Skip to content
2000
Volume 31, Issue 23
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The field of drug delivery has witnessed significant advancements with the emergence of nanocarriers and advanced delivery devices for parenteral administration. Nanocarriers, a prominent topic in drug delivery, are introduced with an emphasis on their significance and diverse applications A critical analysis compares conventional injectables with parenteral nanocarriers, focusing on identifying limitations and proposing innovative solutions to enhance their efficacy and stability. The subsequent discussion delves into advanced parenteral nanocarriers, including solid lipid nanoparticles, liposomes, polymeric nanoparticles, metallic nanoparticles, dendrimers, carbon nanotubes, and graphene. Each nanoparticle type is assessed based on its unique properties, advancements in research, and potential applications in parenteral drug delivery. Furthermore, advanced sterile drug delivery devices are explored, highlighting their role in enhancing precision and efficacy in parenteral administration. A comprehensive market analysis provides insights into current trends, key players, and future prospects in parenteral nanocarriers. Lastly, regulatory perspectives are discussed, focusing on the challenges and considerations in approving and regulating parenteral nanocarriers. The paper concludes with a summary of key findings and implications for future research and development in this rapidly evolving field of parenteral nanocarriers.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338217250114073640
2025-03-13
2025-11-05
Loading full text...

Full text loading...

References

  1. LiuR. LuoC. PangZ. ZhangJ. RuanS. WuM. WangL. SunT. LiN. HanL. ShiJ. HuangY. GuoW. PengS. ZhouW. GaoH. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment.Chin. Chem. Lett.202334210751810.1016/j.cclet.2022.05.032
    [Google Scholar]
  2. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent Mater.2022561593161510.1007/s42247‑021‑00335‑x35005431
    [Google Scholar]
  3. ZhangQ. KuangG. LiW. WangJ. RenH. ZhaoY. Stimuli-responsive gene delivery nanocarriers for cancer therapy.Nano-Micro Lett.20231514410.1007/s40820‑023‑01018‑436752939
    [Google Scholar]
  4. AlQahtaniS.A. HarisaG.I. AlomraniA.H. AlanaziF.K. BadranM.M. Improved pharmacokinetic and biodistribution of 5-fluorouracil loaded biomimetic nanoerythrocytes decorated nanocarriers for liver cancer treatment.Colloids Surf. B Biointerfaces202119711138010.1016/j.colsurfb.2020.11138033068824
    [Google Scholar]
  5. JinY. WuZ. WuC. ZiY. ChuX. LiuJ. ZhangW. Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity.J. Control. Release202032014215810.1016/j.jconrel.2020.01.04031978442
    [Google Scholar]
  6. BiliaA.R. PiazziniV. RisalitiL. VantiG. CasamontiM. WangM. BergonziM.C. Nanocarriers: A successful tool to increase solubility, stability and optimise bioefficacy of natural constituents.Curr. Med. Chem.201926244631465610.2174/092986732566618110111005030381065
    [Google Scholar]
  7. PandyaP. GiramP. BholeR.P. ChangH.I. RautS.Y. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches.J. Drug Deliv. Sci. Technol.20216410258510.1016/j.jddst.2021.102585
    [Google Scholar]
  8. BagheriM. van NostrumC.F. KokR.J. StormG. HenninkW.E. HegerM. Utility of intravenous curcumin nanodelivery systems for improving in vivo pharmacokinetics and anticancer pharmacodynamics.Mol. Pharm.20221993057307410.1021/acs.molpharmaceut.2c0045535973068
    [Google Scholar]
  9. SarkarK. KumarM. JhaA. BhartiK. DasM. MishraB. Nanocarriers for tuberculosis therapy: Design of safe and effective drug delivery strategies to overcome the therapeutic challenges.J. Drug Deliv. Sci. Technol.20226710285010.1016/j.jddst.2021.102850
    [Google Scholar]
  10. ZebA. RanaI. ChoiH.I. LeeC.H. BaekS.W. LimC.W. KhanN. ArifS.T. SaharN. AlviA.M. ShahF.A. DinF. BaeO.N. ParkJ.S. KimJ.K. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals.Pharmaceutics20201212118410.3390/pharmaceutics1212118433291312
    [Google Scholar]
  11. JainA.K. TharejaS. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery.Artif. Cells Nanomed. Biotechnol.201947152453910.1080/21691401.2018.156145730784319
    [Google Scholar]
  12. HatanoH. MengF. SakataM. MatsumotoA. IshiharaK. MiyaharaY. GodaT. Transepithelial delivery of insulin conjugated with phospholipid-mimicking polymers via biomembrane fusion-mediated transcellular pathways.Acta Biomater.202214067468510.1016/j.actbio.2021.12.00334896268
    [Google Scholar]
  13. YuZ. MengX. ZhangS. ChenY. ZhangZ. ZhangY. Recent progress in transdermal nanocarriers and their surface modifications.Molecules20212611309310.3390/molecules2611309334064297
    [Google Scholar]
  14. JohnP.M. EmmanuelM. BeegumJ. JohnF. GeorgeJ. Nano-Drug delivery systems for tumour-targeting: Overcoming the limitations of chemotherapy.In: Targeted Cancer Therapy in Biomedical Engineering.Springer2023487521
    [Google Scholar]
  15. MaY. GeY. LiL. Advancement of multifunctional hybrid nanogel systems: Construction and application in drug co-delivery and imaging technique.Mater. Sci. Eng. C2017711281129210.1016/j.msec.2016.11.03127987684
    [Google Scholar]
  16. JagiełłoJ. ChlandaA. BaranM. GwiazdaM. LipińskaL. Synthesis and characterization of graphene oxide and reduced graphene oxide composites with inorganic nanoparticles for biomedical applications.Nanomaterials2020109184610.3390/nano1009184632942775
    [Google Scholar]
  17. AbdellatifA.A.H. AhmedF. MohammedA.M. AlsharidahM. Al-SubaiyelA. SammanW.A. AlhaddadA.A. Al-MijalliS.H. AminM.A. BarakatH. OsmanS.K. Recent advances in the pharmaceutical and biomedical applications of cyclodextrin-capped gold nanoparticles.Int. J. Nanomedicine2023183247328110.2147/IJN.S40596437337575
    [Google Scholar]
  18. GunathilakaT.M. ShimomuraM. Nanoscale evaluation of the degradation stability of black phosphorus nanosheets functionalized with PEG and glutathione-stabilized doxorubicin drug-loaded gold nanoparticles in real functionalized system.Molecules2024298174610.3390/molecules2908174638675567
