Skip to content
2000
Volume 31, Issue 29
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Tamoxifen citrate (TMC), an antiestrogenic drug, is employed in the healing of advanced breast cancer. However, its oral and parenteral route-associated side effects and solubility issues restricted its medical utilizations.

Objective

The research aimed to prepare a tamoxifen citrate-loaded transethosomal gel (TMC TEsG) to enhance TMC entrapment efficiency, dissolution, and permeation.

Methods

TMC TEs were developed employing an HPH method and optimized using 23 factorial designs. The optimized TMC TEs were converted into TMC TEsG by cold dispersion. TMC TEs and TMC TEsG were estimated for particle size, microscopic, functional group interaction, crystalline, dissolution, permeation, spreadability, TMC content, and texture analysis.

Results

The optimization study revealed the suitability and validity of 23 designs for developing TMC TEs. TMC TEs with particle size ~163.1 nm and zeta potential of ~-26.8 mV improved the physical stability and skin permeation. TMC TEs showed a high entrapment efficiency of ~84.49%. TEM depicts spherical and sealed structure vesicles of TMC TEs. Physical analysis supported the formation of TMC TEs. Vesicles improved the dissolution (~96%) compared to pure TMC (~68%). The TMC TEsG increased the permeation (~82%) compared to TMC gel (~55%). TMC TEsG with pH (~5.61), viscosity (~4077.5 cps), and spreadability (~49.84 g.cm/s) exhibiting safety and easy applicability to the skin.

Conclusion

Outcomes suggest the transdermal permeation potential of design-generated flexible TMC TEs and, thus, could be employed to treat skin-related diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128344198250308022732
2025-03-27
2025-09-02
Loading full text...

Full text loading...

