Skip to content
2000
Volume 31, Issue 30
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Psoralen, the simplest linear furanocoumarin, is derived from many medicinal plants, such as L., Fr. Schmidt ex Miq., and (Miq.) Maxim. It has been used for treating osteoporosis and some skin disorders, including vitiligo, psoriasis, and atopic eczema. This review focuses on the pharmaceutical design of psoralen and the structure-activity relationships (SARs) of its derivatives. It also includes the biosynthetic pathways, metabolic characteristics, metabolites, and clinical uses of psoralen, as well as its toxicity/side effects and relevant mechanisms. Psoralen, as a promising drug lead compound, is structurally modified to develop numerous derivatives with remarkable biological activities. SARs discussed herein can guide the design and development of novel psoralen-based derivatives for use in pharmaceuticals and widen their therapeutic potencies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128365838250128060007
2025-03-18
2025-10-13
Loading full text...

Full text loading...

References

  1. BitchagnoG.T.M. NgnitedemN.V.A. MelchertD. FobofouS.A. Demystifying racemic natural products in the homochiral world.Nat. Rev. Chem.202261180682210.1038/s41570‑022‑00431‑4
    [Google Scholar]
  2. GalloK. KemmlerE. GoedeA. BeckerF. DunkelM. PreissnerR. BanerjeeP. SuperNatural 3.0—a database of natural products and natural product-based derivatives.Nucleic Acids Res.202351D1D654D65910.1093/nar/gkac100836399452
    [Google Scholar]
  3. ChengS.T. HuJ.L. RenJ.H. YuH.B. ZhongS. WongW.V.K. LawK.B.Y. ChenW.X. XuH.M. ZhangZ.Z. CaiX.F. HuY. ZhangW.L. LongQ.X. RenF. ZhouH.Z. HuangA.L. ChenJ. Dicoumarol, an NQO1 inhibitor, blocks cccDNA transcription by promoting degradation of HBx.J. Hepatol.202174352253410.1016/j.jhep.2020.09.01932987030
    [Google Scholar]
  4. SunC. ZhaoW. WangX. SunY. ChenX. A pharmacological review of dicoumarol: An old natural anticoagulant agent.Pharmacol. Res.202016010519310.1016/j.phrs.2020.10519332911072
    [Google Scholar]
  5. NagyN. KuipersH.F. FrymoyerA.R. IshakH.D. BollykyJ.B. WightT.N. BollykyP.L. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer.Front. Immunol.2015612310.3389/fimmu.2015.0012325852691
    [Google Scholar]
  6. VitaleD.L. IcardiA. RosalesP. SpinelliF.M. SevicI. AlanizL.D. Targeting the tumor extracellular matrix by the natural molecule 4-methylumbelliferone: A complementary and alternative cancer therapeutic strategy.Front. Oncol.20211171006110.3389/fonc.2021.71006134676159
    [Google Scholar]
  7. Oliveirad.R.T. dos Santos RolimC.S. RolimK.d.L. GomesS.d.M.L. MartinsG.A.S. Castrod.L.M. Nascimentod.W.M. BonattoS.E.C. Cássia Saraiva Nunomurad.R. LamarãoC.V. ZanottoS.P. Endopleura uchi – A review about its nutritional compounds, biological activities and production market.Food Res. Int.202113910988410.1016/j.foodres.2020.10988433509472
    [Google Scholar]
  8. SalimoZ.M. YakubuM.N. Silvad.E.L. Almeidad.A.C.G. ChavesY.O. CostaE.V. Silvad.F.M.A. TavaresJ.F. MonteiroW.M. Melod.G.C. KoolenH.H.F. Chemistry and pharmacology of bergenin or its derivatives: A promising molecule.Biomolecules202313340310.3390/biom1303040336979338
    [Google Scholar]
  9. BruniR. BarrecaD. ProttiM. BrighentiV. RighettiL. AnceschiL. MercoliniL. BenvenutiS. GattusoG. PellatiF. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest.Molecules20192411216310.3390/molecules2411216331181737
    [Google Scholar]
  10. CuriniM. CravottoG. EpifanoF. GiannoneG. Chemistry and biological activity of natural and synthetic prenyloxycoumarins.Curr. Med. Chem.200613219922210.2174/09298670677519789016472213
    [Google Scholar]
  11. AhmadT.A. MahdaweA.M.M. NadirD.S. Effect of methyl jasmonate on the production of furanocoumarins in cell suspension cultures of Ruta graveolens L.Plant Cell Tissue Organ Cult.2020143356557110.1007/s11240‑020‑01941‑z
    [Google Scholar]
  12. SturaroG. CigoliniG. MenilliL. ColaF. LiddoD.R. TassoA. ConconiM.T. MioloG. Antiproliferative activity of 8-methoxypsoralen on DU145 prostate cancer cells under UVA and blue light.Photochem. Photobiol. Sci.20171671182119310.1039/c7pp00116a28604903
    [Google Scholar]
  13. ChenY. XiangQ. ChenZ. Simultaneous and highly sensitive quantification of five bioactive components in Fructus Psoraleae and in rat plasma by HPLC with fluorescence detection.Anal. Methods20146126927510.1039/C3AY41226A
    [Google Scholar]
  14. DuJ. WangC.H. YangJ. HeX. HanX.L. LiC.C. ChaiX. WangY.F. ZhuY. LiZ. Chemical constituents from the fruits of Psoralea corylifolia and their protective effects on ionising radiation injury.Nat. Prod. Res.201933567368010.1080/14786419.2017.140540729156966