    [Google Scholar]
  19. FernandesN.B. NayakY. GargS. NayakU.Y. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives.Coord. Chem. Rev.202347821497710.1016/j.ccr.2022.214977
    [Google Scholar]
  20. WangX. ZhongX. LiJ. LiuZ. ChengL. Inorganic nanomaterials with rapid clearance for biomedical applications.Chem. Soc. Rev.202150158669874210.1039/D0CS00461H34156040
    [Google Scholar]
  21. AbbasiH. KouchakM. MirveisZ. HajipourF. KhodarahmiM. RahbarN. HandaliS. What we need to know about liposomes as drug nanocarriers: An updated review.Adv. Pharm. Bull.202313172336721822
    [Google Scholar]
  22. AnH. DengX. WangF. XuP. WangN. Dendrimers as nanocarriers for the delivery of drugs obtained from natural products.Polymers20231510229210.3390/polym1510229237242865
    [Google Scholar]
  23. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics1506159337376042
    [Google Scholar]
  24. KaramiM.H. PourmadadiM. AbdoussM. KalaeeM.R. MoradiO. RahdarA. Díez-PascualA.M. Novel chitosan/γ-alumina/carbon quantum dot hydrogel nanocarrier for targeted drug delivery.Int. J. Biol. Macromol.202325112628010.1016/j.ijbiomac.2023.12628037591420
    [Google Scholar]
  25. AnsariM.A. TripathiT. VenkidasamyB. MonzianiA. RajakumarG. AlomaryM.N. AlyahyaS.A. OnimusO. D’souzaN. BarkatM.A. Multifunctional nanocarriers for Alzheimer’s disease: Befriending the barriers.Mol. Neurobiol.202461530428937966683
    [Google Scholar]
  26. ChaparroC.I.P. SimõesB.T. BorgesJ.P. CastanhoM.A.R.B. SoaresP.I.P. NevesV. A promising approach: Magnetic nanosystems for Alzheimer’s disease theranostics.Pharmaceutics2023159231610.3390/pharmaceutics1509231637765284
    [Google Scholar]
  27. SonowalL. GautamS. Advancements and challenges in carbon nanotube-based drug delivery systems.Nano-Struct. Nano. Objects20243810111710.1016/j.nanoso.2024.101117
    [Google Scholar]
  28. KapoorD. MaheshwariN. BagA. SharmaM.C. PrajapatiB. MaheshwariR. Polymer mediated light responsive therapeutics delivery system to treat cancer.Eur. Polym. J.202421011292310.1016/j.eurpolymj.2024.112923
    [Google Scholar]
  29. BurlecA.F. CorciovaA. BoevM. Batir-MarinD. MirceaC. CioancaO. DanilaG. DanilaM. BucurA.F. HancianuM. Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles.Pharmaceuticals20231610141010.3390/ph1610141037895881
    [Google Scholar]
  30. ComanescuC. Recent advances in surface functionalization of magnetic nanoparticles.Coatings20231310177210.3390/coatings13101772
    [Google Scholar]
  31. SinghaiN.J. MaheshwariR. JainN.K. RamtekeS. Chondroitin sulphate and α-tocopheryl succinate tethered multiwalled carbon nanotubes for dual-action therapy of triple-negative breast cancer.J. Drug Deliv. Sci. Technol.20206010208010.1016/j.jddst.2020.102080
    [Google Scholar]
  32. SinghaiN.J. MaheshwariR. RamtekeS. CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer.Colloid Interface Sci. Commun.20203510023510.1016/j.colcom.2020.100235
    [Google Scholar]
  33. JogiH. MaheshwariR. RavalN. KucheK. TambeV. MakK.K. PichikaM.R. TekadeR.K. Carbon nanotubes in the delivery of anticancer herbal drugs.Nanomedicine (Lond.)201813101187122010.2217/nnm‑2017‑039729905493
    [Google Scholar]
  34. MeskherH. MustansarH.C. ThakurA.K. SathyamurthyR. LynchI. SinghP. HanT.K. SaidurR. Recent trends in carbon nanotube (CNT)-based biosensors for the fast and sensitive detection of human viruses: A critical review.Nanoscale Adv.202354992101010.1039/D2NA00236A36798507
    [Google Scholar]
  35. de Almeida BarcelosK. GargJ. Ferreira SoaresD.C. de BarrosA.L.B. ZhaoY. AlisaraieL. Recent advances in the applications of CNT-based nanomaterials in pharmaceutical nanotechnology and biomedical engineering.J. Drug Deliv. Sci. Technol.20238710483410.1016/j.jddst.2023.104834
    [Google Scholar]
  36. AttriA. ThakurD. KaurT. SensaleS. PengZ. KumarD. SinghR.P. Nanoparticles incorporating a fluorescence turn-on reporter for real-time drug release monitoring, a chemoenhancer and a stealth agent: Poseidon’s Trident against cancer?Mol. Pharm.202118112414710.1021/acs.molpharmaceut.0c0073033346663
    [Google Scholar]
  37. ZareH. AhmadiS. GhasemiA. GhanbariM. RabieeN. BagherzadehM. KarimiM. WebsterT.J. HamblinM.R. MostafaviE. Carbon nanotubes: Smart drug/gene delivery carriers.Int. J. Nanomedicine2021161681170610.2147/IJN.S29944833688185
    [Google Scholar]
  38. MukherjeeS. MukherjeeS. AbourehabM.A.S. SahebkarA. KesharwaniP. Exploring dendrimer-based drug delivery systems and their potential applications in cancer immunotherapy.Eur. Polym. J.202217711147110.1016/j.eurpolymj.2022.111471
    [Google Scholar]
  39. CookA.B. PerrierS. Branched and dendritic polymer architectures: Functional nanomaterials for therapeutic delivery.Adv. Funct. Mater.2020302190100110.1002/adfm.201901001
    [Google Scholar]
  40. García-GallegoS. AndrénO.C.J. MalkochM. Accelerated chemoselective reactions to sequence-controlled heterolayered dendrimers.J. Am. Chem. Soc.202014231501150910.1021/jacs.9b1172631895981
    [Google Scholar]
  41. GawandeV. ChoudhuryH. KesharwaniP. Dendrimer nomenclature and synthesis methods.In: Dendrimer-based nanotherapeutics.Elsevier2021759410.1016/B978‑0‑12‑821250‑9.00009‑3
    [Google Scholar]
  42. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  43. Bordbar-KhiabaniA. GasikM. Smart hydrogels for advanced drug delivery systems.Int. J. Mol. Sci.2022237366510.3390/ijms2307366535409025
    [Google Scholar]
  44. LavradorP. EstevesM.R. GasparV.M. ManoJ.F. Stimuli‐responsive nanocomposite hydrogels for biomedical applications.Adv. Funct. Mater.2021318200594110.1002/adfm.202005941
    [Google Scholar]
  45. BertschP. DibaM. MooneyD.J. LeeuwenburghS.C.G. Self-healing injectable hydrogels for tissue regeneration.Chem. Rev.2023123283487310.1021/acs.chemrev.2c0017935930422
    [Google Scholar]
  46. LvZ. DongC. ZhangT. ZhangS. Hydrogels in spinal cord injury repair: A review.Front. Bioeng. Biotechnol.20221093180010.3389/fbioe.2022.93180035800332
    [Google Scholar]