References

  1. MonteagudoE. GándolaY. GonzálezL. BregniC. CarlucciA.M. Development, characterization, and in vitro evaluation of tamoxifen microemulsions.J. Drug Deliv.2012201211110.1155/2012/23671322272375
    [Google Scholar]
  2. TagneJ.B. KakumanuS. OrtizD. SheaT. NicolosiR.J. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line.Mol. Pharm.20085228028610.1021/mp700091j18171014
    [Google Scholar]
  3. JainA.K. SwarnakarN.K. GoduguC. SinghR.P. JainS. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen.Biomaterials201132250351510.1016/j.biomaterials.2010.09.03720934747
    [Google Scholar]
  4. GradisharW. Landmark trials in endocrine adjuvant therapy for breast carcinoma.Cancer2006106597598110.1002/cncr.2170716435388
    [Google Scholar]
  5. YangG. NowsheenS. AzizK. GeorgakilasA.G. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs.Pharmacol. Ther.2013139339240410.1016/j.pharmthera.2013.05.00523711794
    [Google Scholar]
  6. BhatiaA. KumarR. KatareO.P. Tamoxifen in topical liposomes: Development, characterization and in-vitro evaluation.J. Pharm. Pharm. Sci.20047225225915367383
    [Google Scholar]
  7. BhatiaA. BhushanS. SinghB. KatareO.P. Studies on tamoxifen encapsulated in lipid vesicles: Effect on the growth of human breast cancer MCF-7 cells.J. Liposome Res.200919316917210.1080/0898210080251857418991067
    [Google Scholar]
  8. BhatiaA. SinghB. RazaK. ShuklaA. AmarjiB. KatareO.P. Tamoxifen-loaded novel liposomal formulations: Evaluation of anticancer activity on DMBA-TPA induced mouse skin carcinogenesis.J. Drug Target.201220654455010.3109/1061186X.2012.69488722643315
    [Google Scholar]
  9. BhatiaA. SinghB. WadhwaS. RazaK. KatareO.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model.Pharm. Dev. Technol.201419216016310.3109/10837450.2013.76326023369039
    [Google Scholar]
  10. LayekB. MukherjeeB. Tamoxifen citrate encapsulated sustained release liposomes: Preparation and evaluation of physicochemical properties.Sci. Pharm.201078350751510.3797/scipharm.0911‑1121179362
    [Google Scholar]
  11. SarwaK. SureshP. DebnathM. AhmadM. Tamoxifen citrate loaded ethosomes for transdermal drug delivery system: Preparation and characterization.Curr. Drug Deliv.201310446647610.2174/156720181131004001123656399
    [Google Scholar]
  12. ShakerD.S. ShakerM.A. HanafyM.S. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes.Int. J. Pharm.20154931-228529410.1016/j.ijpharm.2015.07.04126200748
    [Google Scholar]
  13. SundralingamU. MuniyandyS. RadhakrishnanA.K. PalanisamyU.D. Ratite oils for local transdermal therapy of 4-OH tamoxifen: Development, characterization, and ex vivo evaluation.J. Liposome Res.202131321722910.1080/08982104.2020.177715532648792
    [Google Scholar]
  14. Abou AssiR. AbdulbaqiI.M. TanS.M. WahabH.A. DarwisY. ChanS.Y. Breaking barriers: Bilosomes gel potentials to pave the way for transdermal breast cancer treatment with Tamoxifen.Drug Dev. Ind. Pharm.202311210.1080/03639045.2023.225640437722711
    [Google Scholar]
  15. FengY. ZhangZ. TangW. DaiY. Gel/hydrogel‐based in situ biomaterial platforms for cancer postoperative treatment and recovery.Exploration2023352022017310.1002/EXP.2022017337933278
    [Google Scholar]
  16. FengC. TanP. NieG. ZhuM. Biomimetic and bioinspired nano‐platforms for cancer vaccine development.Exploration2023332021026310.1002/EXP.2021026337933383
    [Google Scholar]
  17. ZhangS. LiD. LiuY. QinC. TongL. XuL. Multifunctional exosome-driven pancreatic cancer diagnostics and therapeutics.Extracell. Vesicle2023210002210.1016/j.vesic.2023.100022
    [Google Scholar]
  18. SharmaV. MukhopadhyayC.D. Exosome as drug delivery system: Current advancements.Extracellular Vesicle2024310003210.1016/j.vesic.2023.100032
    [Google Scholar]