    [Google Scholar]
  15. ShiM. ZhangY. SongM. SunY. LiC. KangW. Screening the marker components in Psoralea corylifolia L. with the aids of spectrum-effect relationship and component knock-out by UPLC-MS2.Int. J. Mol. Sci.20181911343910.3390/ijms1911343930400170
    [Google Scholar]
  16. DumitrescuG.C. JîjieA.R. ManeaH.C. MoacăE.A. IftodeA. MindaD. ChioibaşR. DeheleanC.A. VladC.S. New insights concerning phytophotodermatitis induced by phototoxic plants.Life2024148101910.3390/life1408101939202761
    [Google Scholar]
  17. DewickP.M. The shikimate pathway: Aromatic amino acids and phenylpropanoids.In: Medicinal Natural ProductsJohn Wiley & Sons, LtdHoboken, New Jersey2009
    [Google Scholar]
  18. MaS. LiQ. FengY. ChenY. YuP. DingX. Simultaneous determination of five coumarins in Peucedanum decursivum Radix by UPLC.J. Chromatogr. Sci.202260217317810.1093/chromsci/bmab05534021565
    [Google Scholar]
  19. BalkrishnaA. AryaV. SharmaI.P. Anti-cancer and anti-inflammatory potential of furanocoumarins from Ammi majus L.Anticancer. Agents Med. Chem.20222261030103610.2174/187152062166621082411312834431469
    [Google Scholar]
  20. MasudaT. TakasugiM. AnetaiM. Psoralen and other linear furanocoumarins as phytoalexins in Glehnia littoralis.Phytochemistry1998471131610.1016/S0031‑9422(97)00528‑1
    [Google Scholar]
  21. YangM. LiX. ZhangL. WangC. JiM. XuJ. ZhangK. LiuJ. ZhangC. LiM. Ethnopharmacology, phytochemistry, and pharmacology of the genus Glehnia: A systematic review.Evid. Based Complement. Alternat. Med.2019201913310.1155/2019/125349331915441
    [Google Scholar]
  22. NajdaA. DyduchJ. ŚwicaK. KapłanM. PaplińskiR. KrólS.M. KlimekK. Identification and profile of furanocoumarins from the ribbed celery (Apium graveolens L. Var. Dulce Mill./ Pers.).Food Sci. Technol. Res.2015211677510.3136/fstr.21.67
    [Google Scholar]
  23. WangT. GuC.B. WangS.X. KouP. JiaoJ. FuY.J. Simultaneous extraction, transformation and purification of psoralen from fig leaves using pH-dependent ionic liquid solvent based aqueous two-phase system.J. Clean. Prod.201817282783610.1016/j.jclepro.2017.10.185
    [Google Scholar]
  24. WangT. JiaoJ. GaiQ.Y. WangP. GuoN. NiuL.L. FuY.J. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents.J. Pharm. Biomed. Anal.201714533934510.1016/j.jpba.2017.07.00228710995
    [Google Scholar]
  25. BorgneL.E. CicchettiE. BertrandT. HPTLC methods for qualitative and quantitative analysis of selected furocoumarins in essential oils.Flavour Fragrance J.201732533033910.1002/ffj.3394
    [Google Scholar]
  26. RussoM. RiganoF. ArigòA. DugoP. MondelloL. Coumarins, psoralens and polymethoxyflavones in cold-pressed citrus essential oils: A review.J. Essent. Oil Res.202133322123910.1080/10412905.2020.1857855
    [Google Scholar]
  27. GaliatsatosP. MaydanD.D. MacalpineE. SchleupnerB. AitchisonA.H. LernerA.D. LevyB. HalthoreA. EwardW. Psoralen: A narrative review of current and future therapeutic uses.J. Cancer Res. Clin. Oncol.2024150313010.1007/s00432‑024‑05648‑y38489072
    [Google Scholar]
  28. RenY. SongX. TanL. GuoC. WangM. LiuH. CaoZ. LiY. PengC. A review of the pharmacological properties of psoralen.Front. Pharmacol.20201157153510.3389/fphar.2020.57153533013413
    [Google Scholar]
  29. ThakurA. SharmaR. JaswalV.S. NepovimovaE. ChaudharyA. KucaK. Psoralen: A biologically important coumarin with emerging applications.Mini Rev. Med. Chem.202020181838184510.2174/138955752066620042910105332348216
    [Google Scholar]
  30. TripathiN. BhardwajN. KumarS. JainS.K. Phytochemical and pharmacological aspects of psoralen - A bioactive furanocoumarin from Psoralea corylifolia Linn.Chem. Biodivers.20232011e20230086710.1002/cbdv.20230086737752710
    [Google Scholar]
  31. AhmedS. KhanH. AschnerM. MirzaeH. AkkolK.E. CapassoR. Anticancer potential of furanocoumarins: Mechanistic and therapeutic aspects.Int. J. Mol. Sci.20202116562210.3390/ijms2116562232781533
    [Google Scholar]
  32. LiangY. XieL. LiuK. CaoY. DaiX. WangX. LuJ. ZhangX. LiX. Bergapten: A review of its pharmacology, pharmacokinetics, and toxicity.Phytother. Res.202135116131614710.1002/ptr.722134347307
    [Google Scholar]
  33. PhucharoenrakP. TrachoothamD. Bergaptol, a major furocoumarin in citrus: Pharmacological properties and toxicity.Molecules202429371310.3390/molecules2903071338338457
    [Google Scholar]
  34. CastilloE. RosendeG.M.E. SolísM.I. The use of herbal medicine in the treatment of vitiligo: An updated review.Planta Med.202389546848310.1055/a‑1855‑183936379447
    [Google Scholar]