  47. SobhananJ. RivalJ.V. AnasA. Sidharth ShibuE. TakanoY. BijuV. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity.Adv. Drug Deliv. Rev.202319711483010.1016/j.addr.2023.11483037086917
    [Google Scholar]
  48. SoumyaK. MoreN. ChoppadandiM. AishwaryaD.A. SinghG. KapusettiG. A comprehensive review on carbon quantum dots as an effective photosensitizer and drug delivery system for cancer treatment.Biomed Technol.20234112010.1016/j.bmt.2023.01.005
    [Google Scholar]
  49. QureshiA. ShaikhT. NiaziJ.H. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications.Analyst (Lond.)202314881633165210.1039/D2AN01690G36880521
    [Google Scholar]
  50. LiG. LiuS. ChenY. ZhaoJ. XuH. WengJ. YuF. XiongA. UdduttulaA. WangD. LiuP. ChenY. ZengH. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment.Nat. Commun.2023141315910.1038/s41467‑023‑38597‑037258510
    [Google Scholar]
  51. PanchalK. KatkeS. DashS.K. GaurA. ShindeA. SahaN. MehraN.K. ChaurasiyaA. An expanding horizon of complex injectable products: Development and regulatory considerations.Drug Deliv. Transl. Res.202313243347210.1007/s13346‑022‑01223‑535963928
    [Google Scholar]
  52. YuH.P. AljuffaliI.A. FangJ.Y. Injectable drug-loaded nanocarriers for lung cancer treatments.Curr. Pharm. Des.201723348149410.2174/138161282266616102711365428292243
    [Google Scholar]
  53. Abu SamaanT.M. SamecM. LiskovaA. KubatkaP. BüsselbergD. Paclitaxel’s mechanistic and clinical effects on breast cancer.Biomolecules201991278910.3390/biom912078931783552
    [Google Scholar]
  54. SundarS. ChakravartyJ. Liposomal amphotericin B and leishmaniasis: Dose and response.J. Glob. Infect. Dis.20102215916610.4103/0974‑777X.6288620606972
    [Google Scholar]
  55. VelosoD.F.M.C. BenedettiN.I.G.M. ÁvilaR.I. BastosT.S.A. SilvaT.C. SilvaM.R.R. BatistaA.C. ValadaresM.C. LimaE.M. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity.Drug Deliv.20182511585159410.1080/10717544.2018.149204630044149
    [Google Scholar]
  56. MoenM.D. Lyseng-WilliamsonK.A. ScottL.J. Liposomal amphotericin B: A review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections.Drugs200969336139210.2165/00003495‑200969030‑0001019275278
    [Google Scholar]
  57. PetreC.E. DittmerD.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma.Int. J. Nanomedicine20072327728818019828
    [Google Scholar]
  58. KrippM. HofheinzR.D. Treatment of lymphomatous and leukemic meningitis with liposomal encapsulated cytarabine.Int. J. Nanomedicine20083439740119337408
    [Google Scholar]
  59. RooimansT. DamenM. MarkesteijnC.M.A. SchuurmansC.C.L. de ZoeteN.H.C. van HasseltP.M. HenninkW.E. van NostrumC.F. HermesM. BesselingR. VromansH. Development of a compounded propofol nanoemulsion using multiple non-invasive process analytical technologies.Int. J. Pharm.202364012296010.1016/j.ijpharm.2023.12296037061210
    [Google Scholar]
  60. YessayanL. SandhuA. BesarabA. YessayanA. FrinakS. ZasuwaG. YeeJ. Intravenous iron dextran as a component of anemia management in chronic kidney disease: A report of safety and efficacy.Int. J. Nephrol.201320131910.1155/2013/70303823573422
    [Google Scholar]
  61. ShoreN.D. ChuF. MoulJ. SaltzsteinD. ConcepcionR. McLaneJ.A. AtkinsonS. YangA. CrawfordE.D. Polymer‐delivered subcutaneous leuprolide acetate formulations achieve and maintain castrate concentrations of testosterone in four open‐label studies in patients with advanced prostate cancer.BJU Int.2017119223924410.1111/bju.1348226991743
    [Google Scholar]
  62. TassoneP. OldM. TeknosT.N. PanQ. p53-based therapeutics for head and neck squamous cell carcinoma.Oral Oncol.201349873373710.1016/j.oraloncology.2013.03.44723623836
    [Google Scholar]
  63. YinJ. CollierA.C. BarrA.M. HonerW.G. ProcyshynR.M. Paliperidone palmitate long-acting injectable given intramuscularly in the deltoid versus the gluteal muscle.J. Clin. Psychopharmacol.201535444744910.1097/JCP.000000000000036126061612
    [Google Scholar]
  64. JuluriK.R. SiuC. CassadayR.D. Asparaginase in the treatment of acute lymphoblastic leukemia in adults: Current evidence and place in therapy.Blood Lymphat. Cancer202212557910.2147/BLCTT.S34205235669980
    [Google Scholar]
  65. AvisK.E. Pharmaceutical Dosage Forms: Parenteral MedicationsRoutledge201810.1201/9780203743676
    [Google Scholar]
  66. MaliR.R. TomarH. Review on parentral drug delivery system: A novel approach.IJRAST2016321810.30750/ijrast.321
    [Google Scholar]
  67. Goldstein, Moshe, Nikolaos Donos, Wim Teughels, Nikolaos Gkranias, Andy Temmerman, Jan Derks, Bahar Eren Kuru et al. Structure, governance and delivery of specialist training programs in periodontology and implant dentistry.J Clin Periodontol202451559010.1111/jcpe.1403339072845
    [Google Scholar]
  68. BassyouniF. ElHalwanyN. Abdel RehimM. NeyfehM. Advances and new technologies applied in controlled drug delivery system.Res. Chem. Intermed.20154142165220010.1007/s11164‑013‑1338‑2
    [Google Scholar]
  69. VikalA. MauryaR. BhowmikS. PatelP. GuptaG.D. KurmiB.D. From conventional to cutting-edge: A comprehensive review on drug delivery systems.Drug Deliv. Lett.202414322624310.2174/0122103031304556240430161553
    [Google Scholar]
  70. KapoorD.U. GargR. GaurM. PatelM.B. MinglaniV.V. PrajapatiB.G. HuanbuttaK. SangnimT. SriamornsakP. Pediatric drug delivery challenges: Enhancing compliance through age-appropriate formulations and safety measures.J. Drug Deliv. Sci. Technol.20249610572010.1016/j.jddst.2024.105720
    [Google Scholar]
  71. Shetab BoushehriM. DietrichD. LamprechtA. Nanotechnology as a platform for the development of injectable parenteral formulations: A comprehensive review of the know-hows and state of the art.Pharmaceutics202012651010.3390/pharmaceutics1206051032503171
    [Google Scholar]
  72. ManchandaS. DasN. ChandraA. BandyopadhyayS. ChaurasiaS. Fabrication of advanced parenteral drug-delivery systems.In: Drug Deliv Syst.Elsevier2020478410.1016/B978‑0‑12‑814487‑9.00002‑8
    [Google Scholar]
  73. SauS. TatipartiK. AlsaabH.O. KashawS.K. IyerA.K. A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy.Drug Discov. Today20182371344135610.1016/j.drudis.2018.03.00329551455
