712607310.1016/j.eujim.2017.04.006
    [Google Scholar]
  180. MeghwalM. GoswamiT.K. Piper nigrum and piperine: An update.Phytother. Res.20132781121113010.1002/ptr.497223625885
    [Google Scholar]
  181. LwambaC. AboushanabS.A. AmbatiR.R. KovalevaE.G. Innovative green approach for extraction of piperine from black pepper based on response surface methodology.Sustain. Chem.202341405310.3390/suschem4010005
    [Google Scholar]
  182. DiX. WangX. DiX. LiuY. Effect of piperine on the bioavailability and pharmacokinetics of emodin in rats.J. Pharm. Biomed. Anal.201511514414910.1016/j.jpba.2015.06.02726201645
    [Google Scholar]
  183. Vanshita GargA. DewanganH.K. Recent advances in drug design and delivery across biological barriers using computational models.Lett. Drug Des. Discov.2022191086587610.2174/1570180819999220204110306
    [Google Scholar]
  184. MishraA.K. NehaS.L. RaniL. JainA. DewanganH.K. SahooP.K. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model.J. Drug Deliv. Sci. Technol.20238610458010.1016/j.jddst.2023.104580
    [Google Scholar]
  185. GbadamosiI.T. Stay safe: Helpful herbal remedies in COVID-19 infection.Afr. J. Biomed. Res.202023131133
    [Google Scholar]
  186. OrisakweO.E. OrishC.N. NwanaforoE.O. Coronavirus disease (COVID-19) and Africa: Acclaimed home remedies.Sci. Afr.202010e0062010.1016/j.sciaf.2020.e0062033163740
    [Google Scholar]
  187. PawarK.S. MastudR.N. PawarS.K. PawarS.S. BhoiteR.R. BhoiteR.R. KulkarniM.V. DeshpandeA.R. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial.Front. Pharmacol.20211266936210.3389/fphar.2021.66936234122090
    [Google Scholar]
  188. BousquetJ CzarlewskiW ZuberbierT MullolJ BlainH Torrel.d.R AntoJM Induced cough challenges in a single patient with COVID-19 showing an interplay between Nrf2, TRPA1 and TRPV1 agonists.Int. Arch. Allergy. Immunol.20201824324338
    [Google Scholar]
  189. MishraA PathakY TripathiV Natural compounds as potential inhibitors of novel coronavirus (COVID-19) main protease: An in silico study.Res. Square.202045179199
    [Google Scholar]
  190. AmperayaniK.R. VaradhiG. OrugantiB. ParimiU.D. Molecular dynamics and absolute binding free energy studies of piperine derivatives as potential inhibitors of SARS-CoV-2 main protease.J. Biomol. Struct. Dyn.20234123136961370610.1080/07391102.2023.219398736995111
    [Google Scholar]
  191. GaoS. GangJ. YuM. XinG. TanH. Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer.BMC Canc.202121179110.1186/s12885‑021‑08520‑1
    [Google Scholar]
  192. RoutJ. SwainB.C. TripathyU. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2.J. Biomol. Struct. Dyn.202240286087410.1080/07391102.2020.181987932938313
    [Google Scholar]
  193. DewanganH.K. SinghN. MeghK.S. SinghS. Lakshmi Optimisation and evaluation of Gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity.J. Microencapsul.202239212513510.1080/02652048.2022.205162535282781
    [Google Scholar]
  194. TiwariP. NayakP. PrustyS.K. SahuP.K. Phytochemistry and pharmacology of tinospora cordifolia: A review.Syst. Rev. Pharm.201891707810.5530/srp.2018.1.14
    [Google Scholar]
  195. GuptaA. PantC.H. SinghN. SainiN. MishraA. TomarH. Potential role of Giloy (an important traditional Aurvedic medicinal dioecious creeper) as an immunomodulator.Adalya2021105767
    [Google Scholar]
  196. VyasP. GhanchiF. ChandolaH.M. RanthemS. Clinical evaluation of Rasayana compound as an adjuvant in the management of tuberculosis with anti-Koch′s treatment.Ayu2012331384310.4103/0974‑8520.10030723049182
    [Google Scholar]
  197. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon201959e0243710.1016/j.heliyon.2019.e0243731701036
    [Google Scholar]