  35. JamalisJ. YusofF.S.M. ChanderS. WahabR.A. BhagwatP.D. SankaranarayananM. AlmalkiF. HaddaT.B. Psoralen derivatives: Recent advances of synthetic strategy and pharmacological properties.Antiinflamm. Antiallergy Agents Med. Chem.202019322223910.2174/187152301866619062517080231241020
    [Google Scholar]
  36. AnsaryE.S.L. RahmanD.E.A. EldydamonyN.M.A. Coumarins: Biological activity and SAR studies.Pharma Chem.20168156174
    [Google Scholar]
  37. LeeY. HyunC.G. Mechanistic insights into the ameliorating effect of melanogenesis of psoralen derivatives in b16f10 melanoma cells.Molecules2022279261310.3390/molecules2709261335565964
    [Google Scholar]
  38. RodriguesJ.L. RodriguesL.R. Biosynthesis and heterologous production of furanocoumarins: Perspectives and current challenges.Nat. Prod. Rep.202138586987910.1039/D0NP00074D33174568
    [Google Scholar]
  39. BourgaudF. HehnA. LarbatR. DoerperS. GontierE. KellnerS. MaternU. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes.Phytochem. Rev.200652-329330810.1007/s11101‑006‑9040‑2
    [Google Scholar]
  40. StefanachiA. LeonettiF. PisaniL. CattoM. CarottiA. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds.Molecules201823225010.3390/molecules2302025029382051
    [Google Scholar]
  41. WangS. DongG. ShengC. Structural simplification of natural products.Chem. Rev.201911964180422010.1021/acs.chemrev.8b0050430730700
    [Google Scholar]
  42. AtanasovA.G. ZotchevS.B. DirschV.M. OrhanI.E. BanachM. RollingerJ.M. BarrecaD. WeckwerthW. BauerR. BayerE.A. MajeedM. BishayeeA. BochkovV. BonnG.K. BraidyN. BucarF. CifuentesA. D’OnofrioG. BodkinM. DiederichM. KostovaD.A.T. EfferthT. BairiE.K. ArkellsN. FanT-P. FiebichB.L. FreissmuthM. GeorgievM.I. GibbonsS. GodfreyK.M. GruberC.W. HeerJ. HuberL.A. IbanezE. KijjoaA. KissA.K. LuA. MaciasF.A. MillerM.J.S. MocanA. MüllerR. NicolettiF. PerryG. PittalàV. RastrelliL. RistowM. RussoG.L. SilvaA.S. SchusterD. SheridanH. Skalicka-WoźniakK. SkaltsounisL. SánchezS.E. BredtD.S. StuppnerH. SuredaA. TzvetkovN.T. VaccaR.A. AggarwalB.B. BattinoM. GiampieriF. WinkM. WolfenderJ-L. XiaoJ. YeungA.W.K. LizardG. PoppM.A. HeinrichM. NeagoeB.I. StadlerM. DagliaM. VerpoorteR. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  43. ChoiE.K. KimH.D. ParkE.J. SongS.Y. PhanT.T. NamM. KimM. KimD.U. HoeK.L. 8-Methoxypsoralen induces apoptosis by upregulating p53 and inhibits metastasis by downregulating MMP-2 and MMP-9 in human gastric cancer cells.Biomol. Ther.202331221922610.4062/biomolther.2023.00436782271
    [Google Scholar]
  44. ZangD. NiuC. LuX. AisaH.A. A novel furocoumarin derivative, 5-((diethylamino)me-13 thyl)-3-phenyl-7H-furo [3,2-g] chromen-7-one upregulates melanin synthesis via the activation of cAMP/PKA and MAPKs signal pathway: in vitro and in vivo study.Int. J. Mol. Sci.202223221419010.3390/ijms23221419036430668
    [Google Scholar]
  45. LuY. ZhangM. ZhangJ. JiangM. BaiG. Psoralen prevents the inactivation of estradiol and treats osteoporosis via covalently targeting HSD17B2.J. Ethnopharmacol.202331111642610.1016/j.jep.2023.11642636997132
    [Google Scholar]
  46. JiangY. NguyenT.V. JinJ. YuZ.N. SongC.H. ChaiO.H. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model.Biomed. Pharmacother.202316411495910.1016/j.biopha.2023.11495937267637
    [Google Scholar]
  47. LuoT. JiaX. FengW. WangJ. XieF. KongL. WangX. LianR. LiuX. ChuY. WangY. XuA. Bergapten inhibits NLRP3 inflammasome activation and pyroptosis via promoting mitophagy.Acta Pharmacol. Sin.20234491867187810.1038/s41401‑023‑01094‑737142684
    [Google Scholar]
  48. OuyangY. MengF. DuM. MaQ. LiuH. ZhuangY. PangM. CaiT. CaiY. Protective effects of psoralen polymer lipid nanoparticles on doxorubicin - induced myocardial toxicity.Braz. J. Pharm. Sci.202258e1924510.1590/s2175‑97902022e19245
    [Google Scholar]
  49. ChoiJ.G. LeeH. HwangY.H. LeeJ.S. ChoW.K. MaJ.Y. Eupatorium fortunei and its components increase antiviral immune responses against RNA viruses.Front. Pharmacol.2017851110.3389/fphar.2017.0051128824435
    [Google Scholar]
  50. WenF. WuY. YuanY. YangX. RanQ. GanX. GuoY. WangX. ChuY. ZhaoK. Discovery of psoralen as a quorum sensing inhibitor suppresses Pseudomonas aeruginosa virulence.Appl. Microbiol. Biotechnol.2024108122210.1007/s00253‑024‑13067‑938372782
    [Google Scholar]
  51. YanM. BoX. ZhangJ. LiuS. LiX. LiaoY. LiuQ. ChengY. ChengJ. Bergapten alleviates depression-like behavior by inhibiting cyclooxygenase 2 activity and NF-κB/MAPK signaling pathway in microglia.Exp. Neurol.202336511442610.1016/j.expneurol.2023.11442637088250
    [Google Scholar]
