Skip to content
2000
Volume 31, Issue 20
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Recent research suggests that targeting ferroptosis exhibits promise as a potent treatment approach for breast carcinoma. Specific subtypes of tumor cells exhibit heightened vulnerability to ferroptosis-inducing chemicals, which selectively trigger tumor stem cells' demise, enhance tumor cells' sensitivity to chemotherapeutic drugs, and eliminate cancerous cells. Ferroptosis plays a dual role in breast cancer progression, emerging as both a stimulating and inhibitory component. Ferroptosis is effective in treating cancer cells (mesenchymal breast), identified by their ability to undergo Epithelial-mesenchymal Transition (EMT) and their resistance to conventional therapies. Pharmaceutical drugs that hinder the activity of enzymes known as kinases, which are involved in the Akt/mTOR/PI3K signaling pathway, have shown significant potential in the treatment of breast carcinoma. This review investigates the molecular mechanisms of different signaling pathways implicated in ferroptosis in breast carcinoma, with specific emphasis on metastasis, invasion, and proliferation. Our study contributes to understanding a potentially important target that could be used in developing therapeutic strategies for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128343266241230045019
2025-01-31
2025-12-06
Loading full text...

Full text loading...

References

  1. SharmaG. N. DaveR. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.201912109126
    [Google Scholar]
  2. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830010.1001/jama.2018.1932330667505
    [Google Scholar]
  3. TrayesK.P. CokenakesS.E.H. Breast cancer treatment.Am. Fam. Physician2021104217117834383430
    [Google Scholar]
  4. HongR. XuB. Breast cancer: An up-to-date review and future perspectives.Cancer Commun. (Lond.)2022421091393610.1002/cac2.1235836074908
    [Google Scholar]
  5. SmolarzB. NowakA.Z. RomanowiczH. Breast cancer—epidemiology, classification, pathogenesis and treatment.Cancers20221410256910.3390/cancers1410256935626173
    [Google Scholar]
  6. MaduC.O. WangS. MaduC.O. LuY. Angiogenesis in breast cancer progression, diagnosis, and treatment.J. Cancer202011154474449410.7150/jca.4431332489466
    [Google Scholar]
  7. Andonegui-ElgueraM.A. Alfaro-MoraY. Cáceres-GutiérrezR. Caro-SánchezC.H.S. HerreraL.A. Díaz-ChávezJ. An overview of vasculogenic mimicry in breast cancer.Front. Oncol.20201022010.3389/fonc.2020.0022032175277
    [Google Scholar]
  8. Morales-GuadarramaG. García-BecerraR. Méndez-PérezE.A. García-QuirozJ. AvilaE. DíazL. Vasculogenic mimicry in breast cancer: clinical relevance and drivers.Cells2021107175810.3390/cells1007175834359928
    [Google Scholar]
  9. FrancoP.I.R. NetoJ.R.C. de MenezesL.B. MachadoJ.R. MiguelM.P. Revisiting the hallmarks of cancer: A new look at long noncoding RNAs in breast cancer.Pathol. Res. Pract.202324315438110.1016/j.prp.2023.15438136857948
    [Google Scholar]
  10. ParkM. KimD. KoS. KimA. MoK. YoonH. Breast cancer metastasis: mechanisms and therapeutic implications.Int. J. Mol. Sci.20222312680610.3390/ijms2312680635743249
    [Google Scholar]
  11. KimM.Y. Breast cancer metastasis.Translational Research in Breast Cancer.SingaporeSpringer Singapore202118320410.1007/978‑981‑32‑9620‑6_9
    [Google Scholar]
  12. ChenX. ZehH.J. KangR. KroemerG. TangD. Cell death in pancreatic cancer: from pathogenesis to therapy.Nat. Rev. Gastroenterol. Hepatol.2021181180482310.1038/s41575‑021‑00486‑634331036
    [Google Scholar]
  13. KoualM. TomkiewiczC. Cano-SanchoG. AntignacJ.P. BatsA.S. CoumoulX. Environmental chemicals, breast cancer progression and drug resistance.Environ. Health202019111710.1186/s12940‑020‑00670‑233203443
    [Google Scholar]