  198. BishtA. TewariD. KumarS. ChandraS. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia.Mol. Divers.20232831743176337439907
    [Google Scholar]
  199. NandkumarT.V. DinkarT.A. PopatM.S. MohanD.D. A review on Tinospora cordifolia immunity booster.World J. Pharm. Res.20211059901006
    [Google Scholar]
  200. GhoshS. SahaS. Tinospora cordifolia: One plant, many roles.Anc. Sci. Life201231415115910.4103/0257‑7941.10734423661861
    [Google Scholar]
  201. ManneM GoudarG VarikasuvuSR KhetagoudarMC KanipakamH NatarajanP UmmitiMD YenagiVA ChinthakindiS DharaniP ThotaDSS PatilS PatilV Cordifolioside: Potent inhibitor against Mpro of SARS-CoV-2 and immunomodulatory through human TGF-β and TNF-α.3 Biotech202111125
    [Google Scholar]
  202. YadavD. SemwalB.C. DewanganH.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell.J. Biomater. Sci. Polym. Ed.20233481053106610.1080/09205063.2022.215578236469754
    [Google Scholar]
  203. KochmanJ. JakubczykK. AntoniewiczJ. MrukH. JandaK. Health benefits and chemical composition of matcha green tea: a review.Molecules20202618510.3390/molecules2601008533375458
    [Google Scholar]
  204. CallandN AlbeckaA BelouzardS WychowskiC DuverlieG DescampsV HoberD DubuissonJ RouilléY SéronKJH Séron KJH. (−)‐Epigallocatechin‐3‐gallate is a new inhibitor of hepatitis C virus entry.Hepatology.2012553720729
    [Google Scholar]
  205. FassinaG BuffaA BenelliR VarnierOE NoonanDM AlbiniAJA Polyphenolic antioxidant (–)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent.AIDS.2002166939941
    [Google Scholar]
  206. IdeK KawasakiY KawakamiK Anti influenza virus effects of catechins: A molecular and clinical review.Curr. Med. Chem.2016234247734783
    [Google Scholar]
  207. LyuS-Y RhimJ-Y Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro.Arch. Pharm. Res.2005281112931301
    [Google Scholar]
  208. WeberC SlivaK Rheinv.C KümmererBM The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection.Antiviral. Res.201511313
    [Google Scholar]
  209. CarneiroBM BatistaMN BragaACS NogueiraML RahalPJV The green tea molecule EGCG inhibits Zika virus entry.Virology.201649621521810.1016/j.virol.2016.06.012
    [Google Scholar]
  210. WangY.Q. LiQ.S. ZhengX.Q. LuJ.L. LiangY.R. Antiviral effects of green tea EGCG and its potential application against COVID-19.Molecules20212613396210.3390/molecules2613396234209485
    [Google Scholar]
  211. MahmoodiS. YousefiM. SadeghiO. MahmoodabadiA. SadriiraniM. HosseinzadeZ. JahanbakhshA. PanahandeS.B. SaeedinejadZ. MalekzadehJ.M. NaghmachiM. PourmahmoudiA. Green tea intake and its effect on laboratory parameters and disease symptoms in hospitalised patients with COVID 19: A structured protocol for a randomized controlled trial.Trials202122151410.1186/s13063‑021‑05462‑834344427
    [Google Scholar]
  212. HenssL. AusteA. SchürmannC. SchmidtC. RheinV.C. MühlebachM.D. SchnierleB.S. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection.J. Gen. Virol.2021102400157410.1099/jgv.0.00157433830908
    [Google Scholar]
  213. JangM. ParkR. ParkY.I. ChaY.E. YamamotoA. LeeJ.I. ParkJ. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro.Biochem. Biophys. Res. Commun.2021547232810.1016/j.bbrc.2021.02.01633588235
    [Google Scholar]
  214. OhgitaniE. YaS.M. IchitaniM. KobayashiM. TakiharaT. KawamotoM. KinugasaH. MazdaO. Significant inactivation of SARS-CoV-2 by a green tea catechin, a catechin-derivative and galloylated theaflavins in vitro.Molecules.20201612357210.3390/molecules26123572
    [Google Scholar]
  215. GhoshR. ChakrabortyA. BiswasA. ChowdhuriS. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors: An in silico docking and molecular dynamics simulation study.J. Biomol. Struct. Dyn.202139124362437410.1080/07391102.2020.177981832568613
