Skip to content
2000
Volume 31, Issue 30
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Cancer is a challenging and lethal illness, with the number of individuals affected on the rise, particularly in developing nations. This disease incurs significant expenses for both patients and governments annually. Conversely, even with various methods and treatments in use, the mortality rate remains elevated. Additionally, traditional therapies come with numerous side effects, and drug resistance presents another obstacle for physicians. Consequently, discovering new drugs derived from natural sources may be a method to combat cancer. plants contain different metabolites, including monoterpenes, sulfide compounds, and polyphenols that are beneficial in cancer therapy.

Objective

This article was assembled to gather evidence and literature concerning the anticancer properties of compounds derived from these plants.

Methodology

This review article was created by exploring the term isolated constituents and cancer, with related data gathered from electronic databases such as ISI Web of Knowledge, PubMed, and Google Scholar up until early 2024.

Results

Results revealed that quite extensive research has been done in this area, indicating that the compounds may serve as novel medications for cancer therapy.

Conclusion

Subsequent research should encompass animal studies or clinical trials, focusing on assessing toxicity and identifying effective doses against cancer to facilitate the application of these natural derivatives in cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128342341250130050721
2025-02-20
2025-10-15
Loading full text...

Full text loading...

References

  1. VisserD.K.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Canc. Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  2. DizonD.S. KamalA.H. Cancer statistics 2024: All hands on deck.CA Cancer J. Clin.20247418910.3322/caac.2182438230825
    [Google Scholar]
  3. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  4. SamadiP. SakiS. DermaniF.K. PourjafarM. SaidijamM. Emerging ways to treat breast cancer: Will promises be met?Cell Oncol.201841660562110.1007/s13402‑018‑0409‑130259416
    [Google Scholar]
  5. ShokerR.M.H. A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes.Int. J. Res. Appl. Sci. Biotechnol.20207535435810.31033/ijrasb.7.5.47
    [Google Scholar]
  6. HemaIswaryaS. DobleM. Potential synergism of natural products in the treatment of cancer.Phytother. Res.200620423924910.1002/ptr.1841
    [Google Scholar]
  7. WangJ. DingR. OuyangT. GaoH. KanH. LiY. HuQ. YangY. Systematic investigation of the mechanism of herbal medicines for the treatment of prostate cancer.Aging20231541004102410.18632/aging.20451636795572
    [Google Scholar]
  8. BahararaH. RahseparS. EmamiS.A. ElyasiS. MohammadpourA.H. GhavamiV. RajendramR. SahebkarA. ArastehO. The efficacy of medicinal plant preparations in the alleviation of radiodermatitis in patients with breast cancer: A systematic review of clinical trials.Phytother. Res.20233783275329510.1002/ptr.789437211432
    [Google Scholar]