  14. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. Moradi-KalbolandiS. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  15. Laborda-IllanesA. Sanchez-AlcoholadoL. Dominguez-RecioM.E. Jimenez-RodriguezB. LavadoR. Comino-MéndezI. AlbaE. Queipo-OrtuñoM.I. Breast and gut microbiota action mechanisms in breast cancer pathogenesis and treatment.Cancers (Basel)2020129246510.3390/cancers1209246532878124
    [Google Scholar]
  16. Corchado-CobosR. García-SanchaN. Mendiburu-EliçabeM. Gómez-VecinoA. Jiménez-NavasA. Pérez-BaenaM.J. Holgado-MadrugaM. MaoJ.H. CañuetoJ. Castillo-LluvaS. Pérez-LosadaJ. Pathophysiological integration of metabolic reprogramming in breast cancer.Cancers (Basel)202214232210.3390/cancers1402032235053485
    [Google Scholar]
  17. SalemmeV. CentonzeG. CavalloF. DefilippiP. ContiL. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy.Front. Oncol.20211161030310.3389/fonc.2021.61030333777750
    [Google Scholar]
  18. LüöndF. TiedeS. ChristoforiG. Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression.Br. J. Cancer2021125216417510.1038/s41416‑021‑01328‑733824479
    [Google Scholar]
  19. LiZ. ChenL. ChenC. ZhouY. HuD. YangJ. ChenY. ZhuoW. MaoM. ZhangX. XuL. WangL. ZhouJ. Targeting ferroptosis in breast cancer.Biomark. Res.2020815810.1186/s40364‑020‑00230‑333292585
    [Google Scholar]
  20. FuB. LouY. WuP. LuX. XuC. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance.Neoplasia20245510101710.1016/j.neo.2024.10101738878618
    [Google Scholar]
  21. LiuJ. HongM. LiY. ChenD. WuY. HuY. Programmed cell death tunes tumor immunity.Front. Immunol.20221384734510.3389/fimmu.2022.84734535432318
    [Google Scholar]
  22. AjoolabadyA. TangD. KroemerG. RenJ. Ferroptosis in hepatocellular carcinoma: Mechanisms and targeted therapy.Br. J. Cancer2023128219020510.1038/s41416‑022‑01998‑x36229582
    [Google Scholar]
  23. WuZ.H. TangY. YuH. LiH.D. The role of ferroptosis in breast cancer patients: A comprehensive analysis.Cell Death Discov.2021719310.1038/s41420‑021‑00473‑533947836
    [Google Scholar]
  24. LinH.Y. HoH.W. ChangY.H. WeiC.J. ChuP.Y. The evolving role of ferroptosis in breast cancer: Translational implications present and future.Cancers (Basel)20211318457610.3390/cancers1318457634572802
    [Google Scholar]
  25. KhanM.M. YalamartyS.S.K. RajmalaniB.A. FilipczakN. TorchilinV.P. Recent strategies to overcome breast cancer resistance.Crit. Rev. Oncol. Hematol.202419710435110.1016/j.critrevonc.2024.10435138615873
    [Google Scholar]
  26. NaeemM. IqbalM.O. KhanH. AhmedM.M. FarooqM. AadilM.M. JamaludinM.I. HazafaA. TsaiW.C. A review of twenty years of research on the regulation of signaling pathways by natural products in breast cancer.Molecules20222711341210.3390/molecules2711341235684353
    [Google Scholar]
  27. ZhaoX. WangX. PangY. Phytochemicals targeting ferroptosis: Therapeutic opportunities and prospects for treating breast cancer.Pharmaceuticals (Basel)20221511136010.3390/ph1511136036355532
    [Google Scholar]
  28. XieY. WangB. ZhaoY. TaoZ. WangY. ChenG. HuX. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis.J. Hematol. Oncol.20221517210.1186/s13045‑022‑01297‑135659320
    [Google Scholar]
  29. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  30. GeckR.C. TokerA. Nonessential amino acid metabolism in breast cancer.Adv. Biol. Regul.201662111710.1016/j.jbior.2016.01.00126838061
    [Google Scholar]
  31. ChenX. LiJ. GrayW.H. LehmannB.D. BauerJ.A. ShyrY. PietenpolJ.A. TNBCtype: A subtyping tool for triple-negative breast cancer.Cancer Informatics201211
    [Google Scholar]
  32. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell2012149510601072
    [Google Scholar]
  33. KoeberleS.C. KippA.P. StuppnerH. KoeberleA. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling.Med. Res. Rev.202343361468210.1002/med.2193336658724
    [Google Scholar]