    [Google Scholar]
  74. PuccettiM. ParianoM. SchoubbenA. GiovagnoliS. RicciM. Biologics, theranostics, and personalized medicine in drug delivery systems.Pharmacol. Res.202420110708610.1016/j.phrs.2024.10708638295917
    [Google Scholar]
  75. WeberS. ZimmerA. PardeikeJ. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art.Eur. J. Pharm. Biopharm.201486172210.1016/j.ejpb.2013.08.01324007657
    [Google Scholar]
  76. OwuorJ.J. OlooF. OumaD. OmwoyoW. GathirwaJ. Optimization and characterization of primaquine-loaded solid lipid nanoparticles (SLN) for liver schinonticide targeting by freeze drying.MOJ Drug Des Develop Ther2017130002110.15406/mojddt.2017.01.00021
    [Google Scholar]
  77. LeonardiA. BucoloC. DragoF. SalomoneS. PignatelloR. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit.Int. J. Pharm.2015478118018610.1016/j.ijpharm.2014.11.03225448580
    [Google Scholar]
  78. SommonteF. ArduinoI. IacobazziR.M. LaeraL. SilvestriT. LopedotaA.A. CastegnaA. DenoraN. Microfluidic development of brain-derived neurotrophic factor loaded solid lipid nanoparticles: An in vitro evaluation in the post-traumatic brain injury neuroinflammation model.J. Drug Deliv. Sci. Technol.20249610569910.1016/j.jddst.2024.105699
    [Google Scholar]
  79. SagiriS.S. BeheraB. RafananR.R. BhattacharyaC. PalK. BanerjeeI. RousseauD. Organogels as matrices for controlled drug delivery: A review on the current state.Soft Mater.2014121477210.1080/1539445X.2012.756016
    [Google Scholar]
  80. WangM. ShanF. ZouY. SunX. ZhangZ.R. FuY. GongT. Pharmacokinetic and pharmacodynamic study of a phospholipid-based phase separation gel for once a month administration of octreotide.J. Control. Release2016230455610.1016/j.jconrel.2016.03.03627040814
    [Google Scholar]
  81. MaheshwariR. GhodeP. SharmaM. Lab on chip based self-adjustable liposomes for rapid wound healing: An in depth in vitro, in vivo and higher dose toxicity investigation.Biomater. Adv.202415821377710.1016/j.bioadv.2024.21377738266334
    [Google Scholar]
  82. PerrieY. CroftsF. DevittA. GriffithsH.R. KastnerE. NadellaV. Designing liposomal adjuvants for the next generation of vaccines.Adv. Drug Deliv. Rev.201699Pt A859610.1016/j.addr.2015.11.00526576719
    [Google Scholar]
  83. VoakAA HarrisA QaiserZ CroftSL SeifertK Pharmacodynamics and biodistribution of single-dose liposomal amphotericin B at different stages of experimental visceral leishmaniasis.Antimicrob Agents Chemother.2017619e0049710.1128/AAC.00497‑17
    [Google Scholar]
  84. SakpakdeejaroenI. SomaniS. LaskarP. MullinM. DufèsC. Transferrin‐bearing liposomes entrapping plumbagin for targeted cancer therapy.J. Interdiscip. Nanomed.201942547110.1002/jin2.5631341642
    [Google Scholar]
  85. ShinE. KimJ.U. KoJ. KohR.H. KimJ. ParkS.B. AnY.H. HwangN.S. Enhanced anti‐photoaging effects of adipose‐derived stem cell (ADSC) secretome via liposomal and iontophoretic intradermal delivery.Adv. Ther. (Weinh.)202474230037110.1002/adtp.202300371
    [Google Scholar]
  86. MaheshwariR. SharmaM. ChidrawarV.R. Niosomes based formulation containing tenoxicam: A newer solution for the rheumatic diseases.In: Ann. Pharm. Fr.Elsevier202447348210.1016/j.pharma.2023.10.010
    [Google Scholar]
  87. ShahC. KelaM. GaneshN. ChandyV. Niosomes as promising vehicle for novel drug delivery system: Recent review.Pharma Sci. Monitor20178471331
    [Google Scholar]
  88. AbdelbaryA.A. Abd-ElsalamW.H. Al-mahallawiA.M. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment.Int. J. Pharm.20165131-268869610.1016/j.ijpharm.2016.10.00627717916
    [Google Scholar]
  89. BejeshkM.A. NajafipourH. KhaksariM. NematollahiM.H. RajizadehM.A. DabiriS. BeikA. Samareh-FekriM. SepehriG. Preparation and evaluation of preventive effects of inhalational and intraperitoneal injection of myrtenol loaded nano-niosomes on lung ischemia-reperfusion injury in rats.J. Pharm. Sci.20241131859410.1016/j.xphs.2023.11.00237931787
    [Google Scholar]
  90. MaheshwariN. SharmaM.C. Laser empowered ‘chemo-free’ phytotherapy: Newer approach in anticancer therapeutics delivery.J. Drug Deliv. Sci. Technol.20227510370910.1016/j.jddst.2022.103709
    [Google Scholar]
  91. MaheshwariN. SharmaM.C. Photoresponsive ‘chemo-free’ phytotherapy: Formulation development for the treatment of triple-negative breast cancer.Nanomedicine (Lond.)202419152410.2217/nnm‑2023‑023138179960
    [Google Scholar]
  92. MaheshwariN. SharmaM.C. Anticancer properties of some selected plant phenolic compounds: Future leads for therapeutic development.J. Herb. Med.20234210080110.1016/j.hermed.2023.100801
    [Google Scholar]
  93. SasongkoR.E. SuriniS. SaputriF.C. Formulation and characterization of bitter melon extract (momordica charantia) loaded phytosomes.Pharmacogn. J.20191161235124110.5530/pj.2019.11.192
    [Google Scholar]
  94. AlhakamyN. Badr-EldinS. FahmyU. AlruwailiN. AwanZ. CarusoG. AlfalehM. AlaofiA. ArifF. AhmedO. AlghaithA. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells.Pharmaceutics202012876110.3390/pharmaceutics1208076132806507
    [Google Scholar]
  95. ShojaeiM. SahebkarA. KhorvashF. FallahpourS. AskariG. BagherniyaM. The effects of phytosomal curcumin supplementation on clinical symptoms, and inflammatory and oxidative stress biomarkers in patients with migraine: A protocol for a randomized double-blind placebo-controlled trial.Avicenna J. Phytomed.2023131455736698737
    [Google Scholar]
  96. CarignaniE. GeppiM. LovatiM. de CombarieuE. BorsacchiS. Solid state NMR study of the mixing degree between ginkgo biloba extract and a soy-lecithin-phosphatidylserine in a composite prepared by the phytosome® method.Chem. Africa20203371772510.1007/s42250‑020‑00165‑0
    [Google Scholar]
  97. TallamAK SahithiA NuliMV A review on phytosomes as innovative delivery systems for phytochemicals.Int Jou Phar Chem2023411810.46796/ijpc.v4i1.416
    [Google Scholar]