  9. KalachaveeduM. SenthilR. AzhagiyamanavalanS. RaviR. MeenakshisundaramH. DharmarajanA. Traditional medicine herbs as natural product matrices in cancer chemoprevention: A trans pharmacological perspective (scoping review).Phytother. Res.20233741539157310.1002/ptr.774736788644
    [Google Scholar]
  10. TewariD. RawatP. SinghP.K. Adverse drug reactions of anticancer drugs derived from natural sources.Food Chem. Toxicol.201912352253510.1016/j.fct.2018.11.04130471312
    [Google Scholar]
  11. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.1481631368509
    [Google Scholar]
  12. AmiriM.S. JoharchiM.R. Ethnobotanical knowledge of Apiaceae family in Iran: A review.Avicenna J. Phytomed.20166662163528078243
    [Google Scholar]
  13. ChristensenL.P. BrandtK. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis.J. Pharm. Biomed. Anal.200641368369310.1016/j.jpba.2006.01.05716520011
    [Google Scholar]
  14. MoranJ. RijswijkV.B. TraicevskiV. KitajimaE.W. MackenzieA.M. GibbsA.J. Potyviruses, novel and known, in cultivated and wild species of the family Apiaceae in Australia.Arch. Virol.2002147101855186710.1007/s00705‑002‑0865‑812376749
    [Google Scholar]
  15. GholamiO. ShamsaraJ. Comparison of the cytotoxic effects of umbelliprenin and auraptene.Int. J. Pharm. Pharm. Sci.2016814
    [Google Scholar]
  16. MandegaryA. SayyahM. HeidariM.R. Antinociceptive and anti-inflammatory activity of the seed and root extracts of Ferula gummosa boiss in mice and rats.Daru2004125862
    [Google Scholar]
  17. BagheriS. MohamadsadeghiH. HejazianE. Antinociceptive effect of seed’s essential oil of Ferula assa-foetida in mice.Int. J. Clin. Exp. Physiol.201741343710.4103/ijcep.ijcep_5_17
    [Google Scholar]
  18. GhasemiY. FaridiP. MehreganI. MohagheghzadehA. Ferula gummosa fruits: An aromatic antimicrobial agent.Chem. Nat. Compd.200541331131410.1007/s10600‑005‑0138‑3
    [Google Scholar]
  19. SadraeiH. AsghariG.R. HajhashemiV. KolagarA. EbrahimiM. Spasmolytic activity of essential oil and various extracts of Boiss. on ileum contractions.Phytomedicine20018537037610.1078/0944‑7113‑0005211695880
    [Google Scholar]
  20. ZaitonA.A.S. Anti-diabetic activity of Ferula assafoetida extract in normal and alloxan-induced diabetic rats.Pak. J. Biol. Sci.20101329710010.3923/pjbs.2010.97.10020415145
    [Google Scholar]
  21. BagheriS.M. HedeshS.T. MirjaliliA. RD.M.H. Evaluation of anti-inflammatory and some possible mechanisms of antinociceptive effect of Ferula assa foetida oleo gum resin.J. Evid. Based Compl. Altern. Med.201621427127610.1177/215658721560590326427790
    [Google Scholar]
  22. SoudaminiK.K. UnnikrishnanM.C. SukumaranK. KuttanR. Mutagenicity and anti-mutagenicity of selected spices.Indian J. Physiol. Pharmacol.19953943473538582746
    [Google Scholar]
  23. LeeC.L. ChiangL.C. ChengL.H. LiawC.C. RazekA.E.M.H. ChangF.R. WuY.C. InfluenzaA. H1N1) antiviral and cytotoxic agents from Ferula assa-foetida.J. Nat. Prod.20097291568157210.1021/np900158f19691312
    [Google Scholar]
  24. BagheriS.M. AslA.A. MoghadamM.T. YadegariM. MirjaliliA. MohazabiehZ.F. MomeniH. Antitumor effect of Ferula assa-foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice.J. Ayurveda Integr. Med.20178315215810.1016/j.jaim.2017.02.01328690055
    [Google Scholar]