  34. DaherB. VučetićM. PouysségurJ. Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death.Front. Oncol.20201072310.3389/fonc.2020.0072332457843
    [Google Scholar]
  35. YuH. YangC. JianL. GuoS. ChenR. LiK. QuF. TaoK. FuY. LuoF. LiuS. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor.Oncol. Rep.201942282683810.3892/or.2019.718931173262
    [Google Scholar]
  36. WalkerD.M. PoczobuttJ.M. GonzalesM.S. HoritaH. Gutierrez-HartmannA. ESE-1 is required to maintain the transformed phenotype of MCF-7 and ZR-75-1 human breast cancer cells.Open Cancer J.201031778810.2174/1874079001003010077
    [Google Scholar]
  37. VerschoorM.L. SinghG. Ets-1 regulates intracellular glutathione levels: key target for resistant ovarian cancer.Mol. Cancer201312113810.1186/1476‑4598‑12‑13824238102
    [Google Scholar]
  38. LiuM. ZhuW. PeiD. System Xc−: A key regulatory target of ferroptosis in cancer.Invest. New Drugs20213941123113110.1007/s10637‑021‑01070‑033506324
    [Google Scholar]
  39. WuW. SongY. HeC. LiuC. WuR. FangL. CongY. MiaoY. LiuZ. Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease.Sci. Rep.2015511634410.1038/srep1634426572590
    [Google Scholar]
  40. LeeJ. RohJ.L. Promotion of ferroptosis in head and neck cancer with divalent metal transporter 1 inhibition or salinomycin.Hum. Cell20233631090109810.1007/s13577‑023‑00890‑x36890422
    [Google Scholar]
  41. MaS. HensonE.S. ChenY. GibsonS.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells.Cell Death Dis.201677e2307e230710.1038/cddis.2016.20827441659
    [Google Scholar]
  42. GeA. HeQ. ZhaoD. LiY. ChenJ. DengY. XiangW. FanH. WuS. LiY. LiuL. WangY. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis.J. Cell. Mol. Med.2024281e1804410.1111/jcmm.1804438140764
    [Google Scholar]
  43. Villalpando-RodriguezG.E. BlanksteinA.R. KonzelmanC. GibsonS.B. Lysosomal destabilizing drug siramesine and the dual tyrosine kinase inhibitor lapatinib induce a synergistic ferroptosis through reduced heme oxygenase-1 (HO-1) levels.Oxid. Med. Cell. Longev.20192019111410.1155/2019/956128131636810
    [Google Scholar]
  44. BlanksteinA.R. Siramesine and lapatinib induce synergic cell death via a ferroptotic mechanism in lung adenocarcinoma and glioblastoma cells.FGS - Electronic Theses and Practica2017
    [Google Scholar]
  45. ImotoS. SawamuraT. ShibuyaY. KonoM. OhbuchiA. SuzukiT. MizokoshiY. SaigoK. Labile iron, ROS, and cell death are prominently induced by haemin, but not by non- transferrin-bound iron.Transfus. Apheresis Sci.202261210331910.1016/j.transci.2021.10331934801431
    [Google Scholar]
  46. FinazziD. ArosioP. Biology of ferritin in mammals: An update on iron storage, oxidative damage and neurodegeneration.Arch. Toxicol.201488101787180210.1007/s00204‑014‑1329‑025119494
    [Google Scholar]
  47. ZhangZ. LuM. ChenC. TongX. LiY. YangK. LvH. XuJ. QinL. Holo-lactoferrin: The link between ferroptosis and radiotherapy in triple-negative breast cancer.Theranostics20211173167318210.7150/thno.5202833537080
    [Google Scholar]
  48. Rodriguez-OchoaN. Cortes-ReynosaP. Rodriguez-RojasK. de la GarzaM. SalazarE.P. Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells.Mol. Biol. Rep.202350119320110.1007/s11033‑022‑07943‑836319786
    [Google Scholar]
  49. ElzoghbyA.O. AbdelmoneemM.A. HassaninI.A. Abd ElwakilM.M. ElnaggarM.A. MokhtarS. FangJ.Y. ElkhodairyK.A. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand.Biomaterials202026312035510.1016/j.biomaterials.2020.12035532932142
    [Google Scholar]
  50. PanY. TangW. FanW. ZhangJ. ChenX. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection.Chem. Soc. Rev.202251239759983010.1039/D1CS01145F36354107
    [Google Scholar]
  51. WongR.S.Y. Apoptosis in cancer: From pathogenesis to treatment.J. Exp. Clin. Cancer Res.20113018710.1186/1756‑9966‑30‑8721943236
    [Google Scholar]