  19. FontanaG ManiscalcoL SchillaciD CavallaroG GiammonaG. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity.Drug Deliv200512638539210.1080/10717540590968855
    [Google Scholar]
  20. JainS. HeeralalB. SwamiR. SwarnakarN.K. KushwahV. Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles.AAPS PharmSciTech201819146046910.1208/s12249‑017‑0851‑928785860
    [Google Scholar]
  21. Al-juboriA.A. SulaimanG.M. TawfeeqA.T. MohammedH.A. KhanR.A. MohammedS.A.A. Layer-by-layer nanoparticles of tamoxifen and resveratrol for dual drug delivery system and potential triple-negative breast cancer treatment.Pharmaceutics2021137109810.3390/pharmaceutics1307109834371789
    [Google Scholar]
  22. WangY ChengW ZhuJ HeL RenW BaoD. Programmed Co-delivery of tamoxifen and docetaxel using lipid-coated mesoporous silica nanoparticles for overcoming CYP3A4-mediated resistance in triple-negative breast cancer treatment.Biomed Pharmacother202417011608410.1016/j.biopha.2023.116084
    [Google Scholar]
  23. PaudelK.S. MilewskiM. SwadleyC.L. BrogdenN.K. GhoshP. StinchcombA.L. Challenges and opportunities in dermal/transdermal delivery.Ther. Deliv.20101110913110.4155/tde.10.1621132122
    [Google Scholar]
  24. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.00422205066
    [Google Scholar]
  25. ChowdaryP PadmakumarA RenganAK Exploring the potential of transethosomes in therapeutic delivery: A comprehensive review.MedComm20232412010.1002/mba2.59
    [Google Scholar]
  26. ZafarA. AlruwailiN.K. ImamS.S. AlsaidanO.A. AhmedM.M. YasirM. WarsiM.H. AlqurainiA. GhoneimM.M. AlshehriS. Development and optimization of hybrid polymeric nanoparticles of apigenin: Physicochemical characterization, antioxidant activity and cytotoxicity evaluation.Sensors2022224136410.3390/s2204136435214260
    [Google Scholar]
  27. AdnanM. AfzalO. Development and optimization of transethosomal gel of apigenin for topical delivery: In-vitro, ex-vivo and cell line assessment.Int. J. Pharm.2023631
    [Google Scholar]
  28. NayakD. TawaleR.M. AranjaniJ.M. TippavajhalaV.K. Formulation, optimization and evaluation of novel ultra-deformable vesicular drug delivery system for an anti-fungal drug.AAPS PharmSciTech202021514010.1208/s12249‑020‑01681‑532419032
    [Google Scholar]
  29. BriugliaM.L. RotellaC. McFarlaneA. LamprouD.A. Influence of cholesterol on liposome stability and on in vitro drug release.Drug Deliv. Transl. Res.20155323124210.1007/s13346‑015‑0220‑825787731
    [Google Scholar]
  30. MedinaP. FavreG. PoirotM. Multiple targeting by the antitumor drug tamoxifen: A structure-activity study.Curr. Med. Chem. Anticancer Agents20044649150810.2174/156801104335269615579015
    [Google Scholar]
  31. KhalidH. BatoolS. DinF. KhanS. KhanG.M. Macrophage targeting of nitazoxanide-loaded transethosomal gel in cutaneous leishmaniasis.R. Soc. Open Sci.202291022042810.1098/rsos.22042836249328
    [Google Scholar]
  32. JainS. JainP. UmamaheshwariR.B. JainN.K. Transfersomes--a novel vesicular carrier for enhanced transdermal delivery: Development, characterization, and performance evaluation.Drug Dev. Ind. Pharm.20032991013102610.1081/DDC‑12002545814606665
    [Google Scholar]
  33. AlbashR. AbdelbaryA. RefaiH. El-NabarawiM. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation.Int. J. Nanomedicine2019141953196810.2147/IJN.S19677130936696
    [Google Scholar]
  34. KumarA. PathakK. BaliV. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents.Drug Discov. Today20121721-221233124110.1016/j.drudis.2012.06.01322766375
    [Google Scholar]
  35. MoolakkadathT AqilM AhadA ImamSS IqbalB SultanaY MujeebM IqbalZ Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies.Artif Cells Nanomed Biotechnol201846sup275576510.1080/21691401.2018.1469025
    [Google Scholar]