  52. LinY. ZhongL. LiH. XuY. LiX. ZhengD. Psoralen alleviates high glucose-induced HK-2 cell injury by inhibition of Smad 2 signaling via upregulation of microRNA 874.BMC Pharmacol. Toxicol.20202115210.1186/s40360‑020‑00434‑132698907
    [Google Scholar]
  53. KlussmannE. TrögerJ. RosenthalW. Psoralen derivatives for the treatment of heart failure and heart hypertophy.EP268211820140108https://worldwide.espacenet.com/patent/search/family/046354106/publication/EP2682118A1?search_type=patents&q=+EP2682118&filters=%5B%7B%22field%22%3A%22language%22%2C%22values%22%3A%5B%22en%22%5D%2C%22type%22%3A%22any%22%7D%5D
  54. DongJ. LiK. HongZ. ChenL. TangL. HanL. ChenL. FanZ. Design, synthesis and fungicidal evaluation of novel psoralen derivatives containing sulfonohydrazide or acylthiourea moiety.Mol. Divers.202327257158810.1007/s11030‑022‑10402‑y35666432
    [Google Scholar]
  55. SundaramA.K. EwingD. LiangZ. JaniV. ChengY. SunP. RaviprakashK. WuS.J. PetrovskyN. DefangG. WilliamsM. PorterK.R. Immunogenicity of adjuvanted psoralen-inactivated SARS-CoV-2 vaccines and SARS-CoV-2 spike protein DNA vaccines in BALB/c mice.Pathogens202110562610.3390/pathogens1005062634069575
    [Google Scholar]
  56. SundaramA.K. EwingD. BlevinsM. LiangZ. SinkS. LassanJ. RaviprakashK. DefangG. WilliamsM. PorterK.R. SandersJ.W. Comparison of purified psoralen-inactivated and formalin-inactivated dengue vaccines in mice and nonhuman primates.Vaccine202038173313332010.1016/j.vaccine.2020.03.00832184032
    [Google Scholar]
  57. ParvezM.K. RehmanT.M. AlamP. DosariA.M.S. AlqasoumiS.I. AlajmiM.F. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study.Saudi Pharm. J.201927338940010.1016/j.jsps.2018.12.00830976183
    [Google Scholar]
  58. MaX. LiH. GongY. LiuF. TongX. ZhuF. YangX. YangL. ZuoJ. Psoralen inhibits hepatitis B viral replication by down-regulating the host transcriptional machinery of viral promoters.Virol. Sin.202237225626510.1016/j.virs.2022.01.02735305922
    [Google Scholar]
  59. LiX. YuC. HuY. XiaX. LiaoY. ZhangJ. ChenH. LuW. ZhouW. SongZ. New application of psoralen and angelicin on periodontitis with anti-bacterial, anti-inflammatory, and osteogenesis effects.Front. Cell. Infect. Microbiol.2018817810.3389/fcimb.2018.0017829922598
    [Google Scholar]
  60. FaheemM. KhanA. SaleemM.W. ShahF.A. AliF. KhanA.W. LiS. Neuroprotective effect of natural compounds in paclitaxel-induced chronic inflammatory pain.Molecules20222715492610.3390/molecules2715492635956877
    [Google Scholar]
  61. SinghG. SinghA. SinghP. BhattiR. Bergapten ameliorates vincristine-induced peripheral neuropathy by inhibition of inflammatory cytokines and NF-κB signaling.ACS Chem. Neurosci.20191063008301710.1021/acschemneuro.9b0020631064179
    [Google Scholar]
  62. GaoS. ZouX. WangZ. ShuX. CaoX. XiaS. ShaoP. BaoX. YangH. XuY. LiuP. Bergapten attenuates microglia-mediated neuroinflammation and ischemic brain injury by targeting Kv1.3 and Carbonyl reductase 1.Eur. J. Pharmacol.202293317524210.1016/j.ejphar.2022.17524236058290
    [Google Scholar]
  63. LatifK. KhanA. Izhar Ul HaqueM. NaeemK. Bergapten attenuates nitroglycerin-induced migraine headaches through inhibition of oxidative stress and inflammatory mediators.ACS Chem. Neurosci.202112183303331310.1021/acschemneuro.1c0014634455773
    [Google Scholar]
  64. SeoE. KangH. OhY. JunH.S. Psoralea corylifolia L. seed extract attenuates diabetic nephropathy by inhibiting renal fibrosis and apoptosis in streptozotocin-induced diabetic mice.Nutrients20179882810.3390/nu908082828767064
    [Google Scholar]
  65. FelstenL.M. AlikhanA. RosicP.V. Vitiligo: A comprehensive overview.J. Am. Acad. Dermatol.201165349351410.1016/j.jaad.2010.10.04321839316
    [Google Scholar]
  66. LiA. GaoM. ZhaoN. LiP. ZhuJ. LiW. Acute liver failure associated with Fructus Psoraleae: A case report and literature review.BMC Complement. Altern. Med.20191918410.1186/s12906‑019‑2493‑930975110
    [Google Scholar]
  67. WhittonM.E. AshcroftD.M. GonzálezU. Therapeutic interventions for vitiligo.J. Am. Acad. Dermatol.200859471371710.1016/j.jaad.2008.06.02318793940
    [Google Scholar]
  68. ZhangC. FanS. ZhaoJ.Q. JiangY. SunJ.X. LiH.J. Transcriptomics and metabolomics reveal the role of CYP1A2 in psoralen/isopsoralen‐induced metabolic activation and hepatotoxicity.Phytother. Res.202337116318010.1002/ptr.760436056681
    [Google Scholar]
  69. JiangM. WangX. LvB. LuY. MaX. LiuW. BaiG. GaoX. Psoralen induces hepatotoxicity by covalently binding to glutathione-S-transferases and the hepatic cytochrome P450.Phytomedicine202210415416510.1016/j.phymed.2022.15416535792449
    [Google Scholar]