  52. EndaleH.T. TesfayeW. MengstieT.A. ROS induced lipid peroxidation and their role in ferroptosis.Front. Cell Dev. Biol.202311122604410.3389/fcell.2023.122604437601095
    [Google Scholar]
  53. ClementeS.M. Martínez-CostaO.H. MonsalveM. Samhan-AriasA.K. Targeting lipid peroxidation for cancer treatment.Molecules20202521514410.3390/molecules2521514433167334
    [Google Scholar]
  54. Demirci-ÇekiçS. ÖzkanG. AvanA.N. UzunboyS. ÇapanoğluE. ApakR. Biomarkers of oxidative stress and antioxidant defense.J. Pharm. Biomed. Anal.202220911447710.1016/j.jpba.2021.11447734920302
    [Google Scholar]
  55. JardimB.V. MoschettaM.G. LeonelC. GelaletiG.B. RegianiV.R. FerreiraL.C. LopesJ.R. De Campos ZuccariD.P. Glutathione and glutathione peroxidase expression in breast cancer: An immunohistochemical and molecular study.Oncol. Rep.20133031119112810.3892/or.2013.254023765060
    [Google Scholar]
  56. YanY. LiuY. LiT. LiangQ. ThakurA. ZhangK. LiuW. XuZ. XuY. Functional roles of magnetic nanoparticles for the identification of metastatic lymph nodes in cancer patients.J. Nanobiotechnol202321133710.1186/s12951‑023‑02100‑037735449
    [Google Scholar]
  57. ShenY. LiX. DongD. ZhangB. XueY. ShangP. Transferrin receptor 1 in cancer: A new sight for cancer therapy.Am. J. Cancer Res.20188691693130034931
    [Google Scholar]
  58. LiJ. LimJ.Y.S. EuJ.Q. ChanA.K.M.H. GohB.C. WangL. WongA.L.A. Reactive oxygen species modulation in the current landscape of anticancer therapies.Antioxid. Redox Signal.2024414-632234110.1089/ars.2023.044538445392
    [Google Scholar]
  59. ChenZ. WuY. ZhangQ. ZhangY. Biological properties of a benzothiazole-based mononuclear platinum(II) complex as a potential anticancer agent.J. Coord. Chem.202073121817183210.1080/00958972.2020.1793966
    [Google Scholar]
  60. SahaT. LukongK.E. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance.Front. Oncol.20221285697410.3389/fonc.2022.85697435392236
    [Google Scholar]
  61. TanejaN. ChauhanA. KulshreshthaR. SinghS. HIF-1 mediated metabolic reprogramming in cancer: Mechanisms and therapeutic implications.Life Sci.202435212289010.1016/j.lfs.2024.12289038971364
    [Google Scholar]
  62. VoggA.T.J. DrudeN. MottaghyF.M. MorgenrothA. MiranT. Modulation of glutathione promotes apoptosis in triple-negative breast cancer cells.FASEB J.20183252803281310.1096/fj.201701157R29301945
    [Google Scholar]
  63. MaoX. Lipoxygenase in Ferroptosis.Ferroptosis in Health and Disease2019273284
    [Google Scholar]
  64. ChuB. KonN. ChenD. LiT. LiuT. JiangL. SongS. TavanaO. GuW. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway.Nat. Cell Biol.201921557959110.1038/s41556‑019‑0305‑630962574
    [Google Scholar]
  65. LinZ. LiuJ. KangR. YangM. TangD. Lipid metabolism in ferroptosis.Adv. Biol.202158210039610.1002/adbi.20210039634015188
    [Google Scholar]
  66. ZhengZ. LiY. JinG. HuangT. ZouM. DuanS. The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases.Biomed. Pharmacother.202012911035410.1016/j.biopha.2020.11035432540644
    [Google Scholar]
  67. HuangZ. XiaL. ZhouX. WeiC. MoQ. ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis.Biochem. Biophys. Res. Commun.20195141243010.1016/j.bbrc.2019.04.10131014671
    [Google Scholar]
  68. ZhouX. JiangY. LiQ. HuangZ. YangH. WeiC. Aberrant ALOX5 activation correlates with HER2 status and mediates breast cancer biological activities through multiple mechanisms.BioMed Res. Int.2020202011810.1155/2020/170353133224971
    [Google Scholar]
  69. MongioviJ.M. HongC.C. ZirpoliG.R. KhouryT. OmilianA.R. QinB. BanderaE.V. YaoS. AmbrosoneC.B. GongZ. Genetic variants in COX2 and ALOX genes and breast cancer risk in white and black women.Front. Oncol.20211167999810.3389/fonc.2021.67999834249719
    [Google Scholar]
  70. BenatzyY. PalmerM.A. BrüneB. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology.Front. Pharmacol.202213104242010.3389/fphar.2022.104242036438817