  98. RivaA. RonchiM. PetrangoliniG. BosisioS. AllegriniP. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin.Eur. J. Drug Metab. Pharmacokinet.201944216917710.1007/s13318‑018‑0517‑330328058
    [Google Scholar]
  99. AllawiH.M. Al-bayatiM. Formulation of Camellia sinensis phytosome encapsulated diclofenac and effect on analgesia and inflammation in mice.Cancer Nanotechnol.202024175190
    [Google Scholar]
  100. ShriramR.G. MoinA. AlotaibiH.F. KhafagyE.S. Al SaqrA. Abu LilaA.S. CharyuluR.N. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin.Pharmaceuticals202215779010.3390/ph1507079035890088
    [Google Scholar]
  101. DwivediJ. SachanP. WalP. DwivediS. SharmaM.C. RaoS.P. Detailed review on phytosomal formulation attenuating new pharmacological therapies.In: Adv. Trad. Med202312610.1007/s13596‑023‑00712‑3
    [Google Scholar]
  102. HouZ. LiY. HuangY. ZhouC. LinJ. WangY. CuiF. ZhouS. JiaM. YeS. ZhangQ. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery.Mol. Pharm.20131019010110.1021/mp300489p23194396
    [Google Scholar]
  103. Al-KahtaniM. Abdel-DaimM.M. SayedA.A. El-KottA. MorsyK. Curcumin phytosome modulates aluminum-induced hepatotoxicity via regulation of antioxidant, Bcl-2, and caspase-3 in rats.Environ. Sci. Pollut. Res. Int.20202717219772198510.1007/s11356‑020‑08636‑032285392
    [Google Scholar]
  104. LiY. WuH. JiaM. CuiF. LinJ. YangX. WangY. DaiL. HouZ. Therapeutic effect of folate-targeted and PEGylated phytosomes loaded with a mitomycin C-soybean phosphatidyhlcholine complex.Mol. Pharm.20141193017302610.1021/mp500187325054963
    [Google Scholar]
  105. BaraniM. MirzaeiM. Torkzadeh-MahaniM. Adeli-sardouM. Evaluation of carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay.Sci. Rep.201991713910.1038/s41598‑019‑43755‑w31073144
    [Google Scholar]
  106. El-FarS.W. HelmyM.W. KhattabS.N. BekhitA.A. HusseinA.A. ElzoghbyA.O. Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbal-derived anticancer drugs.Nanomedicine (Lond.)201813121463148010.2217/nnm‑2018‑000629957120
    [Google Scholar]
  107. El-FarS.W. HelmyM.W. KhattabS.N. BekhitA.A. HusseinA.A. ElzoghbyA.O. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer.Nanomedicine (Lond.)201813548149910.2217/nnm‑2017‑030129376765
    [Google Scholar]
  108. MukherjeeS. FriedA. HussainiR. WhiteR. BaidooJ. YalamanchiS. BanerjeeP. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells.J. Exp. Clin. Cancer Res.201837116810.1186/s13046‑018‑0792‑530041669
    [Google Scholar]
  109. BagA. MaheshwariR. Advances in polymer-centric nanomedicines for theranostic cancer treatment.J. Drug Deliv. Sci. Technol.202410010610510.1016/j.jddst.2024.106105
    [Google Scholar]
  110. KapoorD.U. SharmaH. MaheshwariR. PareekA. GaurM. PrajapatiB.G. CastroG.R. ThanawuthK. SuttiruengwongS. SriamornsakP. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications.Carbohydr. Polym.202433912226610.1016/j.carbpol.2024.12226638823930
    [Google Scholar]
  111. BhirudD. BhattacharyaS. RavalH. SangaveP.C. GuptaG.L. ParaskarG. JhaM. SharmaS. BelemkarS. KumarD. Chitosan nanoparticles of imatinib mesylate coated with TPGS for the treatment of colon cancer: In vivo & in vitro studies.Carbohydr. Polym.2024348122935
    [Google Scholar]
  112. AhmadN. AhmadR. AlamM.A. AhmadF.J. AmirM. PottooF.H. SarafrozM. JafarM. UmarK. Daunorubicin oral bioavailability enhancement by surface coated natural biodegradable macromolecule chitosan based polymeric nanoparticles.Int. J. Biol. Macromol.201912882583810.1016/j.ijbiomac.2019.01.14230690115
    [Google Scholar]
  113. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano1007140332707641
    [Google Scholar]
  114. ZhangW. MehtaA. TongZ. EsserL. VoelckerN.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges.Adv. Sci. (Weinh.)2021810200393710.1002/advs.20200393734026447
    [Google Scholar]
  115. WenG. LiX. ZhangY. HanX. XuX. LiuC. ChanK.W.Y. LeeC.S. YinC. BianL. WangL. Effective phototheranostics of brain tumor assisted by near-infrared-II light-responsive semiconducting polymer nanoparticles.ACS Appl. Mater. Interfaces20201230334923349910.1021/acsami.0c0856232627525
    [Google Scholar]
  116. KangH. RhoS. StilesW.R. HuS. BaekY. HwangD.W. KashiwagiS. KimM.S. ChoiH.S. Size‐dependent EPR effect of polymeric nanoparticles on tumor targeting.Adv. Healthc. Mater.202091190122310.1002/adhm.20190122331794153
    [Google Scholar]
  117. WibowoD. JorritsmaS.H.T. GonzagaZ.J. EvertB. ChenS. RehmB.H.A. Polymeric nanoparticle vaccines to combat emerging and pandemic threats.Biomaterials202126812059710.1016/j.biomaterials.2020.12059733360074
    [Google Scholar]
  118. YangY. DingY. FanB. WangY. MaoZ. WangW. WuJ. Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis.J. Control. Release202032146347410.1016/j.jconrel.2020.02.03032087302
    [Google Scholar]
  119. ElmowafyE.M. TiboniM. SolimanM.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles.J. Pharm. Investig.201949434738010.1007/s40005‑019‑00439‑x
    [Google Scholar]
  120. Al-RubaeeS.H. Al-AzawiT.S. TahaA.A. Duodenal histomorphological changes in broilers administered poly d, l-lactic-coglycolic acid (PLGA ) nanoparticles encapsulated with peptide.Iraqi J Vet Med2020441808810.30539/ijvm.v44i1.945
    [Google Scholar]
  121. MahadevanG. ValiyaveettilS. Understanding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK-21 cell line.Sci. Rep.2021111208910.1038/s41598‑020‑80708‑033483569
    [Google Scholar]
  122. GreattiV.R. OdaF. SorrechiaR. KappB.R. SeraphimC.M. WeckwerthA.C.V.B. ChorilliM. SilvaP.B.D. EloyJ.O. KoganM.J. MoralesJ.O. PietroR.C.L.R. Poly-ε-caprolactone nanoparticles loaded with 4-nerolidylcatechol (4-NC) for growth inhibition of microsporum canis.Antibiotics202091289410.3390/antibiotics912089433322526
    [Google Scholar]
  123. FerrariR. SponchioniM. MorbidelliM. MoscatelliD. Polymer nanoparticles for the intravenous delivery of anticancer drugs: The checkpoints on the road from the synthesis to clinical translation.Nanoscale20181048227012271910.1039/C8NR05933K30512025
    [Google Scholar]