    [Google Scholar]
  216. ZhuY. XieD.Y. Docking characterization and in vitro inhibitory activity of flavan-3-ols and dimeric proanthocyanidins against the main protease activity of SARS-Cov-2.Front. Plant Sci.20201160131610.3389/fpls.2020.60131633329667
    [Google Scholar]
  217. BhardwajV.K. SinghR. SharmaJ. RajendranV. PurohitR. KumarS. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.J. Biomol. Struct. Dyn.202139103449345810.1080/07391102.2020.176657232397940
    [Google Scholar]
  218. KamelF.O. KarimS. BafailD.A.O. AldawsariH.M. KottaS. IlyasU.K. Hepatoprotective effects of bioactive compounds from traditional herb Tulsi (Ocimum sanctum Linn) against galactosamine-induced hepatotoxicity in rats.Front. Pharmacol.202314121305210.3389/fphar.2023.121305237860117
    [Google Scholar]
  219. VermaS. Chemical constituents and pharmacological action of Ocimum sanctum (Indian holy basil-Tulsi).J. Phyto.20165520520710.31254/phyto.2016.5507
    [Google Scholar]
  220. BorahR. BiswasS.P. Tulsi (Ocimum sanctum), excellent source of phytochemicals.Int. J. Environ. Agric. Biotechnol.201835265258
    [Google Scholar]
  221. MongaJ. SharmaM. TailorN. GaneshN. Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C 57 BL mice.Pharm. Biol.201149442843610.3109/13880209.2010.52151321428866
    [Google Scholar]
  222. SatapathyS. DasN. BandyopadhyayD. MahapatraS.C. SahuD.S. MedaM. Effect of Tulsi (Ocimum sanctum Linn.) supplementation on metabolic parameters and liver enzymes in young overweight and obese subjects.Indian J. Clin. Biochem.201732335736310.1007/s12291‑016‑0615‑428811698
    [Google Scholar]
  223. KumarA.H. Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. Biology, Engineering.Medicine and Science Reports202061113
    [Google Scholar]
  224. MohapatraPK ChopdarKS DashGC RavalMK In silico screening of phytochemicals of Ocimum sanctum against main protease of SARS-CoV-2.J. Biomol. Struct. Dyn.202041243544410.26434/chemrxiv.12599915.v1
    [Google Scholar]
  225. IsmailN.A. JusohS.A. Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein.Interdiscip. Sci.20179449951110.1007/s12539‑016‑0157‑826969331
    [Google Scholar]
  226. MahajanP. TomarS. KumarA. YadavN. AryaA. DwivediV.D. A multi-target approach for discovery of antiviral compounds against dengue virus from green tea.Netw. Model. Anal. Health Inform. Bioinform.20209110
    [Google Scholar]
  227. RajagopalK. VarakumarP. BaliwadaA. ByranG. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): An in silico approach.Future J. Pharm. Sci.20206110410.1186/s43094‑020‑00126‑x33215042
    [Google Scholar]
  228. PradityaD. KirchhoffL. BrüningJ. RachmawatiH. SteinmannJ. SteinmannE. Anti-infective properties of the golden spice curcumin.Front. Microbiol.20191091291210.3389/fmicb.2019.0091231130924
    [Google Scholar]
  229. CaiZ. ZhangG. TangB. LiuY. FuX. ZhangX. Promising anti-influenza properties of active constituent of withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: computational study.Cell Biochem. Biophys.201572372773910.1007/s12013‑015‑0524‑925627548
    [Google Scholar]
  230. AkramM. TahirI.M. ShahS.M.A. MahmoodZ. AltafA. AhmadK. MunirN. DaniyalM. NasirS. MehboobH. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.Phytother. Res.201832581182210.1002/ptr.602429356205
    [Google Scholar]
  231. AhmadN. FazalH. AbbasiB.H. FarooqS. AliM. KhanM.A. Biological role of Piper nigrum L. (Black pepper): A review.Asian Pac. J. Trop. Biomed.201223S1945S195310.1016/S2221‑1691(12)60524‑3
    [Google Scholar]