  70. ZhouW. ChenX. ZhaoG. XuD. JiangZ. ZhangL. WangT. Psoralen induced liver injury by attenuating liver regenerative capability.Front. Pharmacol.20189117910.3389/fphar.2018.0117930459602
    [Google Scholar]
  71. SongL. YuB. YangL. WangZ. ZhangY. YuY. ZhouK. The mechanism of Psoralen and Isopsoralen hepatotoxicity as revealed by hepatic gene expression profiling in SD rats.Basic Clin. Pharmacol. Toxicol.2019125652753510.1111/bcpt.1328731271704
    [Google Scholar]
  72. ZhuangX.M. ZhongY.H. XiaoW.B. LiH. LuC. Identification and characterization of psoralen and isopsoralen as potent CYP1A2 reversible and time-dependent inhibitors in human and rat preclinical studies.Drug Metab. Dispos.201341111914192210.1124/dmd.113.05319923975028
    [Google Scholar]
  73. ZhangC. ZhaoJ.Q. SunJ.X. LiH.J. Psoralen and isopsoralen from Psoraleae Fructus aroused hepatotoxicity via induction of aryl hydrocarbon receptor-mediated CYP1A2 expression.J. Ethnopharmacol.202229711557710.1016/j.jep.2022.11557735872289
    [Google Scholar]
  74. ZhangY. WangQ. WangZ. BiY. YuanX. SongL. JiangM. SunL. ZhouK. A study of NMR-based hepatic and serum metabolomics in a liver injury sprague-dawley rat model induced by psoralen.Chem. Res. Toxicol.201831985286010.1021/acs.chemrestox.8b0008230132663
    [Google Scholar]
  75. HaiY. FengS. WangL. MaY. ZhaiY. WuZ. ZhangS. HeX. Coordination mechanism and bio-evidence: Reactive γ-ketoenal intermediated hepatotoxicity of psoralen and isopsoralen based on computer approach and bioassay.Molecules2017229145110.3390/molecules2209145132962321
    [Google Scholar]
  76. WangX. LouY.J. WangM.X. ShiY.W. XuH.X. KongL.D. Furocoumarins affect hepatic cytochrome P450 and renal organic ion transporters in mice.Toxicol. Lett.20122091677710.1016/j.toxlet.2011.11.03022173200
    [Google Scholar]
  77. XiaQ. WeiL. ZhangY. KongH. ShiY. WangX. ChenX. HanL. LiuK. Psoralen induces developmental toxicity in zebrafish embryos/larvae through oxidative stress, apoptosis, and energy metabolism disorder.Front. Pharmacol.20189145710.3389/fphar.2018.0145730618751
    [Google Scholar]
  78. LiuY. FlynnT.J. CYP3A4 inhibition by Psoralea corylifolia and its major components in human recombinant enzyme, differentiated human hepatoma HuH-7 and HepaRG cells.Toxicol. Rep.2015253053410.1016/j.toxrep.2015.03.00628962388
    [Google Scholar]
  79. JiL. LuD. CaoJ. ZhengL. PengY. ZhengJ. Psoralen, a mechanism-based inactivator of CYP2B6.Chem. Biol. Interact.201524034635210.1016/j.cbi.2015.08.02026335194
    [Google Scholar]
  80. ChenL. JianY. WeiN. YuanM. ZhuangX. LiH. Separation and simultaneous quantification of nine furanocoumarins from Radix Angelicae dahuricae using liquid chromatography with tandem mass spectrometry for bioavailability determination in rats.J. Sep. Sci.201538244216422410.1002/jssc.20150084026496866
    [Google Scholar]
  81. FengL. WangL. JiangX. Pharmacokinetics, tissue distribution and excretion of coumarin components from Psoralea corylifolia L. in rats.Arch. Pharm. Res.201033222523010.1007/s12272‑010‑0206‑520195822
    [Google Scholar]
  82. YangA. ChenJ. MaY. WangL. FanY. HeX. Studies on the metabolites difference of psoralen/isopsoralen in human and six mammalian liver microsomes in vitro by UHPLC–MS/MS.J. Pharm. Biomed. Anal.201714120020910.1016/j.jpba.2017.04.02628448889
    [Google Scholar]
  83. LiuL. ZhangL. CuiZ.X. LiuX.Y. XuW. YangX.W. Transformation of psoralen and isopsoralen by human intestinal microbial in vitro, and the biological activities of its metabolites.Molecules20192422408010.3390/molecules2422408031718071
    [Google Scholar]
  84. SilvaD.V.B. KawanoD.F. CarvalhoI. ConceiçãoE.C. FreitasO. SilvaC.H.T.P. Psoralen and bergapten: in silico metabolism and toxicophoric analysis of drugs used to treat vitiligo.J. Pharm. Pharm. Sci.200912337838710.18433/J3W01D20067712
    [Google Scholar]
  85. NiuC. PangG.X. LiG. DouJ. NieL.F. HimitH. KabasM. AisaH.A. Synthesis and biological evaluation of furocoumarin derivatives on melanin synthesis in murine B16 cells for the treatment of vitiligo.Bioorg. Med. Chem.201624225960596810.1016/j.bmc.2016.09.05627713014
    [Google Scholar]
  86. PeiT. ZhengC. HuangC. ChenX. GuoZ. FuY. LiuJ. WangY. Systematic understanding the mechanisms of vitiligo pathogenesis and its treatment by Qubaibabuqi formula.J. Ethnopharmacol.201619027228710.1016/j.jep.2016.06.00127265513
    [Google Scholar]
  87. HuoS.X. KangY.T. PengX.M. GaoL. TangX.Q. PengY. YanM. Effects of Qubaibabuqi capsule containing serum on proliferation and migration of human melanoma A375 cells.Chin J Pharmacol Toxicity2012261737710.3867/j.issn.1000‑3002.2012.01.015
    [Google Scholar]