  124. YouX. KangY. HollettG. ChenX. ZhaoW. GuZ. WuJ. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives.J. Mater. Chem. B Mater. Biol. Med.20164487779779210.1039/C6TB01925K32263770
    [Google Scholar]
  125. WernerME CummingsND SethiM WangEC SukumarR MooreDT WangAZ Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer.Int J Radiat Oncol Biol Phys201386346346810.1016/j.ijrobp.2013.02.009
    [Google Scholar]
  126. HeH. LiuL. MorinE.E. LiuM. SchwendemanA. Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures.Acc. Chem. Res.20195292445246110.1021/acs.accounts.9b0022831424909
    [Google Scholar]
  127. BhattacharyaS. Fabrication of poly(sarcosine), poly (ethylene glycol), and poly (lactic-co-glycolic acid) polymeric nanoparticles for cancer drug delivery.J. Drug Deliv. Sci. Technol.20216110219410.1016/j.jddst.2020.102194
    [Google Scholar]
  128. WangJ. WangH. LiJ. LiuZ. XieH. WeiX. LuD. ZhuangR. XuX. ZhengS. iRGD-decorated polymeric nanoparticles for the efficient delivery of vandetanib to hepatocellular carcinoma: Preparation and in vitro and in vivo evaluation.ACS Appl. Mater. Interfaces2016830192281923710.1021/acsami.6b0316627381493
    [Google Scholar]
  129. LiC. LuoZ. YangL. ChenJ. ChengK. XueY. LiuG. LuoX. WuF. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy.Mater. Today Bio20221310019810.1016/j.mtbio.2021.10019835024599
    [Google Scholar]
  130. WooH.N. ChungH.K. JuE.J. JungJ. KangH.W. LeeS.W. SeoM.H. LeeJ.S. LeeJ.S. ParkH.J. SongS.Y. JeongS.Y. ChoiE.K. Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy.Int. J. Nanomedicine201272197220822619555
    [Google Scholar]
  131. BaeK.H. TanS. YamashitaA. AngW.X. GaoS.J. WangS. ChungJ.E. KurisawaM. Hyaluronic acid-green tea catechin micellar nanocomplexes: Fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity.Biomaterials2017148415310.1016/j.biomaterials.2017.09.02728961534
    [Google Scholar]
  132. KapoorD. MaheshwariN. SoniN. SinghaiN.J. SharmaM.C. PrajapatiB. YeleS. MaheshwariR. Metallic nanoparticles in cancer: Types, green synthesis, applications, tumor microenvironment and toxicity considerations.J. Drug Deliv. Sci. Technol.202492105307
    [Google Scholar]
  133. MahajanS. RavalN. KalyaneD. AnupN. MaheshwariR. TambeV. KaliaK. TekadeR.K. NanoGold-core dendrimeric seeds for combined chemo-, photothermal-, and photodynamic therapy of cancer.J. Drug Deliv. Sci. Technol.20205810181410.1016/j.jddst.2020.101814
    [Google Scholar]
  134. GraczykA. PawlowskaR. JedrzejczykD. ChworosA. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery.Molecules202025120410.3390/molecules2501020431947834
    [Google Scholar]
  135. MakowskiM. SilvaÍ.C. Pais do AmaralC. GonçalvesS. SantosN.C. Advances in lipid and metal nanoparticles for antimicrobial peptide delivery.Pharmaceutics2019111158810.3390/pharmaceutics1111058831717337
    [Google Scholar]
  136. CherkasovV.R. MochalovaE.N. BabenyshevA.V. RozenbergJ.M. SokolovI.L. NikitinM.P. Antibody-directed metal-organic framework nanoparticles for targeted drug delivery.Acta Biomater.202010322323610.1016/j.actbio.2019.12.01231843718
    [Google Scholar]
  137. GandhiS. ShendeP. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy.J. Control. Release2021339415010.1016/j.jconrel.2021.09.02534560156
    [Google Scholar]
  138. JouyandehM. SajadiS.M. SeidiF. HabibzadehS. MunirM.T. AbidaO. AhmadiS. Kowalkowska-ZedlerD. RabieeN. RabieeM. Metal nanoparticles-assisted early diagnosis of diseases.In: Open Nano2022810010410.1016/j.onano.2022.100104
    [Google Scholar]
  139. Neha Desai MominM. KhanT. GharatS. NingthoujamR.S. OmriA. Metallic nanoparticles as drug delivery system for the treatment of cancer.Expert Opin. Drug Deliv.20211891261129010.1080/17425247.2021.191200833793359
    [Google Scholar]
  140. Nezhad-MokhtariP. Akrami-Hasan-KohalM. GhorbaniM. An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications.Int. J. Biol. Macromol.202015419820510.1016/j.ijbiomac.2020.03.11232184143
    [Google Scholar]
  141. WuH. SongL. ChenL. ZhangW. ChenY. ZangF. ChenH. MaM. GuN. ZhangY. Injectable magnetic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model.Acta Biomater.20187430231110.1016/j.actbio.2018.04.05229729897
    [Google Scholar]
  142. ShenS. WuL. LiuJ. XieM. ShenH. QiX. YanY. GeY. JinY. Core–shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer.Int. J. Pharm.20154861-238038810.1016/j.ijpharm.2015.03.07025841570
    [Google Scholar]
  143. VenkatasubbuG. RamasamyS. Kumar ReddyP. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.Int. J. Nanomedicine201510Suppl 113714810.2147/IJN.S7999126491315
    [Google Scholar]
  144. DaiD. LiY. FanJ. Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene polyhedra, carbon nanotubes and nano-onions, n-diamond nanocrystals) with aid of ultrasonic shock using ethanol and potassium hydroxide.Carbon202117913314110.1016/j.carbon.2021.04.038
    [Google Scholar]
  145. ShakilS.M. UllahM.S. Analyzing the operational parameters of a single walled carbon nanotube field effect transistor (SWCNT-FET).Available from: https://www.academia.edu/113414189/Analyzing_the_Operational_Parameters_of_a_Single_Walled_Carbon_Nanotube_Field_Effect_Transistor_SWCNT_FET?uc-sb-sw=99261502
  146. HanY. YuanJ. ZhuY. WangQ. LiL. CaoM. Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption.J. Colloid Interface Sci.202260974675410.1016/j.jcis.2021.11.07934839924
    [Google Scholar]
  147. SaleemiM.A. KongY.L. YongP.V.C. WongE.H. An overview of recent development in therapeutic drug carrier system using carbon nanotubes.J. Drug Deliv. Sci. Technol.20205910185510.1016/j.jddst.2020.101855
    [Google Scholar]
  148. MaheshwariN. TekadeM. SoniN. GhodeP. SharmaM.C. DebP.K. TekadeR.K. Functionalized carbon nanotubes for protein, peptide, and gene delivery.In: Biomaterials and BionanotechnologyElsevier201961363710.1016/B978‑0‑12‑814427‑5.00016‑0
    [Google Scholar]
  149. LiD. AhmedM. KhanA. XuL. WaltersA.A. BallesterosB. Al-JamalK.T. Tailoring the architecture of cationic polymer brush-modified carbon nanotubes for efficient sirna delivery in cancer immunotherapy.ACS Appl. Mater. Interfaces20211326302843029410.1021/acsami.1c0262734170101
