Skip to content
2000
Volume 31, Issue 29
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Synthetic cannabinoids are one of the most identified abused drugs nowadays. Their popularity is due to their psychoactive effects, which resemble delta 9 tetrahydrocannabinol. This study investigates the genotoxic potential of three synthetic cannabinoids of indazole-passed drugs, AB-Fubinaca, AMB- Fubinaca, and EMB-Fubinaca (at a final concentration of 200 nM).

Methods

Genotoxicity was examined using Sister Chromatid Exchanges (SCEs) and Chromosomal Aberrations (CAs) assays in cultured human lymphocytes. Blood for lymphocyte cultures was obtained from healthy adult young males.

Results

A significant increase in the frequency of SCEs was detected for all examined drugs (range: 5.4-6.1, 0.05) compared to the control group (4.70 ± 0.31). The order of synthetic cannabinoids in terms of their ability to induce SCEs was EMB-Fubinaca (6.04 ± 0.63) > AMB-Fubinaca (5.65 ± 0.6) > AB-Fubinaca (5.33 ± 0.58). None of the examined drugs induced significant changes to the frequency of CAs ( 0.05). Additionally, there were no effects of the synthetic cannabinoids at the studied concentration on proliferation and mitotic indices.

Conclusion

Synthetic cannabinoids have been found to increase the frequency of SCEs in cultured human lymphocytes. The results should be confirmed in studies using lymphocytes derived from synthetic cannabinoid users.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128340465241227095853
2025-01-17
2025-09-02
Loading full text...

Full text loading...