  88. PengY. HuoS.X. KangY.T. YanM. Curative effect of victoria medicine Qubaibabuqi capsule on experimental vitiligo in guinea pigs.Herald of Medicine2011307861864
    [Google Scholar]
  89. BuhimschiA.D. GoodenD.M. JingH. FelsD.R. HansenK.S. BeyerW.F.Jr DewhirstM.W. WalderH. GasparroF.P. Psoralen derivatives with enhanced potency.Photochem. Photobiol.20209651014103110.1111/php.1326332221980
    [Google Scholar]
  90. LingT.C. ClaytonT.H. CrawleyJ. ExtonL.S. GouldenV. IbbotsonS. McKennaK. MustapaM.M.F. RhodesL.E. SarkanyR. DaweR.S. McHenryP.M. HughesJ.R. GriffithsM. McDonaghA.J. BuckleyD.A. NasrI. SwaleV.J. WilliamsonD.C.E. LevellN.J. LeslieT. MallonE. WakelinS. HunasehallyP. CorkM.J. UngureanuS. DonnellyJ. TowersK. SaundersC. DavisR. BrainA.G. ExtonL.S. MustapaM.M.F. British association of dermatologists and british photodermatology group guidelines for the safe and effective use of psoralen–ultraviolet a therapy 2015.Br. J. Dermatol.20161741245510.1111/bjd.1431726790656
    [Google Scholar]
  91. MachadoR.D. SilvaJ.C.G. SilvaL.A.D. OliveiraG.A.R. LiãoL.M. LimaE.M. Moraisd.M.C. Conceiçãod.E.C. RezendeK.R. Improvement in solubility-permeability interplay of psoralens from Brosimum gaudichaudii plant extract upon complexation with hydroxypropyl-β-cyclodextrin.Molecules20222714458010.3390/molecules2714458035889459
    [Google Scholar]
  92. GreenA.B. ChiaraviglioL. TruelsonK.A. ZulaufK.E. CuiM. ZhangZ. WareM.P. FlegelW.A. HaspelR.L. YuE.W. KirbyJ.E. RND pump-mediated efflux of amotosalen, a compound used in pathogen inactivation technology to enhance safety of blood transfusion products, may compromise its gram-negative anti-bacterial activity.MSphere202382e00673-2210.1128/msphere.00673‑2236853056
    [Google Scholar]
  93. YinL. PangG. NiuC. HabasiM. DouJ. AisaH. A novel psoralen derivative-MPFC enhances melanogenesis via activation of p38 MAPK and PKA signaling pathways in B16 cells.Int. J. Mol. Med.20184163727373510.3892/ijmm.2018.352929512683
    [Google Scholar]
  94. DuM. OuyangY. MengF. ZhangX. MaQ. ZhuangY. LiuH. PangM. CaiT. CaiY. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer.Int. J. Pharm.201956127428210.1016/j.ijpharm.2019.03.00630851393
    [Google Scholar]
  95. JyothiS.L. KrishnaK.L. ShirinA.V.K. SankarR. PramodK. GangadharappaH.V. Drug delivery systems for the treatment of psoriasis: Current status and prospects.J. Drug Deliv. Sci. Technol.202162110236410.1016/j.jddst.2021.102364
    [Google Scholar]
  96. WangK. YinC. YeX. ChenQ. WuJ. ChenY. LiY. WangJ. DuanC. LuA. GuanD. A metabolic driven bio-responsive hydrogel loading psoralen for therapy of rheumatoid arthritis.Small20231921220731910.1002/smll.20220731936869654
    [Google Scholar]
  97. ZhangQ. ChuF. XuY. WuX. YuJ. CongB. WuY. Osteogenesis promotion by injectable methacryloylated gelatin containing psoralen and its bacteriostatic properties.IET Nanobiotechnol.202317437638610.1049/nbt2.1213637191270
    [Google Scholar]
  98. SuvarnaV. GujarP. MurahariM. Complexation of phytochemicals with cyclodextrin derivatives – An insight.Biomed. Pharmacother.2017881122114410.1016/j.biopha.2017.01.15728208574
    [Google Scholar]
  99. LipeevaA. ShultsE. ShakirovM. PokrovskyM. PokrovskyA. Synthesis and cytotoxic activity of a new group of heterocyclic analogues of the combretastatins.Molecules20141967881790010.3390/molecules1906788124962392
    [Google Scholar]
  100. KawaiiS. MatsuokaY. NoguchiH. SatoT. YoshizawaY. Relationship between the structure of alkylpsoralens and their antiproliferative activity in HL60 cells.Anticancer Res.20224241777178310.21873/anticanres.1565435346996
    [Google Scholar]
  101. FranciscoC.S. RodriguesL.R. CerqueiraN.M.F.S.A. CamposO.A.M.F. EstevesA.P. Novel benzopsoralen analogues: Synthesis, biological activity and molecular docking studies.Eur. J. Med. Chem.20148729830510.1016/j.ejmech.2014.09.06625262050
    [Google Scholar]
  102. NakkadyE.S.S. RoaiahH.F. SerwyE.W.S. BassyouniF. SolimanA.M. Chemical and biological studies of some naturally occurring furocoumarins.World J. Pharm. Res.20154717941818
    [Google Scholar]
  103. LeiteC.V. SantosF.R. ChenC.L. GuilloA.L. Psoralen derivatives and longwave ultraviolet irradiation are active in vitro against human melanoma cell line.J. Photochem. Photobiol. B2004761-3495310.1016/j.jphotobiol.2004.07.00415488715
    [Google Scholar]
  104. ShenQ.K. LiuC.F. ZhangH.J. TianY.S. QuanZ.S. Design and synthesis of new triazoles linked to xanthotoxin for potent and highly selective anti-gastric cancer agents.Bioorg. Med. Chem. Lett.201727214871487510.1016/j.bmcl.2017.09.04028947149
    [Google Scholar]