    [Google Scholar]
  71. TangW. XuF. ZhaoM. ZhangS. Ferroptosis regulators, especially SQLE, play an important role in prognosis, progression and immune environment of breast cancer.BMC Cancer2021211116010.1186/s12885‑021‑08892‑434715817
    [Google Scholar]
  72. VishnupriyaP. AparnaA. ViswanadhaV.P. Lipoxygenase (LOX) pathway: A promising target to combat cancer.Curr. Pharm. Des.202127313349336910.2174/138161282666621010115321633388012
    [Google Scholar]
  73. MehrajU. GanaiR.A. MachaM.A. HamidA. ZargarM.A. BhatA.A. NasserM.W. HarisM. BatraS.K. AlshehriB. Al-BaradieR.S. MirM.A. WaniN.A. The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities.Cell Oncol. (Dordr.)20214461209122910.1007/s13402‑021‑00634‑934528143
    [Google Scholar]
  74. ConnorA.E. BaumgartnerR.N. BaumgartnerK.B. PinkstonC.M. BooneS.D. JohnE.M. MejíaG.T. HinesL.M. GiulianoA.R. WolffR.K. SlatteryM.L. Associations between ALOX, COX, and CRP polymorphisms and breast cancer among Hispanic and non-Hispanic white women: The breast cancer health disparities study.Mol. Carcinog.201554121541155310.1002/mc.2222825339205
    [Google Scholar]
  75. TianR. ZuoX. JaoudeJ. MaoF. ColbyJ. ShureiqiI. ALOX15 as a suppressor of inflammation and cancer: Lost in the link.Prostaglandins Other Lipid Mediat.2017132778310.1016/j.prostaglandins.2017.01.00228089732
    [Google Scholar]
  76. GholamalizadehM. MajidiN. TajaddodS. AbdollahiS. PoorhosseiniS.M. AhmadzadehM. Naimi JoubaniM. Mirzaei DahkaS. ShafaeiH. HajiesmaeilM. AlizadehA. DoaeiS. Houshiar-RadA. Interactions of colorectal cancer, dietary fats, and polymorphisms of arachidonate lipoxygenase and cyclooxygenase genes: A literature review.Front. Oncol.20221286520810.3389/fonc.2022.86520835928873
    [Google Scholar]
  77. JonesD. PereiraE.R. PaderaT.P. Growth and immune evasion of lymph node metastasis.Front. Oncol.201883610.3389/fonc.2018.0003629527513
    [Google Scholar]
  78. BiswasP. SwaroopS. DuttaN. AryaA. GhoshS. DhabalS. DasP. MajumderC. PalM. BhattacharjeeA. IL-13 and the hydroperoxy fatty acid 13(S)HpODE play crucial role in inducing an apoptotic pathway in cancer cells involving MAO-A/ROS/p53/p21 signaling axis.Free Radic. Biol. Med.202319530932810.1016/j.freeradbiomed.2022.12.10336592660
    [Google Scholar]
  79. AlaaeddineR.A. ElzahharP.A. AlZaimI. Abou-KheirW. BelalA.S.F. El-YazbiA.F. The emerging role of COX-2, 15-LOX and PPARγ in metabolic diseases and cancer: An introduction to novel multi-target directed ligands (MTDLs).Curr. Med. Chem.202128112260230010.2174/1875533XMTA54Mzkc032867639
    [Google Scholar]
  80. KazanH.H. Urfali-MamatogluC. YalcinG.D. BulutO. SezerA. BanerjeeS. GunduzU. 15-LOX-1 has diverse roles in the resensitization of resistant cancer cell lines to doxorubicin.J. Cell. Physiol.202023554965497810.1002/jcp.2937531663148
    [Google Scholar]
  81. PinnixZ.K. MillerL.D. WangW. D’AgostinoR.Jr KuteT. WillinghamM.C. TortiF.M. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med.201024343ra56
    [Google Scholar]
  82. LiuP. HeK. SongH. MaZ. YinW. XuL.X. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-α-dependent NF-κB signaling and TGF-β signaling.J. Inorg. Biochem.2016160404810.1016/j.jinorgbio.2016.04.01427138103
    [Google Scholar]
  83. BentE.H. Millán-BareaL.R. ZhuangI. GouletD.R. FröseJ. HemannM.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy.Nat. Commun.2021121621810.1038/s41467‑021‑26407‑434711820
    [Google Scholar]
  84. BasakT. KanwarR.K. Iron imbalance in cancer: Intersection of deficiency and overload.Cancer Med.202211203837385310.1002/cam4.476135460205
    [Google Scholar]
  85. HouW. XieY. SongX. SunX. LotzeM.T. ZehH.J.III KangR. TangD. Autophagy promotes ferroptosis by degradation of ferritin.Autophagy20161281425142810.1080/15548627.2016.118736627245739
    [Google Scholar]