    [Google Scholar]
  150. DemirerG.S. ZhangH. GohN.S. González-GrandíoE. LandryM.P. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants.Nat. Protoc.201914102954297110.1038/s41596‑019‑0208‑931534231
    [Google Scholar]
  151. MahajanS. PatharkarA. KucheK. MaheshwariR. DebP.K. KaliaK. TekadeR.K. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer.Int. J. Pharm.2018548154055810.1016/j.ijpharm.2018.07.02729997043
    [Google Scholar]
  152. GangradeA. MandalB.B. Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery.ACS Biomater. Sci. Eng.2019552365238110.1021/acsbiomaterials.9b0041633405786
    [Google Scholar]
  153. SaeedniaL. YaoL. CluffK. AsmatuluR. Sustained releasing of methotrexate from injectable and thermosensitive chitosan–carbon nanotube hybrid hydrogels effectively controls tumor cell growth.ACS Omega2019424040404810.1021/acsomega.8b0321230842986
    [Google Scholar]
  154. DasM. NariyaP. JoshiA. VohraA. DevkarR. SeshadriS. ThakoreS. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal.Carbohydr. Polym.202024711675110.1016/j.carbpol.2020.11675132829867
    [Google Scholar]
  155. CaoY. HuangH.Y. ChenL.Q. DuH.H. CuiJ.H. ZhangL.W. LeeB.J. CaoQ.R. Enhanced lysosomal escape of pH-responsive polyethylenimine–betaine functionalized carbon nanotube for the codelivery of survivin small interfering RNA and doxorubicin.ACS Appl. Mater. Interfaces201911109763977610.1021/acsami.8b2081030776886
    [Google Scholar]
  156. ZhangP. YiW. HouJ. YooS. JinW. YangQ. A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer.Int. J. Nanomedicine2018133069308010.2147/IJN.S16523229872294
    [Google Scholar]
  157. ArakawaM. NakamuraK. YamadaY. KatoK. KatsudaR. TobiumeM. ZennamiK. WatanabeM. KatoY. NishikawaG. YoshizawaT. AokiS. TakiT. MitsuiK. HondaN. SaitoH. HasegawaT. Intravesical administration of pirarubicin against superficial bladder cancer: Relationship between tumor tissue concentration and exposure time in the bladder or therapeutic effect.Exp. Ther. Med.20112590190510.3892/etm.2011.31522977595
    [Google Scholar]
  158. WangN. FengY. ZengL. ZhaoZ. ChenT. Functionalized multiwalled carbon nanotubes as carriers of ruthenium complexes to antagonize cancer multidrug resistance and radioresistance.ACS Appl. Mater. Interfaces2015727149331494510.1021/acsami.5b0373926107995
    [Google Scholar]
  159. WuL. ManC. WangH. LuX. MaQ. CaiY. MaW. PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin.Pharm. Res.201330241242310.1007/s11095‑012‑0883‑522992831
    [Google Scholar]
  160. ShafieeA. IravaniS. VarmaR.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives.MedComm202231e11810.1002/mco2.11835281783
    [Google Scholar]
  161. YildizG. Bolton-WarbergM. AwajaF. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples.Acta Biomater.2021131627910.1016/j.actbio.2021.06.04734237423
    [Google Scholar]
  162. KarkiN. TiwariH. TewariC. RanaA. PandeyN. BasakS. SahooN.G. Functionalized graphene oxide as a vehicle for targeted drug delivery and bioimaging applications.J. Mater. Chem. B Mater. Biol. Med.20208368116814810.1039/D0TB01149E32966535
    [Google Scholar]
  163. WangY. SunG. GongY. ZhangY. LiangX. YangL. Functionalized folate-modified graphene oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy.Nanoscale Res. Lett.20201515710.1186/s11671‑020‑3281‑732140846
    [Google Scholar]
  164. SunJ. LiL. XingF. YangY. GongM. LiuG. WuS. LuoR. DuanX. LiuM. ZouM. XiangZ. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration.Stem Cell Res. Ther.202112159110.1186/s13287‑021‑02634‑w34863288
    [Google Scholar]
  165. YaoX. YanZ. WangX. JiangH. QianY. FanC. The influence of reduced graphene oxide on stem cells: A perspective in peripheral nerve regeneration.Regen. Biomater.202184rbab03210.1093/rb/rbab03234188955
    [Google Scholar]
  166. WangW. LiuY. YangC. JiaW. QiX. LiuC. LiX. Delivery of salvianolic acid B for efficient osteogenesis and angiogenesis from silk fibroin combined with graphene oxide.ACS Biomater. Sci. Eng.2020663539354910.1021/acsbiomaterials.0c0055833463186
    [Google Scholar]
  167. MaheshwariR. GadevalA. RavalN. KaliaK. TekadeR.K. Laser activatable nanographene colloids for chemo-photothermal combined gene therapy of triple-negative breast cancer.Biomater. Adv.202213311260510.1016/j.msec.2021.11260535525767
    [Google Scholar]
  168. MaheshwariR. SharmaM. EpCAM aptamer integrated graphene nanosystem for combined anti-ovarian cancer therapy.J. Drug Deliv. Sci. Technol.20249510559310.1016/j.jddst.2024.105593
    [Google Scholar]
  169. GadevalA. MaheshwariR. RavalN. KalyaneD. KaliaK. TekadeR.K. Green graphene nanoplates for combined photo-chemo-thermal therapy of triple-negative breast cancer.Nanomedicine (Lond.)202015658160110.2217/nnm‑2019‑038032093526
    [Google Scholar]
  170. Lima-SousaR. de Melo-DiogoD. AlvesC.G. CabralC.S.D. MiguelS.P. MendonçaA.G. CorreiaI.J. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications.Mater. Sci. Eng. C202011711129410.1016/j.msec.2020.11129432919655
    [Google Scholar]
  171. JiangW. ChenJ. GongC. WangY. GaoY. YuanY. Intravenous delivery of enzalutamide based on high drug loading multifunctional graphene oxide nanoparticles for castration-resistant prostate cancer therapy.J. Nanobiotechnology20201815010.1186/s12951‑020‑00607‑432188463
    [Google Scholar]
  172. QiuZ. HuJ. LiZ. YangX. HuJ. YouQ. BaiS. MaoY. HuaD. YinJ. Graphene oxide-based nanocomposite enabled highly efficient targeted synergistic therapy for colorectal cancer.Colloids Surf. A Physicochem. Eng. Asp.202059312458510.1016/j.colsurfa.2020.124585
    [Google Scholar]
  173. DengW. QiuJ. WangS. YuanZ. JiaY. TanH. LuJ. ZhengR. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo.Int. J. Nanomedicine20181343945310.2147/IJN.S15097729403275
    [Google Scholar]
  174. ShiX. WangY. SunH. ChenY. ZhangX. XuJ. ZhaiG. Heparin-reduced graphene oxide nanocomposites for curcumin delivery: in vitro, in vivo and molecular dynamics simulation study.Biomater. Sci.2019731011102710.1039/C8BM00907D30604794