References

  1. AlvesV.L. GonçalvesJ.L. AguiarJ. TeixeiraH.M. CâmaraJ.S. The synthetic cannabinoids phenomenon: From structure to toxicological properties. A review.Crit. Rev. Toxicol.202050535938210.1080/10408444.2020.176253932530350
    [Google Scholar]
  2. Le BoisselierR. AlexandreJ. Lelong-BoulouardV. DebruyneD. Focus on cannabinoids and synthetic cannabinoids.Clin. Pharmacol. Ther.2017101222022910.1002/cpt.56327861784
    [Google Scholar]
  3. EMCDDA European Drug Report 2021: Trends and Developments.European Monitoring Centre for Drugs and Drug Addiction EMCDDA202160
    [Google Scholar]
  4. AdamowiczP. MeissnerE. MaślankaM. Fatal intoxication with new synthetic cannabinoids AMB-FUBINACA and EMB-FUBINACA.Clin. Toxicol. (Phila.)201957111103110810.1080/15563650.2019.158037130806094
    [Google Scholar]
  5. BanisterS.D. LongworthM. KevinR. SachdevS. SantiagoM. StuartJ. MackJ.B.C. GlassM. McGregorI.S. ConnorM. KassiouM. Pharmacology of valinate and tert -Leucinate synthetic cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues.ACS Chem. Neurosci.2016791241125410.1021/acschemneuro.6b0013727421060
    [Google Scholar]
  6. Lobato-FreitasC. Brito-da-CostaAM. Fatal intoxication with new synthetic cannabinoids AMB-FUBINACA and EMB-FUBINACAClin Toxicol (Phila)20215711110310.1080/15563650.2019.1580371
    [Google Scholar]
  7. MorrowP.L. StablesS. KeshaK. TseR. KappatosD. PandeyR. RussellS. LinsellO. McCarthyM.J. SparkA. VertesD. TriggsY. McCarthyS. CuthersN. MasseyR. An outbreak of deaths associated with AMB-FUBINACA in Auckland NZ.E Clin. Med20202510046010.1016/j.eclinm.2020.10046032743487
    [Google Scholar]
  8. WHO Critical review report:FUB-AMB(MMB-FUBINACA, AMB-FUBINACA)2018 https://www.who.int/medicines/access/controlled-substances/Fub_amb.pdf
  9. UchiyamaN. MatsudaS. WakanaD. Kikura-HanajiriR. GodaY. New cannabimimetic indazole derivatives, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA) identified as designer drugs in illegal products.Forensic Toxicol.20133119310010.1007/s11419‑012‑0171‑4
    [Google Scholar]
  10. MurakamiT. IwamuroY. IshimaruR. ChinakaS. TakayamaN. HasegawaH. Differentiation of AB-FUBINACA and its five positional isomers using liquid chromatography–electrospray ionization-linear ion trap mass spectrometry and triple quadrupole mass spectrometry.Forensic Toxicol.201836235135810.1007/s11419‑018‑0410‑429963205
    [Google Scholar]
  11. Drug Enforcement Administration, Department of Justice Schedules of Controlled Substances: Extension of Temporary Placement of PB-22, 5F-PB-22, AB-FUBINACA and ADB-PINACA in Schedule I of the Controlled Substances Act. Final order.Fed. Regist.201681246175617726859904
    [Google Scholar]
  12. BileckA. FerkF. Al-SeroriH. KollerV.J. MuqakuB. HaslbergerA. AuwärterV. GernerC. KnasmüllerS. Impact of a synthetic cannabinoid (CP-47,497-C8) on protein expression in human cells: Evidence for induction of inflammation and DNA damage.Arch. Toxicol.20169061369138210.1007/s00204‑015‑1569‑726194647
    [Google Scholar]
  13. FerkF. GminskiR. Al-SeroriH. MišíkM. NersesyanA. KollerV.J. AngererV. AuwärterV. TangT. ArifA.T. KnasmüllerS. Genotoxic properties of XLR-11, a widely consumed synthetic cannabinoid, and of the benzoyl indole RCS-4.Arch. Toxicol.201690123111312310.1007/s00204‑016‑1664‑426856714
    [Google Scholar]
  14. KollerV.J. FerkF. Al-SeroriH. MišíkM. NersesyanA. AuwärterV. GrummtT. KnasmüllerS. Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids.Food Chem. Toxicol.20158013013610.1016/j.fct.2015.03.00425792264
    [Google Scholar]
  15. LenziM. CocchiV. CavazzaL. BilelS. HreliaP. MartiM. Genotoxic properties of synthetic cannabinoids on TK6 human cells by flow cytometry.Int. J. Mol. Sci.2020213115010.3390/ijms2103115032050487
    [Google Scholar]
  16. AlzoubiK. KhabourO. HussainN. Al-azzamS. MhaidatN. Evaluation of vitamin B12 effects on DNA damage induced by pioglitazone.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20127481-2485110.1016/j.mrgentox.2012.06.00922790087
    [Google Scholar]
  17. KhabourO.F. AlsatariE.S. AzabM. AlzoubiK.H. SadiqM.F. Assessment of genotoxicity of waterpipe and cigarette smoking in lymphocytes using the sister-chromatid exchange assay: A comparative study.Environ. Mol. Mutagen.201152322422810.1002/em.2060120740646
    [Google Scholar]
  18. FenechM.F. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.Cancer Treat. Res.201415942744110.1007/978‑3‑642‑38007‑5_2424114494
    [Google Scholar]
  19. PelusoM. RussoV. MelloT. GalliA. Oxidative stress and DNA damage in chronic disease and environmental studies.Int. J. Mol. Sci.20202118693610.3390/ijms2118693632967341
    [Google Scholar]
  20. GuidolinV. CarlsonE.S. CarràA. VillaltaP.W. MaertensL.A. HechtS.S. BalboS. Identification of new markers of alcohol-derived DNA damage in humans.Biomolecules202111336610.3390/biom1103036633673538
    [Google Scholar]
  21. AL-EitanL. KharmahH.A. Effect of EMB-FUBINACA on brain endothelial cell angiogenesis: Expression analysis of angiogenic markers. Naunyn Schmiedebergs Arch Pharmacol 2024; pp. 1-12.10.1007/s00210‑024‑03322‑139136736
    [Google Scholar]
  22. Al-SweedanS.A. KhabourO. IsamR. Genotoxicity assessment in patients with thalassemia minor.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2012744216717110.1016/j.mrgentox.2012.02.01022414564
    [Google Scholar]