  25. BagheriS.M. HejazianS.H. BafghiA.F. Antileishmanial activity of Ferula assa-foetida oleo gum resin against Leishmania major: An in vitro study.J. Ayurveda Integr. Med.20145422322610.4103/0975‑9476.14656725624696
    [Google Scholar]
  26. HejazianS.H. RD.M.H. BagheriS.M. The relaxant effect of seed FS essential oil and oleo-gum-resin of Ferula assa-foetida on isolated rat’s ileum.Ann. Med. Health Sci. Res.20144223824110.4103/2141‑9248.12905024761245
    [Google Scholar]
  27. AhmadS.B. TalouT. SaadZ. HijaziA. MerahO. The Apiaceae: Ethnomedicinal family as source for industrial uses.Ind. Crops Prod.201710966167110.1016/j.indcrop.2017.09.027
    [Google Scholar]
  28. SiriziM.A.G. GhalenoeiA.J. AllahtavakoliM. ForouzanfarH. BagheriS.M. Anticancer potential of Ferula assa-foetida and its constituents, a powerful plant for cancer therapy.World J. Biol. Chem.2023142283910.4331/wjbc.v14.i2.2837034135
    [Google Scholar]
  29. IranshahiM. KalategiF. RezaeeR. ShahverdiA. ItoC. FurukawaH. TokudaH. ItoigawaM. Cancer chemopreventive activity of terpenoid coumarins from Ferula species.Planta Med.200874214715010.1055/s‑2008‑103429318240102
    [Google Scholar]
  30. JunqueiraM.Z. ChammasR. Cancer chemotherapy failure: A synthetic view.Rev. Med.201897214115310.11606/issn.1679‑9836.v97i2p141‑153
    [Google Scholar]
  31. LiD. RuiY. GuoS. LuanF. LiuR. ZengN. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives.Life Sci.202128411992110.1016/j.lfs.2021.11992134481866
    [Google Scholar]
  32. KumarN. PruthiV. Potential applications of ferulic acid from natural sources.Biotechnol. Rep.20144869310.1016/j.btre.2014.09.00228626667
    [Google Scholar]
  33. KimJ.K. ParkS.U. A recent overview on the biological and pharmacological activities of ferulic acid.EXCLI J.20191813213830956646
    [Google Scholar]
  34. JainP.G. SuranaS.J. Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats.EXCLI J.20161559961328096790
    [Google Scholar]
  35. MutairiA.A. RahmanA. RaoM.S. Low doses of thymoquinone and ferulic acid in combination effectively inhibit proliferation of cultured MDA-MB 231 breast adenocarcinoma cells.Nutr. Cancer202173228228910.1080/01635581.2020.174386932223348
    [Google Scholar]
  36. BagheriS.M. AslA.A. ShamsA. BafghiM.S.A. HafizibarjinZ. Evaluation of cytotoxicity effects of oleo-gum-resin and its essential oil of Ferula assa-foetida and ferulic acid on 4T1 breast cancer cells.Indian J. Med. Paediatr. Oncol.201738211612028900317
    [Google Scholar]
  37. ZhangX. LinD. JiangR. LiH. WanJ. LiH. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition.Oncol. Rep.201636127127810.3892/or.2016.480427177074
    [Google Scholar]
  38. ShiraniK. IranshahiM. AskariV.R. GholizadehZ. ZadehA.A. ZeinaliM. HassaniF.V. TaherzadehZ. Comparative evaluation of the protective effects of oral administration of auraptene and umbelliprenin against CFA-induced chronic inflammation with polyarthritis in rats.Biomed. Pharmacother.202113911163510.1016/j.biopha.2021.11163534243601
    [Google Scholar]
  39. ShakeriA. IranshahyM. IranshahiM. Biological properties and molecular targets of umbelliprenin – A mini-review.J. Asian Nat. Prod. Res.201416888488910.1080/10286020.2014.91763024852499