    [Google Scholar]
  175. NikolićV. Ilić-StojanovićS. PetrovićS. TačićA. NikolićL. Administration routes for nano drugs and characterization of nano drug loading.In: Characterization and Biology of Nanomaterials for Drug DeliveryElsevier201958762510.1016/B978‑0‑12‑814031‑4.00021‑0
    [Google Scholar]
  176. NajafiF. Salami-KalajahiM. Roghani-MamaqaniH. Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media.Eur. Polym. J.202013410980410.1016/j.eurpolymj.2020.109804
    [Google Scholar]
  177. MittalP SaharanA VermaR AltalbawyF AlfaidiMA BatihaGE-S AkterW GautamRK UddinMS RahmanMS Dendrimers: A new race of pharmaceutical nanocarriers.Biomed Res Int.20212021884403010.1155/2021/8844030
    [Google Scholar]
  178. AroraV. AbourehabM.A.S. ModiG. KesharwaniP. Dendrimers as prospective nanocarrier for targeted delivery against lung cancer.Eur. Polym. J.202218011163510.1016/j.eurpolymj.2022.111635
    [Google Scholar]
  179. Pedziwiatr-WerbickaE. MilowskaK. DzmitrukV. IonovM. ShcharbinD. BryszewskaM. Dendrimers and hyperbranched structures for biomedical applications.Eur. Polym. J.2019119617310.1016/j.eurpolymj.2019.07.013
    [Google Scholar]
  180. MignaniS. ShiX. KarpusA. MajoralJ.P. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs.Eur. J. Med. Chem.202120911290510.1016/j.ejmech.2020.11290533069435
    [Google Scholar]
  181. FeeneyO.M. ArdipradjaK. NoiK.F. MehtaD. De RoseR. YuenD. JohnstonA.P.R. KingstonL. EricssonC. ElmoreC.S. HuftonR. OwenD.J. AshfordM.B. PorterC.J.H. Subcutaneous delivery of a dendrimer-BH3 mimetic improves lymphatic uptake and survival in lymphoma.J. Control. Release202234842043010.1016/j.jconrel.2022.05.04135636618
    [Google Scholar]
  182. JiangY. LyuZ. RalahyB. LiuJ. RousselT. DingL. TangJ. KostaA. GiorgioS. TomasiniR. LiangX.J. DusettiN. IovannaJ. PengL. Dendrimer nanosystems for adaptive tumor-assisted drug delivery via extracellular vesicle hijacking.Proc. Natl. Acad. Sci. USA20231207e221530812010.1073/pnas.221530812036745793
    [Google Scholar]
  183. MohammadzadehP Shafiee ArdestaniM Mortazavi‐DerazkolaS Bitarafan‐RajabiA GhoreishiSM Peg‐citrate dendrimer second generation: Is this a good carrier for imaging agents in vitro and in vivo?.IET Nanobiotechnol.201913656056410.1049/iet‑nbt.2018.5360
    [Google Scholar]
  184. SalimiM. SarkarS. HashemiM. SaberR. Treatment of breast cancer-bearing BALB/c mice with magnetic hyperthermia using dendrimer functionalized iron-oxide nanoparticles.Nanomaterials20201011231010.3390/nano10112310
    [Google Scholar]
  185. MekonnenT.W. AndrgieA.T. DargeH.F. BirhanY.S. HanurryE.Y. ChouH-Y. LaiJ-Y. TsaiH-C. YangJ.M. ChangY-H. Bioinspired composite, pH-responsive sodium deoxycholate hydrogel and generation 4.5 Poly(amidoamine) dendrimer improves cancer treatment efficacy via doxorubicin and resveratrol co-deliveryPharmaceutics20201211106910.3390/pharmaceutics12111069
    [Google Scholar]
  186. VuotiS. NarasimhaK. ReinikainenK. 7MO photoreactive and intratumorally injectable dendrimer matrix improves survival in multiple xenograft mouse models.Ann. Oncol.202031S24710.1016/j.annonc.2020.08.160
    [Google Scholar]
  187. LiY.F. ZhangH.T. XinL. Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells.J. Cancer Res. Clin. Oncol.201814481463147310.1007/s00432‑018‑2678‑529858680
    [Google Scholar]
  188. VuotiS. NarasimhaK. ReinikainenK. American Society of Clinical Oncology Effect of UV-curable and injectable dendrimer matrix on tumor pharmacokinetics and survival in a hepatocellular carcinoma mouse model using interstitial photodynamic therapy.J. Clin. Oncol.20203815e1559810.1200/JCO.2020.38.15_suppl.e15598
    [Google Scholar]
  189. XuL. CooperR.C. WangJ. YeudallW.A. YangH. Synthesis and application of injectable bioorthogonal dendrimer hydrogels for local drug delivery.ACS Biomater. Sci. Eng.2017381641165310.1021/acsbiomaterials.7b0016629147682
    [Google Scholar]
  190. WangY. GongN. MaC. ZhangY. TanH. QingG. ZhangJ. WangY. WangJ. ChenS. LiX. NiQ. YuanY. GanY. ChenJ. LiF. ZhangJ. OuC. ZhaoY. LiuX. LiangX.J. An amphiphilic dendrimer as a light-activable immunological adjuvant for in situ cancer vaccination.Nat. Commun.2021121496410.1038/s41467‑021‑25197‑z34400628
    [Google Scholar]
  191. HildebrandK.R. Device‐Enabled Drug Infusion Therapies.In: Drug-device Combinations for Chronic DiseasesWiley201518221310.1002/9781119002956.ch07
    [Google Scholar]
  192. FaloticoR. KopiaG.A. LlanosG.H. Drug/drug delivery systems for the prevention and treatment of vascular disease.US Patent 8236048B22014
  193. TalleyN.J. O’ConnorS. Examination medicine: A guide to physician training.Elsevier Health Sciences2014
    [Google Scholar]
  194. DesaiA. Drug eluting medical devices.US Patent 20150209299A12017
    [Google Scholar]
  195. XiaZ. HwangC-W. Drug-eluting medical devices.US Patent 20040039441A12015
  196. MajorI. FuenmayorE. McConvilleC. The production of solid dosage forms from non-degradable polymers.Curr. Pharm. Des.201622192738276010.2174/138161282266616021714104926898737
    [Google Scholar]
  197. KleinR. BirtlesJ. KoosJ. LeeM.J. Drug eluting expandable devices.US Patent 20040039441A12015
  198. AkersJ. AgallocoJ. Validation of Sterilization Processes and Sterile Products.In: Pharmaceutical Dosage FormsRoutledge2017231287
    [Google Scholar]
  199. JonesD.S. FASTtrack Pharmaceutics Dosage Form and Design.Pharmaceutical Press2nd ed2016
    [Google Scholar]
  200. PatilR PawarS PingaleP Nanocarrier-based methods for effective antitubercular drug delivery.In: Nanocarrier Drug Delivery Systems: Therapeutic and Diagnostic MedicineDe Gruyter202416110.1515/9783111320847‑006
    [Google Scholar]
  201. MorawskiA.S. Nascimento JúniorJ.A.C. SerafiniM.R. FrankL.A. Nanocarriers: Delivery RoutesIn: ADME Processes in Pharmaceutical Sciences: Dosage, Design, and Pharmacotherapy.Springer2024253270
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338217250114073640
Loading
/content/journals/cpd/10.2174/0113816128338217250114073640
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test