  86. SuiS. ZhangJ. XuS. WangQ. WangP. PangD. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells.Cell Death Dis.201910533110.1038/s41419‑019‑1564‑730988278
    [Google Scholar]
  87. ToumaziD. El DaccacheS. ConstantinouC. An unexpected link: The role of mammary and gut microbiota on breast cancer development and management.Oncol. Rep.20214558010.3892/or.2021.803133786630
    [Google Scholar]
  88. Latunde-DadaG.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy.Biochim. Biophys. Acta, Gen. Subj.2017186181893190010.1016/j.bbagen.2017.05.01928552631
    [Google Scholar]
  89. KhanF. PandeyP. VermaM. RamniwasS. LeeD. MoonS. ParkM.N. UpadhyayT.K. KimB. Emerging trends of phytochemicals as ferroptosis modulators in cancer therapy.Biomed. Pharmacother.202417311636310.1016/j.biopha.2024.11636338479184
    [Google Scholar]
  90. ZhuY. YaoY. ShiZ. EveraertN. RenG. Synergistic effect of bioactive anticarcinogens from soybean on anti-proliferative activity in MDA-MB-231 and MCF-7 human breast cancer cells in vitro.Molecules2018237155710.3390/molecules2307155729954123
    [Google Scholar]
  91. BellezzaI. GiambancoI. MinelliA. DonatoR. NRF2-Keap1 signaling in oxidative and reductive stress.Biochim. Biophys. Acta Mol. Cell Res.20181865572173310.1016/j.bbamcr.2018.02.01029499228
    [Google Scholar]
  92. KitamuraH. MotohashiH. NRF2 addiction in cancer cells.Cancer Sci.2018109490091110.1111/cas.1353729450944
    [Google Scholar]
  93. OkazakiK. PapagiannakopoulosT. MotohashiH. Metabolic features of cancer cells in NRF2 addiction status.Biophys. Rev.202012243544110.1007/s12551‑020‑00659‑832112372
    [Google Scholar]
  94. QiX. WanZ. JiangB. OuyangY. FengW. ZhuH. TanY. HeR. XieL. LiY. Inducing ferroptosis has the potential to overcome therapy resistance in breast cancer.Front. Immunol.202213103822510.3389/fimmu.2022.103822536505465
    [Google Scholar]
  95. PanieriE. Telkoparan-AkillilarP. SuzenS. SasoL. The NRF2/KEAP1 axis in the regulation of tumor metabolism: Mechanisms and therapeutic perspectives.Biomolecules202010579110.3390/biom1005079132443774
    [Google Scholar]
  96. KerinsM.J. OoiA. The roles of NRF2 in modulating cellular iron homeostasis.Antioxid. Redox Signal.201829171756177310.1089/ars.2017.717628793787
    [Google Scholar]
  97. SoghliN. YousefiH. NaderiT. FallahA. MoshksarA. DarbeheshtiF. VittoriC. DelavarM.R. ZareA. RadH.S. KazemiA. BitarafA. HussenB.M. TaheriM. JamaliE. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer.Pathol. Res. Pract.202324315434110.1016/j.prp.2023.15434136739754
    [Google Scholar]
  98. SprouseM.L. WelteT. BoralD. LiuH.N. YinW. VishnoiM. Goswami-SewellD. LiL. PeiG. JiaP. Glitza-OlivaI.C. MarchettiD. PMN-MDSCs enhance CTC metastatic properties through reciprocal interactions via ROS/Notch/Nodal signaling.Int. J. Mol. Sci.2019208191610.3390/ijms2008191631003475
    [Google Scholar]
  99. HallisS.P. GoB.J. YooJ.M. ChoG.H. KwakM.K. Toward a better understanding of NRF2/NFE2L2 and BCRP/ABCG2 in therapy resistance in cancer.Drug Targets and Therapeutics20232211112310.58502/DTT.23.0021
    [Google Scholar]
  100. Gorska-ArciszM. PopedaM. BraunM. PiaseckaD. NowakJ.I. KitowskaK. StasilojcG. OkrojM. RomanskaH.M. SadejR. FGFR2-triggered autophagy and activation of NRF-2 reduce breast cancer cell response to anti-ER drugs.Cell. Mol. Biol. Lett.20242917110.1186/s11658‑024‑00586‑638745155
    [Google Scholar]
  101. LiW. LiangL. LiuS. YiH. ZhouY. FSP1: A key regulator of ferroptosis.Trends Mol. Med.202329975376410.1016/j.molmed.2023.05.01337357101
    [Google Scholar]
  102. NakamuraT. HippC. Santos Dias MourãoA. BorggräfeJ. AldrovandiM. HenkelmannB. WanningerJ. MishimaE. LyttonE. EmlerD. PronethB. SattlerM. ConradM. Phase separation of FSP1 promotes ferroptosis.Nature2023619796937137710.1038/s41586‑023‑06255‑637380771
    [Google Scholar]