    [Google Scholar]
  40. CharmforoshanE. KarimiE. OskoueianE. IranshahiM. Antibacterial, antioxidant and melanogenesis inhibitory activity of auraptene, a coumarin from Ferula szowitsiana root.Nutr. Cancer20227451829183610.1080/01635581.2021.196292234378465
    [Google Scholar]
  41. GoudarziS. KahriziD. ShirkhaniP. MahdifarM. IranshahiM. RafatpanahH. AyatollahiH. KeramatiM.R. AyatollahiH. Comparing toxicity of galbanic acid, auraptene and umbelliprenin on adult T-cell leukaemia-lymphoma in normoxia and hypoxia.Cell. Mol. Biol.20226812172010.14715/cmb/2022.68.12.437130187
    [Google Scholar]
  42. AtabakhshianR. SalamiS. MirfakhraieR. KhatonabadiM.S. SabetS.M. YaghmaeiG.B.G. GhafghaziS. BeiramiD.A. RezaeiS.M. Umbelliprenin suppresses angiogenesis signaling in SKBR-3 cell line by downregulation of EGF/CoCl2-mediated PI3K/AKT/MAPK.Res. J. Pharm.20218718
    [Google Scholar]
  43. ShahzadiI. AliZ. BaekS.H. MirzaB. AhnK.S. Assessment of the antitumor potential of umbelliprenin, a naturally occurring sesquiterpene coumarin.Biomedicines20208512610.3390/biomedicines805012632443431
    [Google Scholar]
  44. ZhangL. SunX. SiJ. LiG. CaoL. Umbelliprenin isolated from Ferula sinkiangensis inhibits tumor growth and migration through the disturbance of Wnt signaling pathway in gastric cancer.PLoS One2019147e020716910.1371/journal.pone.020716931260453
    [Google Scholar]
  45. RashidiM. ZiaiS.A. ZanjaniM.T. KhalilnezhadA. JamshidiH. AmaniD. Umbelliprenin is potentially toxic against the HT29, CT26, MCF-7, 4T1, A172, and GL26 cell lines, potentially harmful against bone marrow-derived stem cells, and non-toxic against peripheral blood mononuclear cells.Iran. Red Crescent Med. J.2016187e3516710.5812/ircmj.3516727703798
    [Google Scholar]
  46. ZhangL. SiJ. LiG. LiX. ZhangL. GaoL. HuoX. LiuD. SunX. CaoL. Umbelliprenin and lariciresinol isolated from a long-term-used herb medicine Ferula sinkiangensis induce apoptosis and G0/G1 arresting in gastric cancer cells.RSC Advances20155110910069101710.1039/C5RA11335K
    [Google Scholar]
  47. AliS.Z MehrdadI HasanA.Z JeddiM.T. Umbelliprenin induces apoptosis in CLL cell lines.Iran. J. Pharm. Res.2012112653
    [Google Scholar]
  48. BarthomeufC. LimS. IranshahiM. CholletP. Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis.Phytomedicine2008151-210311110.1016/j.phymed.2007.04.00117689942
    [Google Scholar]
  49. IranshahiM. SahebkarA. TakasakiM. KonoshimaT. TokudaH. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo.Eur. J. Cancer Prev.200918541241510.1097/CEJ.0b013e32832c389e19531956
    [Google Scholar]
  50. CharmforoshanE. KarimiE. OskoueianE. HaghiE.A. IranshahiM. Inhibition of human breast cancer cells (MCF-7 cell line) growth via cell proliferation, migration, and angiogenesis by auraptene of Ferula szowitsiana root extract.J. Food Meas. Charact.20191342644265310.1007/s11694‑019‑00185‑6
    [Google Scholar]
  51. SafiR. SabbanE.M. NajjarF. Ferula hermonis: A review of current use and pharmacological studies of its sesquiterpene ester ferutinin.Curr. Drug Targ.202021549950810.2174/138945012066619102915505331663476
    [Google Scholar]