  105. AekrungrueangkitC. WangngaeS. KamkaewA. ArdkheanR. ThongnestS. BoonsombatJ. RuchirawatS. KhotavivattanaT. Novel psoralen derivatives as anti-breast cancer agents and their light-activated cytotoxicity against HER2 positive breast cancer cells.Sci. Rep.20221211348710.1038/s41598‑022‑17625‑x35931753
    [Google Scholar]
  106. TooneE. GoodenD. DinhV.T. BourkeF.A. Methods and systems for treating cell proliferation disorders with psoralen derivatives.US8907109B22014
  107. ChenC.Y. SunJ.G. LiuF.Y. FungK.P. WuP. HuangZ.Z. Synthesis and biological evaluation of glycosylated psoralen derivatives.Tetrahedron201268122598260610.1016/j.tet.2012.01.090
    [Google Scholar]
  108. ViaD.L. GómezG.J.C. MontotoP.L.G. SantanaL. UriarteE. MagnoM.S. GiaO. A new psoralen derivative with enlarged antiproliferative properties.Bioorg. Med. Chem. Lett.200919102874287610.1016/j.bmcl.2009.03.07319359172
    [Google Scholar]
  109. ElgogaryS.R. Synthesis, Photooxygenation and DNA studies of novel fused furo, dioxolo, and dioxino derivatives of coumarin.ChemistrySelect2020533102921029710.1002/slct.202002442
    [Google Scholar]
  110. ViaD.L. GiaO. MagnoM.S. BragaA. GómezG.J.C. MontotoP.L.G. UriarteE. Pyridazinopsoralens of wide chemotherapeutic interest.Bioorg. Med. Chem.201018155708571410.1016/j.bmc.2010.06.00620615713
    [Google Scholar]
  111. BuchmanC.D. HurleyT.D. Inhibition of the aldehyde dehydrogenase 1/2 family by psoralen and coumarin Derivatives.J. Med. Chem.20176062439245510.1021/acs.jmedchem.6b0182528219011
    [Google Scholar]
  112. MelisC. DistintoS. BiancoG. MeledduR. CottigliaF. FoisB. TavernaD. AngiusR. AlcaroS. OrtusoF. GaspariM. AngeliA. PreteD.S. CapassoC. SupuranC.T. MaccioniE. Targeting tumor associated carbonic anhydrases IX and XII: Highly isozyme selective coumarin and psoralen inhibitors.ACS Med. Chem. Lett.20189772572910.1021/acsmedchemlett.8b0017030034608
    [Google Scholar]
  113. MeledduR. DeplanoS. MaccioniE. OrtusoF. CottigliaF. SecciD. OnaliA. SannaE. AngeliA. AngiusR. AlcaroS. SupuranC.T. DistintoS. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives.J. Enzyme Inhib. Med. Chem.202136168569210.1080/14756366.2021.188717133602041
    [Google Scholar]
  114. MarzaroG. GuiottoA. BorgattiM. FinottiA. GambariR. BreveglieriG. ChilinA. Psoralen derivatives as inhibitors of NF-κB/DNA interaction: Synthesis, molecular modeling, 3D-QSAR, and biological evaluation.J. Med. Chem.20135651830184210.1021/jm300964723414143
    [Google Scholar]
  115. MarzaroG. LamprontiI. BorgattiM. ManziniP. GambariR. ChilinA. Psoralen derivatives as inhibitors of NF-κB interaction: The critical role of the furan ring.Mol. Divers.201519355156110.1007/s11030‑015‑9586‑225869956
    [Google Scholar]
  116. NiuC. ZangD. AisaH.A. Design,synthesis and biological activity of novel furocoumarin derivatives as stimulators of melanogenesis and tyrosinase in B16 cells.Chem. Res. Chin. Univ.201834340841410.1007/s40242‑018‑7338‑4
    [Google Scholar]
  117. ZangD. NiuC. AisaH.A. Amine derivatives of furocoumarin induce melanogenesis by activating Akt/GSK-3β/β-catenin signal pathway.Drug Des. Devel. Ther.20191362363210.2147/DDDT.S18096030858693
    [Google Scholar]
  118. NiuC. YinL. AisaH. Novel furocoumarin derivatives stimulate melanogenesis in B16 melanoma cells by up-regulation of MITF and TYR family via Akt/GSK3β/β-catenin signaling pathways.Int. J. Mol. Sci.201819374610.3390/ijms1903074629509689
    [Google Scholar]
  119. NiuC. ZangD. AisaH.A. Study of novel furocoumarin derivatives on anti-vitiligo activity, molecular docking and mechanism of action.Int. J. Mol. Sci.20222314795910.3390/ijms2314795935887323
    [Google Scholar]
  120. RožmanK. AlexanderE.M. OgorevcE. BozovičarK. SosičI. AldrichC.C. GobecS. Psoralen derivatives as inhibitors of mycobacterium tuberculosis proteasome.Molecules2020256130510.3390/molecules2506130532178473
    [Google Scholar]
  121. DongJ. GaoW. LiK. HongZ. TangL. HanL. WangZ. FanZ. Design, synthesis, and biological evaluation of novel psoralen-based 1,3,4-oxadiazoles as potent fungicide candidates targeting pyruvate kinase.J. Agric. Food Chem.202270113435344610.1021/acs.jafc.1c0791135271258
    [Google Scholar]
  122. ZhangB.L. FanC.Q. DongL. WangF.D. YueJ.M. Structural modification of a specific antimicrobial lead against Helicobacter pylori discovered from traditional Chinese medicine and a structure–activity relationship study.Eur. J. Med. Chem.201045115258526410.1016/j.ejmech.2010.08.04520832915
    [Google Scholar]
  123. SongP.P. ZhaoJ. LiuZ.L. DuanY.B. HouY.P. ZhaoC.Q. WuM. WeiM. WangN.H. LvY. HanZ.J. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives.Pest Manag. Sci.20177319410110.1002/ps.442227570117