  103. DollS. FreitasF.P. ShahR. AldrovandiM. da SilvaM.C. IngoldI. Goya GrocinA. Xavier da SilvaT.N. PanziliusE. ScheelC.H. MourãoA. BudayK. SatoM. WanningerJ. VignaneT. MohanaV. RehbergM. FlatleyA. SchepersA. KurzA. WhiteD. SauerM. SattlerM. TateE.W. SchmitzW. SchulzeA. O’DonnellV. PronethB. PopowiczG.M. PrattD.A. AngeliJ.P.F. ConradM. FSP1 is a glutathione-independent ferroptosis suppressor.Nature2019575778469369810.1038/s41586‑019‑1707‑031634899
    [Google Scholar]
  104. AlimohammadiM. RahimiA. FaramarziF. GolpourM. Jafari-ShakibR. Alizadeh-NavaeiR. RafieiA. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: A systematic review and meta-analysis of randomized controlled- trials.Inflammopharmacology202129357959310.1007/s10787‑021‑00817‑834008150
    [Google Scholar]
  105. TafazoliA. Coenzyme Q10 in breast cancer care.Future Oncol.201713111035104110.2217/fon‑2016‑054728481148
    [Google Scholar]
  106. AbdiS. MontazeriV. GarjaniA. ShayanfarA. PirouzpanahS. Coenzyme Q10 in association with metabolism-related AMPK/PFKFB3 and angiogenic VEGF/VEGFR2 genes in breast cancer patients.Mol. Biol. Rep.20204742459247310.1007/s11033‑020‑05310‑z32140960
    [Google Scholar]
  107. LiangY. WangY. ZhangY. YeF. LuoD. LiY. JinY. HanD. WangZ. ChenB. ZhaoW. WangL. ChenX. MaT. KongX. YangQ. HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer.Cell Death Dis.202314743410.1038/s41419‑023‑05972‑037454220
    [Google Scholar]
  108. BelavgeniA. TonnusW. LinkermannA. Cancer cells evade ferroptosis: Sex hormone-driven membrane-bound O-acyltransferase domain-containing 1 and 2 (MBOAT1/2) expression.Signal Transduct. Target. Ther.20238133610.1038/s41392‑023‑01593‑337679313
    [Google Scholar]
  109. BrabletzT. KalluriR. NietoM.A. WeinbergR.A. EMT in cancer.Nat. Rev. Cancer201818212813410.1038/nrc.2017.11829326430
    [Google Scholar]
  110. HausmanR. BrownW. McDonaldP. AwreyS. SunG. MontellD. DedharS. Abstract 6002: Increased ferroptosis sensitivity and epithelial to mesenchymal transition of breast cancer cells overcoming chemotherapeutic mediated apoptotic caspase activation.Cancer Res.2024846_Supplement6002600210.1158/1538‑7445.AM2024‑6002
    [Google Scholar]
  111. YanY. CaiJ. HuangZ. CaoX. TangP. WangZ. ZhangF. XiaS. ShenB. A novel ferroptosis-related prognostic signature reveals macrophage infiltration and EMT status in bladder cancer.Front. Cell Dev. Biol.2021971223010.3389/fcell.2021.71223034490263
    [Google Scholar]
  112. LigorioF. PellegriniI. CastagnoliL. VingianiA. LobefaroR. ZattarinE. SantamariaM. PupaS.M. PruneriG. de BraudF. VernieriC. Targeting lipid metabolism is an emerging strategy to enhance the efficacy of anti-HER2 therapies in HER2-positive breast cancer.Cancer Lett.2021511778710.1016/j.canlet.2021.04.02333961924
    [Google Scholar]
  113. HanC. WeiS. HeF. LiuD. WanH. LiuH. LiL. XuH. DuX. XuF. The regulation of lipid deposition by insulin in goose liver cells is mediated by the PI3K-Akt-mTOR signaling pathway.PLoS One2015105e009875910.1371/journal.pone.009875925945932
    [Google Scholar]
  114. ChenX. LiS. LongD. ShanJ. LiY. Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation.Cell. Immunol.202136510437810.1016/j.cellimm.2021.10437834015699
    [Google Scholar]
  115. EbrahimiN. AdelianS. ShakerianS. AfshinpourM. ChaleshtoriS.R. RostamiN. Rezaei-TazangiF. BeiranvandS. HamblinM.R. ArefA.R. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: Implications for inflammation and cancer therapy.Cytokine Growth Factor Rev.202264334510.1016/j.cytogfr.2022.01.00635219587
    [Google Scholar]
  116. LinC.C. YangW.H. LinY.T. TangX. ChenP.H. DingC.K.C. QuD.C. AlvarezJ.V. ChiJ.T. DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway.Oncogene202140112018203410.1038/s41388‑021‑01676‑x33603168
    [Google Scholar]