  52. MatinM.M. NakhaeizadehH. BahramiA.R. IranshahiM. ArghianiN. RassouliF.B. Ferutinin, an apoptosis inducing terpenoid from Ferula ovina.Asian Pac. J. Cancer Prev.20141552123212810.7314/APJCP.2014.15.5.212324716944
    [Google Scholar]
  53. AydoğanF. BaykanŞ. BütünerD.B. Cytotoxic activity of sesquiterpenoids isolated from endemic Ferula tenuissima hub.- mor & peşmen.Turkish J. Pharm. Sci.201916447648010.4274/tjps.galenos.2018.2335632454752
    [Google Scholar]
  54. GarmroudiN.R.S. KarimiE. OskoueianE. TabriziH.M. IranshahiM. Ferutinin: A phytoestrogen from Ferula and its anticancer, antioxidant, and toxicity properties.J. Biochem. Mol. Toxicol.2021354e2271310.1002/jbt.2271333501774
    [Google Scholar]
  55. SafiR. RodriguezF. HilalG. AssafD.M. DiabY. SabbanE.M. NajjarF. DelfourneE. Hemisynthesis, antitumoral effect, and molecular docking studies of ferutinin and its analogues.Chem. Biol. Drug Des.201687338239710.1111/cbdd.1267026432755
    [Google Scholar]
  56. AlilouM. DibweD.F. SchwaigerS. KhodamiM. TroppmairJ. AwaleS. StuppnerH. Antiausterity activity of secondary metabolites from the roots of Ferula hezarlalehzarica against the PANC-1 human pancreatic cancer cell line.J. Nat. Prod.20208341099110610.1021/acs.jnatprod.9b0110932163286
    [Google Scholar]
  57. GaoM. WongS.Y. LauP.M. KongS.K. Ferutinin induces in vitro eryptosis/erythroptosis in human erythrocytes through membrane permeabilization and calcium influx.Chem. Res. Toxicol.20132681218122810.1021/tx400127w23848973
    [Google Scholar]
  58. SoltaniS. AminG. SourmaghiS.M.H. IranshahiM. Histone deacetylase inhibitory and cytotoxic activities of the constituents from the roots of three species of Ferula. Iran. J. Basic Med. Sci.2019221939830944714
    [Google Scholar]
  59. PoliF. AppendinoG. SacchettiG. BalleroM. MaggianoN. RanellettiF.O. Antiproliferative effects of daucane esters from Ferula communis and F. arrigonii on human colon cancer cell lines.Phytother. Res.200519215215710.1002/ptr.144315852493
    [Google Scholar]
  60. NazariZ.E. IranshahiM. Biologically active sesquiterpene coumarins from Ferula species.Phytother. Res.201125331532310.1002/ptr.331121031633
    [Google Scholar]
  61. KasaianJ. MohammadiA. Biological activities of farnesiferol C: A review.J. Asian Nat. Prod. Res.2018201273510.1080/10286020.2017.137999728948835
    [Google Scholar]
  62. HasanzadehD. MahdaviM. DehghanG. CharoudehH.N. Farnesiferol C induces cell cycle arrest and apoptosis mediated by oxidative stress in MCF-7 cell line.Toxicol. Rep.2017442042610.1016/j.toxrep.2017.07.01028959668
    [Google Scholar]
  63. TanzadehpanahH. MahakiH. SamadiP. KarimiJ. MoghadamN.H. SalehzadehS. DastanD. SaidijamM. Anticancer activity, calf thymus DNA and human serum albumin binding properties of farnesiferol C from Ferula pseudalliacea.J. Biomol. Struct. Dyn.201937112789280010.1080/07391102.2018.149754330052136
    [Google Scholar]
  64. KasaianJ. MosaffaF. BehravanJ. MasulloM. PiacenteS. IranshahiM. Modulation of multidrug resistance protein 2 efflux in the cisplatin resistance human ovarian carcinoma cells A2780/RCIS by sesquiterpene coumarins.Phytother. Res.2016301848910.1002/ptr.550426503061
    [Google Scholar]