  232. RoshdyW.H. RashedH.A. KandeilA. MostafaA. MoatasimY. KutkatO. ShamaA.N.M. GomaaM.R. SayedE.I.H. GuindyE.N.M. NaguibA. KayaliG. AliM.A. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2.PLoS One20201511e024173910.1371/journal.pone.024173933206688
    [Google Scholar]
  233. KumarP. KamleM. MahatoD.K. BoraH. SharmaB. RasaneP. BajpaiV.K. Tinospora cordifolia (Giloy): Phytochemistry, ethnopharmacology, clinical application and conservation strategies.Curr. Pharm. Biotechnol.202021121165117510.2174/138920102166620043011454732351180
    [Google Scholar]
  234. OrhanI.E. DenizS.F.S. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2?Nat. Prod. Bioprospect.202010417118610.1007/s13659‑020‑00250‑432529545
    [Google Scholar]
  235. SharmaA.N. UpadhyayP.K. DewanganH.K. Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.Ther. Deliv.202415968569810.1080/20415990.2024.238023939129676
    [Google Scholar]
  236. OsoB.J. AdeoyeA.O. OlaoyeI.F. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases.J. Biomol. Struct. Dyn.202240138940010.1080/07391102.2020.181363032876538
    [Google Scholar]
  237. ParkJ.Y. KoJ.A. KimD.W. KimY.M. KwonH.J. JeongH.J. KimC.Y. ParkK.H. LeeW.S. RyuY.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV.J. Enzyme Inhib. Med. Chem.2016311233010.3109/14756366.2014.100321525683083
    [Google Scholar]
  238. KimD.W. SeoK.H. LongC.M.J. OhK.Y. OhJ.W. ChoJ.K. LeeK.H. ParkK.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia.J. Enzyme Inhib. Med. Chem.2014291596310.3109/14756366.2012.75359123323951
    [Google Scholar]
  239. SawikowskaA. Meta-analysis of flavonoids with antiviral potential against coronavirus.Biom. Lett.2020571132210.2478/bile‑2020‑0002
    [Google Scholar]
  240. VermaS. TwilleyD. EsmearT. OosthuizenC.B. ReidA.M. NelM. LallN. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19).Front. Pharmacol.20201156133410.3389/fphar.2020.56133433101023
    [Google Scholar]
  241. ManiJ.S. JohnsonJ.B. SteelJ.C. BroszczakD.A. NeilsenP.M. WalshK.B. NaikerM. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.19798932360300
    [Google Scholar]
  242. KhalifaS.A.M. YosriN. MallahE.M.F. GhonaimR. GuoZ. MusharrafS.G. DuM. KhatibA. XiaoJ. SaeedA. SeediE.H.H.R. ZhaoC. EfferthT. SeediE.H.R. Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic.Phytomedicine20218515331110.1016/j.phymed.2020.15331133067112
    [Google Scholar]
  243. RakibA. PaulA. ChyM.N.U. SamiS.A. BaralS.K. MajumderM. TareqA.M. AminM.N. ShahriarA. UddinM.Z. DuttaM. TalleiT.E. EmranT.B. GandaraS.J. Biochemical and computational approach of selected phytocompounds from tinospora crispa in the management of COVID-19.Molecules20202517393610.3390/molecules2517393632872217
    [Google Scholar]
  244. PüssaT. RaudseppP. KuzinaK. RaalA. Polyphenolic composition of roots and petioles of Rheum rhaponticum L.Phytochem. Anal.20092029810310.1002/pca.110218979462
    [Google Scholar]
  245. ParkJ.H. WuQ. YooK.H. YongH.I. ChoS.M. ChungI.S. BaekN.I. Cytotoxic effect of flavonoids from the roots of Glycyrrhiza uralensis on human cancer cell lines.J. Appl. Biol. Chem.2011541677010.3839/jabc.2011.012
    [Google Scholar]
  246. SathyaB. PrasathM. Spectroscopic (FT-IR, FT-Raman, UV–Vis), quantum chemical calculation and molecular docking evaluation of liquiritigenin: An influenza A (H1N1) neuraminidase inhibitor.Res. Chem. Intermed.20194542135216610.1007/s11164‑018‑03727‑7
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128344055250220100720
Loading
/content/journals/cpd/10.2174/0113816128344055250220100720
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): COVID-19; lopinavir; main protease; medicinal plants; natural compounds; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test