  36. AlamP. ImranM. JahanS. AkhtarA. HasanZ. Formulation and characterization of hesperidin-loaded transethosomal gel for dermal delivery to enhance antibacterial activity: Comprehension of In Vitro, Ex Vivo, and dermatokinetic analysis.Gels202391079110.3390/gels910079137888364
    [Google Scholar]
  37. Bin JardanY.A. AhadA. RaishM. Al-JenoobiF.I. Preparation and characterization of transethosome formulation for the enhanced delivery of sinapic acid.Pharmaceutics20231510239110.3390/pharmaceutics1510239137896151
    [Google Scholar]
  38. KumarL. UtrejaP. Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride.Micro Nanosyst.2020121384710.2174/1876402911666190603093550
    [Google Scholar]
  39. AgrawalY. PetkarK.C. SawantK.K. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis.Int. J. Pharm.20104011-29310210.1016/j.ijpharm.2010.09.00720858539
    [Google Scholar]
  40. JanaS. MannaS. NayakA.K. SenK.K. BasuS.K. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery.Colloids Surf. B Biointerfaces2014114364410.1016/j.colsurfb.2013.09.04524161504
    [Google Scholar]
  41. MohamedM.I. Optimization of chlorphenesin emulgel formulation.AAPS J.200463818710.1208/aapsj06032615760111
    [Google Scholar]
  42. AvasatthiV. PawarH. DoraC.P. BansodP. GillM.S. SureshS. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation.Pharm. Dev. Technol.201621555456210.3109/10837450.2015.102660526024238
    [Google Scholar]
  43. VermaS. BhardwajA. VijM. BajpaiP. GoutamN. KumarL. Oleic acid vesicles: A new approach for topical delivery of antifungal agent.Artif. Cells Nanomed. Biotechnol.20144229510110.3109/21691401.2013.79435123656670
    [Google Scholar]
  44. SreeHarshaN. HiremathJ.G. ChilukuriS. AithaR.K. Al-DhubiabB.E. VenugopalaK.N. AlzahraniA.M. MeravanigeG. An approach to enhance dissolution rate of tamoxifen citrate.BioMed Res. Int.2019201911110.1155/2019/216134830800663
    [Google Scholar]
  45. MonteiroN. MartinsA. ReisR.L. NevesN.M. Liposomes in tissue engineering and regenerative medicine.J. R. Soc. Interface2014111012014045910.1098/rsif.2014.045925401172
    [Google Scholar]
  46. AhmedT.A. Study the pharmacokinetics, pharmacodynamics and hepatoprotective activity of rosuvastatin from drug loaded lyophilized orodispersible tablets containing transfersomes nanoparticles.J. Drug Deliv. Sci. Technol.20216310248910.1016/j.jddst.2021.102489
    [Google Scholar]
  47. SguizzatoM. FerraraF. HallanS.S. BaldisserottoA. DrechslerM. MalatestaM. CostanzoM. CortesiR. PugliaC. ValacchiG. EspositoE. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox1005076834066018
    [Google Scholar]
  48. BonacucinaG. MartelliS. PalmieriG.F. Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents.Int. J. Pharm.20042821-211513010.1016/j.ijpharm.2004.06.01215336387
    [Google Scholar]
  49. SalemH.F. KharshoumR.M. Abou-TalebH.A. AbouTalebH.A. AbouElhassanK.M. Progesterone-loaded nanosized transethosomes for vaginal permeation enhancement: Formulation, statistical optimization, and clinical evaluation in anovulatory polycystic ovary syndrome.J. Liposome Res.201929218319410.1080/08982104.2018.152448330221566
    [Google Scholar]
  50. AbdulbaqiI.M. DarwisY. AssiRA KhanNAK Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation.Drug Des. Devel. Ther.20181279581310.2147/DDDT.S15801829670336
    [Google Scholar]
  51. AbdellatifM.M. KhalilI.A. KhalilM.A.F. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation.Int. J. Pharm.20175271-211110.1016/j.ijpharm.2017.05.02928522423
    [Google Scholar]
  52. KimJ.Y. SongM.G. KimJ.D. Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions.J. Colloid Interface Sci.2000223228529110.1006/jcis.1999.666310700413
    [Google Scholar]
  53. IbrahimN. RamanI.A. YusopM.R. Effects of functional group of non-ionic surfactants on the stability of emulsion.Malays. J. Anal. Sci.2015191261267
    [Google Scholar]