  65. AldaghiL. RadA. ArabA. KasaianJ. IranshahiM. SadrA. SoltaniF. In silico and in vitro evaluation of cytotoxic activities of farnesiferol c and microlobin on MCF-7, HeLa and KYSE cell lines.Drug Res.2016661053253810.1055/s‑0042‑11120027463028
    [Google Scholar]
  66. KasaianJ. MosaffaF. BehravanJ. MasulloM. PiacenteS. GhandadiM. IranshahiM. Reversal of P-glycoprotein-mediated multidrug resistance in MCF-7/Adr cancer cells by sesquiterpene coumarins.Fitoterapia201510314915410.1016/j.fitote.2015.03.02525843566
    [Google Scholar]
  67. LeeJ.H. ChoiS. LeeY. LeeH.J. KimK.H. AhnK.S. BaeH. LeeH.J. LeeE.O. AhnK.S. RyuS.Y. LüJ. KimS.H. Herbal compound farnesiferol C exerts antiangiogenic and antitumor activity and targets multiple aspects of VEGFR1 (Flt1) or VEGFR2 (Flk1) signaling cascades.Mol. Cancer Ther.20109238939910.1158/1535‑7163.MCT‑09‑077520103598
    [Google Scholar]
  68. DastanD. SalehiP. GhanatiF. GohariA.R. MaroofiH. AlnajarN. Phytotoxicity and cytotoxicity of disesquiterpene and sesquiterpene coumarins from Ferula pseudalliacea.Ind. Crops Prod.201455434810.1016/j.indcrop.2014.01.051
    [Google Scholar]
  69. DastanD. SalehiP. GohariR.A. EbrahimiS. AliahmadiA. HamburgerM. Bioactive sesquiterpene coumarins from Ferula pseudalliacea.Planta Med.201480131118112310.1055/s‑0034‑138299625137575
    [Google Scholar]
  70. EskandaniM. BararJ. DolatabadiE.N.J. HamishehkarH. NazemiyehH. Formulation, characterization, and geno/cytotoxicity studies of galbanic acid-loaded solid lipid nanoparticles.Pharm. Biol.201553101525153810.3109/13880209.2014.99183625853953
    [Google Scholar]
  71. ChahardoliA. MavaeiM. ShokoohiniaY. FattahiA. Galbanic acid, a sesquiterpene coumarin as a novel candidate for the biosynthesis of silver nanoparticles: In vitro hemocompatibility, antiproliferative, antibacterial, antioxidant, and anti-inflammatory properties.Adv. Powder Technol.202334110392810.1016/j.apt.2022.103928
    [Google Scholar]
  72. SajjadiM. KarimiE. OskoueianE. IranshahiM. NeamatiA. Galbanic acid: Induced antiproliferation in estrogen receptor-negative breast cancer cells and enhanced cellular redox state in the human dermal fibroblasts.J. Biochem. Mol. Toxicol.20193311e2240210.1002/jbt.2240231576639
    [Google Scholar]
  73. MohtashamiL. GhowsN. NajaranT.Z. IranshahiM. Galbanic acid-coated Fe3O4 magnetic nanoparticles with enhanced cytotoxicity to prostate cancer cells.Planta Med.201985216917810.1055/a‑0721‑188630180257
    [Google Scholar]
  74. ZhangY. KimK.H. ZhangW. GuoY. KimS.H. LüJ. Galbanic acid decreases androgen receptor abundance and signaling and induces G1 arrest in prostate cancer cells.Int. J. Cancer2012130120021210.1002/ijc.2599321328348
    [Google Scholar]
  75. KimK.H. LeeH.J. JeongS.J. LeeH.J. LeeE.O. KimH.S. ZhangY. RyuS.Y. LeeM.H. LüJ. KimS.H. Galbanic acid isolated from Ferula assafoetida exerts in vivo antitumor activity in association with antiangiogenesis and anti-proliferation.Pharm. Res.201128359760910.1007/s11095‑010‑0311‑721063754
    [Google Scholar]
  76. OhB.S. ShinE.A. JungJ.H. JungD.B. KimB. ShimB.S. YazdiM.C. IranshahiM. KimS.H. Apoptotic effect of galbanic acid via activation of caspases and inhibition of Mcl-1 in H460 non-small lung carcinoma cells.Phytother. Res.201529684484910.1002/ptr.532025753585