    [Google Scholar]
  124. YangH. YaoZ. YangK. WangC. LiM. ZhangY. YanJ. LvR. WangY. HuangA. ZhangD. LiW. WuY. MiaoZ. Synthesis and antibacterial evaluation of novel psoralen derivatives against methicillin-resistant Staphylococcus aureus (MRSA).Chem. Biodivers.2024218e20230204810.1002/cbdv.20230204838263380
    [Google Scholar]
  125. TimonenJ.M. VuolteenahoK. LeppänenT. NieminenR.M. AulaskariP. JänisJ. VainiotaloP. MoilanenE. Synthesis of novel anti-inflammatory psoralen derivatives-structures with distinct anti-inflammatory activities.J. Heterocycl. Chem.201855112590259710.1002/jhet.3318
    [Google Scholar]
  126. LitinaH.D. BariamisE.S. MilitsopoulouM. AthanassopoulosC.M. PapaioannouD. Trioxsalen derivatives with lipoxygenase inhibitory activity.J. Enzyme Inhib. Med. Chem.20092461351135610.3109/1475636090293277619912068
    [Google Scholar]
  127. PapaioannouD. MilitsopoulouM. BariamisS. AthanassopoulosC. Synthetic studies towards the development of psoralen-acidic retinoid conjugates and hybrids.Synthesis20082008213433344210.1055/s‑0028‑1083189
    [Google Scholar]
  128. BariamisS.E. MarinM. AthanassopoulosC.M. KontogiorgisC. TsimaliZ. PapaioannouD. SindonaG. RomeoG. AvgoustakisK. LitinaH.D. Syntheses and evaluation of the antioxidant activity of novel methoxypsoralen derivatives.Eur. J. Med. Chem.20136015516910.1016/j.ejmech.2012.11.04323291118
    [Google Scholar]
  129. PiccagliL. BorgattiM. NicolisE. BianchiN. ManciniI. LamprontiI. VevaldiD. Dall’AcquaF. CabriniG. GambariR. Virtual screening against nuclear factor κB (NF-κB) of a focus library: Identification of bioactive furocoumarin derivatives inhibiting NF-κB dependent biological functions involved in cystic fibrosis.Bioorg. Med. Chem.201018238341834910.1016/j.bmc.2010.09.06320980154
    [Google Scholar]
  130. LiD. WuL. Coumarins from the roots of Angelica dahurica cause anti-allergic inflammation.Exp. Ther. Med.201714187488010.3892/etm.2017.456928673013
    [Google Scholar]
  131. MarumotoS. MiyazawaM. Structure–activity relationships for naturally occurring coumarins as β-secretase inhibitor.Bioorg. Med. Chem.201220278478810.1016/j.bmc.2011.12.00222222157
    [Google Scholar]
  132. GranicaS. KissA.K. JarończykM. MaurinJ.K. MazurekA.P. CzarnockiZ. Synthesis of imperatorin analogs and their evaluation as acetylcholinesterase and butyrylcholinesterase inhibitors.Arch. Pharm.20133461177578210.1002/ardp.20130025924123207
    [Google Scholar]
  133. WszelakiN. ParadowskaK. JamrózM.K. GranicaS. KissA.K. Bioactivity-guided fractionation for the butyrylcholinesterase inhibitory activity of furanocoumarins from Angelica archangelica L. roots and fruits.J. Agric. Food Chem.201159179186919310.1021/jf201971s21786787
    [Google Scholar]
  134. EunJ.S. ChoiB.H. ParkJ.A. LeeG.I. LeeT.Y. KimD.K. JungY.H. YooD.J. KwakY.G. Open channel block of hKv1.5 by psoralen fromHeracleum moellendorffii hance.Arch. Pharm. Res.200528326927310.1007/BF0297779015832811
    [Google Scholar]
  135. EunJ.S. KimK.S. KimH.N. ParkS.A. MaT.Z. LeeK.A. KimD.K. KimH.K. KimI.S. JungY.H. ZeeO.P. YooD.J. KwakY.G. Synthesis of psoralen derivatives and their blocking effect of hKv1.5 channel.Arch. Pharm. Res.200730215516010.1007/BF0297768817366735
    [Google Scholar]
  136. UesawaY. MohriK. Quantitative structure-activity relationship (QSAR) analysis of the inhibitory effects of furanocoumarin derivatives on cytochrome P450 3A activities.Pharmazie2010651414610.1691/ph.2010.965120187577
    [Google Scholar]
  137. GambariR. FibachE. Medicinal chemistry of fetal hemoglobin inducers for treatment of β-thalassemia.Curr. Med. Chem.200714219921210.2174/09298670777931331817266579
    [Google Scholar]
  138. ViolaG. VedaldiD. Dall’AcquaF. FortunatoE. BassoG. BianchiN. ZuccatoC. BorgattiM. LamprontiI. GambariR. Induction of γ-globin mRNA, erythroid differentiation and apoptosis in UVA-irradiated human erythroid cells in the presence of furocumarin derivatives.Biochem. Pharmacol.200875481082510.1016/j.bcp.2007.10.00718022602
    [Google Scholar]
  139. OladipoA. EnwemiweV. EjeromedogheneO. AdebayoA. OgunyemiO. FuF. Production and functionalities of specialized metabolites from different organic sources.Metabolites202212653410.3390/metabo1206053435736468
    [Google Scholar]
  140. TsivilevaO.M. KoftinO.V. EvseevaN.V. Coumarins as fungal metabolites with potential medicinal properties.Antibiotics2022119115610.3390/antibiotics1109115636139936
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128365838250128060007
Loading
/content/journals/cpd/10.2174/0113816128365838250128060007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test