  117. VermaN. VinikY. SarohaA. NairN.U. RuppinE. MillsG. KarnT. DubeyV. KheraL. RajH. MainaF. LevS. Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis.Sci. Adv.2020634eaba896810.1126/sciadv.aba896832937365
    [Google Scholar]
  118. El-AttarE. KamelA. KarmoutyA. WehidaN. NassraR. El NemrM. KandilN.S. Assessment of serum CoQ10 levels and other antioxidant markers in breast cancer.Asian Pac. J. Cancer Prev.202021246547110.31557/APJCP.2020.21.2.46532102525
    [Google Scholar]
  119. KoppulaP. ZhuangL. GanB. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy.Protein Cell202112859962010.1007/s13238‑020‑00789‑533000412
    [Google Scholar]
  120. ZhangT. YaoC.II ZhouX. LiuS. QiL. ZhuS. ZhaoC. HuD. ShenW. Glutathione-degrading enzymes in the complex landscape of tumors.Int. J. Oncol.20246517210.3892/ijo.2024.566038847236
    [Google Scholar]
  121. WuK. ZhangW. ChenH. WuJ. WangX. YangX. LiangX.J. ZhangJ. LiuD. An iron oxyhydroxide-based nanosystem sensitizes ferroptosis by a “Three-Pronged” strategy in breast cancer stem cells.Acta Biomater.202316028129610.1016/j.actbio.2023.02.01536822484
    [Google Scholar]
  122. WuS. LiT. LiuW. HuangY. Ferroptosis and cancer: Complex relationship and potential application of exosomes.Front. Cell Dev. Biol.2021973375110.3389/fcell.2021.73375134568341
    [Google Scholar]
  123. ZhuJ. ZhangK. ZhouY. WangR. GongL. WangC. ZhongK. LiuW. FengF. QuW. A carrier-free nanomedicine enables apoptosis-ferroptosis synergistic breast cancer therapy by targeting subcellular organelles.ACS Appl. Mater. Interfaces20231518224032241410.1021/acsami.3c0135037104698
    [Google Scholar]
  124. WuX. LiuC. LiZ. GaiC. DingD. ChenW. HaoF. LiW. Regulation of GSK3β/NRF2 signaling pathway modulated erastin-induced ferroptosis in breast cancer.Mol. Cell. Biochem.20204731-221722810.1007/s11010‑020‑03821‑832642794
    [Google Scholar]
  125. JingS. LuY. ZhangJ. RenY. MoY. LiuD. DuanL. YuanZ. WangC. WangQ. Levistilide a induces ferroptosis by activating the NRF2/HO-1 signaling pathway in breast cancer cells.Drug Des. Devel. Ther.2022162981299310.2147/DDDT.S37432836105321
    [Google Scholar]
  126. LiangD. FengY. ZandkarimiF. WangH. ZhangZ. KimJ. CaiY. GuW. StockwellB.R. JiangX. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones.Cell20231861327482764.e2210.1016/j.cell.2023.05.00337267948
    [Google Scholar]
  127. LiZ. LiJ. LiuX. LiuY. ChenH. SunX. β-eudesmol inhibits cell proliferation and induces ferroptosis via regulating MAPK signaling pathway in breast cancer.Toxicon202423710752910.1016/j.toxicon.2023.10752938030095
    [Google Scholar]
  128. ChenC. XieB. LiZ. ChenL. ChenY. ZhouJ. JuS. ZhouY. ZhangX. ZhuoW. YangJ. MaoM. XuL. WangL. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis.Cell Death Dis.202213215010.1038/s41419‑022‑04579‑135165254
    [Google Scholar]
  129. FangK. DuS. ShenD. XiongZ. JiangK. LiangD. WangJ. XuH. HuL. ZhaiX. JiangY. XiaZ. XieC. JinD. ChengW. MengS. WangY. SUFU suppresses ferroptosis sensitivity in breast cancer cells via Hippo/YAP pathway.iScience202225710461810.1016/j.isci.2022.10461835800779
    [Google Scholar]
  130. ZhangJ. GaoR. LiJ. YuK. BiK. Alloimperatorin activates apoptosis, ferroptosis, and oxeiptosis to inhibit the growth and invasion of breast cancer cells in vitro.Biochem. Cell Biol.2022100321322210.1139/bcb‑2021‑039935263194
    [Google Scholar]
  131. NengrooM.A. SinhaA. DattaD. Iron vulnerability of cancer stem cells: Role of ROS and beyond.Handbook of Oxidative Stress in Cancer: Therapeutic Aspects.SingaporeSpringer Nature Singapore20222509253710.1007/978‑981‑16‑5422‑0_235
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128343266241230045019
Loading
/content/journals/cpd/10.2174/0113816128343266241230045019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; Breast cancer; EMT; ferroptosis; signaling pathway; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test