    [Google Scholar]
  77. KhayatM.T. AlharbiM. GhazawiK.F. MohamedG.A. IbrahimS.R.M. Ferula sinkiangensis (Chou-AWei, Chinese ferula): Traditional uses, phytoconstituents, biosynthesis, and pharmacological activities.Plants202312490210.3390/plants1204090236840251
    [Google Scholar]
  78. LiG. LiX. CaoL. ZhangL. ShenL. ZhuJ. WangJ. SiJ. Sesquiterpene coumarins from seeds of Ferula sinkiangensis.Fitoterapia201510322222610.1016/j.fitote.2015.03.02225818230
    [Google Scholar]
  79. LiG. WangJ. LiX. CaoL. LvN. ChenG. ZhuJ. SiJ. Two new sesquiterpene coumarins from the seeds of Ferula sinkiangensis.Phytochem. Lett.20151312312610.1016/j.phytol.2015.06.002
    [Google Scholar]
  80. LiG. LiX. CaoL. ShenL. ZhuJ. ZhangJ. WangJ. ZhangL. SiJ. Steroidal esters from Ferula sinkiangensis.Fitoterapia20149724725210.1016/j.fitote.2014.06.01624979220
    [Google Scholar]
  81. WangJ. WangH. ZhangM. LiX. ZhaoY. ChenG. SiJ. JiangL. Sesquiterpene coumarins from Ferula sinkiangensis K.M.Shen and their cytotoxic activities.Phytochemistry202018011253110.1016/j.phytochem.2020.11253133010535
    [Google Scholar]
  82. ÖnderA. Anticancer activity of natural coumarins for biological targets.Stud. Nat. Prod. Chem.2020648510910.1016/B978‑0‑12‑817903‑1.00003‑6
    [Google Scholar]
  83. ChenZ. ZhouG. MaS. Research progress of Ferula ferulaeoides: A review.Molecules2023288357910.3390/molecules2808357937110813
    [Google Scholar]
  84. YaoD. PanD. ZhenY. HuangJ. WangJ. ZhangJ. HeZ. Ferulin C triggers potent PAK1 and p21-mediated antitumor effects in breast cancer by inhibiting Tubulin polymerization in vitro and in vivo.Pharmacol. Res.202015210460510.1016/j.phrs.2019.10460531863866
    [Google Scholar]
  85. YuS.M. HuD.H. ZhangJ.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells.Mol. Med. Rep.20151233869387310.3892/mmr.2015.379725997538
    [Google Scholar]
  86. KasaianJ. IranshahyM. MasulloM. PiacenteS. EbrahimiF. IranshahiM. Sesquiterpene lactones from Ferula oopoda and their cytotoxic properties.J. Asian Nat. Prod. Res.201416324825310.1080/10286020.2013.86609924320993
    [Google Scholar]
  87. MahakiH. TanzadehpanahH. ZiedA.O.K. MoghadamN.H. BahmaniA. SalehzadehS. DastanD. SaidijamM. Cytotoxicity and antioxidant activity of Kamolonol acetate from Ferula pseudalliacea, and studying its interactions with calf thymus DNA (ct-DNA) and human serum albumin (HSA) by spectroscopic and molecular docking techniques.Process Biochem.20197920321310.1016/j.procbio.2018.12.004
    [Google Scholar]
  88. MollazadehS. MatinM.M. BahramiA.R. IranshahiM. RassouliB.M. RassouliF.B. NeshatiV. Feselol enhances the cytotoxicity and DNA damage induced by cisplatin in 5637 cells.Z. Naturforsch. C J. Biosci.20116611-1255556110.1515/znc‑2011‑11‑120422351980
    [Google Scholar]
  89. RassouliB.F. MatinM.M. IranshahiM. BahramiA.R. NeshatiV. MollazadehS. NeshatiZ. Mogoltacin enhances vincristine cytotoxicity in human transitional cell carcinoma (TCC) cell line.Phytomedicine2009162-318118710.1016/j.phymed.2008.06.01118707855
    [Google Scholar]
  90. NeshatiaV. MatinM.M. IranshahiM. BahramiA.R. BehravanJ. MollazadehS. RassouliF.B. Cytotoxicity of vincristine on the 5637 cell line is enhanced by combination with conferone.Z. Naturforsch. C J. Biosci.2009645-631732210.1515/znc‑2009‑5‑60219678531