  54. BnyanR. KhanI. EhtezaziT. SaleemI. GordonS. O’NeillF. RobertsM. Surfactant effects on lipid-based vesicles properties.J. Pharm. Sci.201810751237124610.1016/j.xphs.2018.01.00529336980
    [Google Scholar]
  55. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery.Int. J. Pharm.20063221-2606610.1016/j.ijpharm.2006.05.02716806755
    [Google Scholar]
  56. NairR.S. BillaN. LeongC.O. MorrisA.P. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M ® membrane and excised human skin.Pharm. Dev. Technol.202126224325110.1080/10837450.2020.186008733274672
    [Google Scholar]
  57. VenemaF.R. WeringaW.D. The interactions of phospholipid vesicles with some anti-inflammatory agents.J. Colloid Interface Sci.1988125248449210.1016/0021‑9797(88)90013‑6
    [Google Scholar]
  58. AkbariJ. SaeediM. EnayatifardR. Morteza-SemnaniK. Hassan HashemiS.M. BabaeiA. RahimniaS.M. RostamkalaeiS.S. NokhodchiA. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery.J. Drug Deliv. Sci. Technol.20206010203510.1016/j.jddst.2020.102035
    [Google Scholar]
  59. WairkarS. PatelD. SinghA. Nanostructured lipid carrier based dermal gel of cyclosporine for atopic dermatitis-in vitro and in vivo evaluation.J. Drug Deliv. Sci. Technol.20227210336510.1016/j.jddst.2022.103365
    [Google Scholar]
  60. KesharwaniP. JainA. SrivastavaA.K. KeshariM.K. Systematic development and characterization of curcumin-loaded nanogel for topical application.Drug Dev. Ind. Pharm.20204691443145710.1080/03639045.2020.179399832644836
    [Google Scholar]
  61. AkhterS. KushwahaS. WarsiM.H. AnwarM. AhmadM.Z. AhmadI. TalegaonkarS. KhanZ.I. KharR.K. AhmadF.J. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir.Drug Dev. Ind. Pharm.2012381849210.3109/03639045.2011.59252921726136
    [Google Scholar]
  62. FrickerG. KrompT. WendelA. BlumeA. ZirkelJ. RebmannH. SetzerC. QuinkertR.O. MartinF. Müller-GoymannC. Phospholipids and lipid-based formulations in oral drug delivery.Pharm. Res.20102781469148610.1007/s11095‑010‑0130‑x20411409
    [Google Scholar]
  63. CostanzoM. EspositoE. SguizzatoM. LacavallaM.A. DrechslerM. ValacchiG. ZancanaroC. MalatestaM. Formulative study and intracellular fate evaluation of ethosomes and transethosomes for vitamin D3 delivery.Int. J. Mol. Sci.20212210534110.3390/ijms2210534134069489
    [Google Scholar]
  64. PatilS DandagiPM KaziT HulyalkarS BiradarP KumbarV A DoE-based development and characterization of Nadifloxacin-loaded transethosomal gel for the treatment of Acne vulgaris.Future J Pharm Sci202410110.1186/s43094‑024‑00616‑2
    [Google Scholar]
  65. ImamS.S. AlshehriS. AltamimiM.A. RaedK.H.A.A.H. SarahI. Formulation of chitosan-coated apigenin bilosomes : In vitro characterization, antimicrobial and cytotoxicity assessment.Polymers202214921115
    [Google Scholar]
  66. SudhakarK. MishraV. JainS. RompicherlaN.C. MalviyaN. TambuwalaM.M. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on Lamivudine permeation through the skin.Int. J. Pharm.202161012122610.1016/j.ijpharm.2021.12122634710540
    [Google Scholar]
  67. ZhengY. OuyangW-Q. WeiY-P. SyedS. HaoC-S. WangB-Z. ShangY-H. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: A skin permeation study.Int. J. Nanomedicine2016115971598710.2147/IJN.S119286
    [Google Scholar]
  68. MouD. ChenH. DuD. MaoC. WanJ. XuH. YangX. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs.Int. J. Pharm.20083531-227027610.1016/j.ijpharm.2007.11.05118215479
    [Google Scholar]
  69. BarryB.W. Novel mechanisms and devices to enable successful transdermal drug delivery.Eur. J. Pharm. Sci.200114210111410.1016/S0928‑0987(01)00167‑111500256
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128344198250308022732
Loading
/content/journals/cpd/10.2174/0113816128344198250308022732
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test