  23. AL-EitanL.N. AlzoubiK.H. Al-SmadiL.I. KhabourO.F. Vitamin E protects against cisplatin-induced genotoxicity in human lymphocytes.Toxicol. In Vitro20206210467210.1016/j.tiv.2019.10467231629897
    [Google Scholar]
  24. AlqudahM.A.Y. Al-AshwalF.Y. AlzoubiK.H. AlkhatatbehM. KhabourO. Vitamin E protects human lymphocytes from genotoxicity induced by oxaliplatin.Drug Chem. Toxicol.201841328128610.1080/01480545.2017.138483529092638
    [Google Scholar]
  25. AzabB. AlassafA. Abu-HumdanA. DardasZ. AlmousaH. AlsalemM. KhabourO. HammadH. SalehT. AwidiA. Genotoxicity of cisplatin and carboplatin in cultured human lymphocytes: A comparative study.Interdiscip. Toxicol.2019122939710.2478/intox‑2019‑001132206030
    [Google Scholar]
  26. Rababa’hA.M. KhabourO.F. AlzoubiK.H. Al-momaniD. AbabnehM. Assessment of genotoxicity of levosimendan in human cultured lymphocytes.Curr. Mol. Pharmacol.201912216016510.2174/187446721266619030616492630848225
    [Google Scholar]
  27. VassiliadesN. MourelatosD. Dozi-VassiliadesJ. EpivatianosP. HatzitheodoridouP. Induction of sister-chromatid exchanges in heroin-cannabis, heroin and cannabis addicts.Mutat Res Genet Toxicol Environ Mutagen1986312512710.1016/0165‑1218(86)90025‑X
    [Google Scholar]
  28. KollerV.J. AuwärterV. GrummtT. MoosmannB. MišíkM. KnasmüllerS. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8.Toxicol. Appl. Pharmacol.2014277216417110.1016/j.taap.2014.03.01424686252
    [Google Scholar]
  29. KollerV.J. ZlabingerG.J. AuwärterV. FuchsS. KnasmuellerS. Toxicological profiles of selected synthetic cannabinoids showing high binding affinities to the cannabinoid receptor subtype CB1.Arch. Toxicol.20138771287129710.1007/s00204‑013‑1029‑123494106
    [Google Scholar]
  30. GulerE.M. BektayM.Y. AkyildizA.G. SismanB.H. IzzettinF.V. KocyigitA. Investigation of DNA damage, oxidative stress, and inflammation in synthetic cannabinoid users.Hum. Exp. Toxicol.202039111454146210.1177/096032712093005732508150
    [Google Scholar]
  31. ChristmannM. TomicicM.T. RoosW.P. KainaB. Mechanisms of human DNA repair: An update.Toxicology20031931-233410.1016/S0300‑483X(03)00287‑714599765
    [Google Scholar]
  32. ChoE. AllemangA. AudebertM. ChauhanV. DertingerS. HendriksG. LuijtenM. MarchettiF. MinocherhomjiS. PfuhlerS. RobertsD.J. TrenzK. YaukC.L. AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations.Environ. Mol. Mutagen.202263311813410.1002/em.2247935315142
    [Google Scholar]
  33. EsawyA. EltablawyN.A.A. El-FattahA. AbdalwahabW.A. Oxidative stress, inflammation and apoptosis are the main mediators in AMB-FUBINACA induced brain injury in male Albino rats.Azhar J Pharm Sci2022218295
    [Google Scholar]
  34. SezerY. JannuzziA.T. HuestisM.A. AlpertungaB. In vitro assessment of the cytotoxic, genotoxic and oxidative stress effects of the synthetic cannabinoid JWH-018 in human SH-SY5Y neuronal cells.Toxicol. Res. (Camb.)20219673474010.1093/toxres/tfaa07833447358
    [Google Scholar]
  35. CerretaniD. CollodelG. BrizziA. FiaschiA.I. MenchiariA. MorettiE. MoltoniL. MicheliL. Cytotoxic effects of cannabinoids on human HT-29 colorectal adenocarcinoma cells: Different mechanisms of THC, CBD, and CB83.Int. J. Mol. Sci.20202115553310.3390/ijms2115553332752303
    [Google Scholar]
  36. OztasE. AbudayyakM. CeliksozM. ÖzhanG. Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro.Toxicol. In Vitro20195510110710.1016/j.tiv.2018.12.00530550854
    [Google Scholar]
  37. MatsuyamaS.S. YenF.S. JarvikL.F. SparkesR.S. FuT.K. FisherH. RecciusN. FrankI.M. Marijuana exposure in vivo and human lymphocyte chromosomes.Mutat. Res.197748225526510.1016/0027‑5107(77)90167‑1327310
    [Google Scholar]
  38. ChiesaraE. CutrufelloR. RizziR. Chromosome damage in heroin-marijuana and marijuana addicts.Arch. Toxicol. Suppl.1983612813010.1007/978‑3‑642‑69083‑9_206605134
    [Google Scholar]
  39. AreliACL FernandoMS MaricelaHS JulietaCC Clastogenic effect by recreative exposure to marijuana in individuals from the Estado de Mexico: Pilot studyJ. Adv. Res. Rev. 2020516
    [Google Scholar]
  40. ZhouSF XueCC YuXQ WangG Charlie Changli Xue Metabolic activation of herbal and dietary constituents and its clinical and toxicological implications: An update.Curr. Drug Metab.20078652655310.2174/13892000778136886317691916
    [Google Scholar]
  41. CouceiroJ. BandarraS. SultanH. BellS. ConstantinoS. QuintasA. Toxicological impact of JWH-018 and its phase I metabolite N-(3-hydroxypentyl) on human cell lines.Forensic Sci. Int.201626410010510.1016/j.forsciint.2016.03.02427054591
    [Google Scholar]
  42. Soto-MercadoV. Mendivil-PerezM. Jimenez-Del-RioM. FoxJ.E. Velez-PardoC. Cannabinoid CP55940 selectively induces apoptosis in Jurkat cells and in ex vivo T-cell acute lymphoblastic leukemia through H2O2 signaling mechanism.Leuk. Res.20209510638910.1016/j.leukres.2020.10638932540572
    [Google Scholar]
  43. TomiyamaK. FunadaM. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: The involvement of cannabinoid CB1 receptors and apoptotic cell death.Toxicol. Appl. Pharmacol.20142741172310.1016/j.taap.2013.10.02824211273
    [Google Scholar]
  44. ElespuruR.K. DoakS.H. CollinsA.R. DusinskaM. PfuhlerS. ManjanathaM. CardosoR. ChenC.L. Common considerations for genotoxicity assessment of nanomaterials.Front Toxicol2022485912210.3389/ftox.2022.85912235686044
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128340465241227095853
Loading
/content/journals/cpd/10.2174/0113816128340465241227095853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test