    [Google Scholar]
  91. HuangJ. HanH.Y. LiG.Y. WangH.Y. ZhangC. ZhangK. TanY. LiP.Y. WangJ.H. Two new terpenoid benzoates with antitumor activity from the roots of Ferula dissecta.J. Asian Nat. Prod. Res.201315101100110610.1080/10286020.2013.81866023869569
    [Google Scholar]
  92. IranshahiM. SahebkarA. HosseiniS.T. TakasakiM. KonoshimaT. TokudaH. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo.Phytomedicine2010173-426927310.1016/j.phymed.2009.05.02019577457
    [Google Scholar]
  93. IranshahyM. FarhadiF. PaknejadB. ZareianP. IranshahiM. KaramiM. AbtahiS.R. Gummosin, a sesquiterpene coumarin from Ferula assa-foetida is preferentially cytotoxic to human breast and prostate cancer cell lines.Avicenna J. Phytomed.20199544645331516858
    [Google Scholar]
  94. WangJ. GaoY. WangH. ChenL. CaoL. XuJ. LiX. ZhaoY. ZhuJ. SiJ. Apoptosis induction and cell cycle arrest induced by Sinkiangenone B, a novel phenylpropanoid derivative from the resin of Ferula sinkiangensis K. M. Shen.RSC Advances2018884093410310.1039/C7RA13716H
    [Google Scholar]
  95. LahouelM. BoulmeltoutM. ZellaguiA. BenguedouarL. BarrattG. BarrattG. LahouelM. Cytotoxicity of sesquiterpenes ferulenol and coladin on liver FAO and B16F1 melanoma cells.Pharmacogn. Mag.2018145633310.4103/pm.pm_611_17
    [Google Scholar]
  96. ZhangL. TongX. ZhangJ. HuangJ. WangJ. DAW22, a natural sesquiterpene coumarin isolated from Ferula ferulaeoides (Steud.) Korov. that induces C6 glioma cell apoptosis and endoplasmic reticulum (ER) stress.Fitoterapia2015103465410.1016/j.fitote.2015.03.01025776007
    [Google Scholar]
  97. LaricheN LahouelM BenguedouarL ZellaguiA Ferulenol, a sesquiterpene coumarin, induce apoptosis via mitochondrial dysregulation in lung cancer induced by benzo [a] pyrene: Involvement of Bcl-2 protein.Anti Canc. Agents Med. Chem.20171713571362
    [Google Scholar]
  98. DivyaK. RamalakshmiK. MurthyP.S. RaoJ.M.L. Volatile oils from Ferula asafoetida varieties and their antimicrobial activity.Lebensm. Wiss. Technol.201459277477910.1016/j.lwt.2014.07.013
    [Google Scholar]
  99. VermaS. KhambhalaP. JoshiS. KothariV. PatelT. SeshadriS. Evaluating the role of dithiolane rich fraction of Ferula asafoetida (apiaceae) for its antiproliferative and apoptotic properties: In vitro studies.Exp. Oncol.2023412909410.32471/exp‑oncology.2312‑8852.vol‑41‑no‑2.1298931262162
    [Google Scholar]
  100. YathamP. ShuklaD. SrivastavaA.K. PragadheeshV.S. KumarD. Purification and identification of anticancer organosulfides from Ferula assa-foetida gum: Integrative analysis employing GC/GC-MS/RP-HPLC/NMR.Nat. Prod. Res.202236112869287410.1080/14786419.2021.192290333960249
    [Google Scholar]
  101. WangJ. YanH. HuoX. LiL. WangH. ZhangM. LiX. ZhaoY. ChenG. SiJ. New sulfoxide-containing derivatives from the resin of Ferula sinkiangensis.Planta Med.202288642042810.1055/a‑1495‑596334015832
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128342341250130050721
Loading
/content/journals/cpd/10.2174/0113816128342341250130050721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test