Skip to content
2000
Volume 31, Issue 23
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

The objective of the present study was to improve the anti-inflammatory and antibacterial activities of mastic gum resin (MGR). MGR was loaded into a phospholipid nanocarrier with or without partially hydrolyzed ginsenoside, followed by dispersion into distilled water.

Methods

The phospholipid nanocarrier dispersion showed significantly enhanced release, porcine skin/intestine permeation, and retention. When the ratio of the MGR partially hydrogenated ginsenoside reached 1:1 in the nanocarrier composition, the release increased 54.8-fold compared to the MGR powder suspended in the release media.

Results

Permeation of the nanocarrier dispersion through the porcine skin and intestine increased 160-fold and 42-fold, respectively, compared to permeation of the MGR powder suspension. Furthermore, the nanocarrier dispersion reduced NO production and iNOS mRNA expression in the LPS-stimulated RAW264.7 cells. MIC and MBC of the nanocarrier dispersion against were 4.11 ± 1.17 and 8.22 ± 2.35 µg/mL, respectively.

Conclusion

In conclusion, the anti-inflammatory and antibacterial activities of MGR were remarkably enhanced when the MGR was loaded into the nanocarrier with partially hydrolyzed ginsenoside.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128353794241225083428
2025-01-28
2025-09-02
Loading full text...

Full text loading...

References

  1. TangB. LiZ. A country-level empirical study on the fiscal effect of elderly population health: The mediating role of healthcare resources.Healthcare20211013010.3390/healthcare1001003035052194
    [Google Scholar]
  2. TriscottJ.A.C. DobbsB. CharlesL. HuangJ. MooresD. TianP.G.J. The care-of-the-elderly health guide.J. Prim. Care Community Health2021122150132721104405810.1177/2150132721104405834486428
    [Google Scholar]
  3. BotelhoJ. MachadoV. ProençaL. OliveiraM.J. CavacasM.A. AmaroL. ÁguasA. MendesJ.J. Perceived xerostomia, stress and periodontal status impact on elderly oral health-related quality of life: findings from a cross-sectional survey.BMC Oral Health202020119910.1186/s12903‑020‑01183‑732650751
    [Google Scholar]
  4. OgawaM. Satomi-KobayashiS. YoshidaN. TsuboiY. KomakiK. NanbaN. IzawaK.P. SakaiY. AkashiM. HirataK. Relationship between oral health and physical frailty in patients with cardiovascular disease.J. Cardiol.202177213113810.1016/j.jjcc.2020.07.01632819801
    [Google Scholar]
  5. RavidàA. TroianoG. QaziM. SalehM.H.A. Lo RussoL. GreenwellH. GiannobileW.V. WangH.L. Development of a nomogram for the prediction of periodontal tooth loss using the staging and grading system: A long-term cohort study.J. Clin. Periodontol.202047111362137010.1111/jcpe.1336232886408
    [Google Scholar]
  6. GohV. HackmackP.P. CorbetE.F. LeungW.K. Moderate- to long-term periodontal outcomes of subjects failing to complete a course of periodontal therapy.Aust. Dent. J.201762215216010.1111/adj.1244027391220
    [Google Scholar]
  7. MorelliT. MossK.L. PreisserJ.S. BeckJ.D. DivarisK. WuD. OffenbacherS. Periodontal profile classes predict periodontal disease progression and tooth loss.J. Periodontol.201889214815610.1002/JPER.17‑042729520822
    [Google Scholar]
  8. AmanoA. ChenC. HonmaK. LiC. SettemR.P. SharmaA. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.Adv. Dent. Res.2014261152210.1177/002203451452623724736700
    [Google Scholar]
  9. NicholsF.C. BhuseK. ClarkR.B. Serine/glycine lipid recovery in lipid extracts from healthy and diseased dental samples: Relationship to chronic periodontitis.Front Oral Health.2021269848110.3389/froh.2021.698481
    [Google Scholar]
  10. PothapurK.K. Vishnu PV RengasamyG. JayaseelanV.P. Identification of protein targets in red complex organisms binding with resveratrol.Bioinformation2020161183784210.6026/9732063001683734803257
    [Google Scholar]
  11. SeongJ. LeeJ. LimY.K. YoonW.J. JungS. KookJ.K. LeeT.H. Osmunda japonica extract suppresses pro-inflammatory cytokines by downregulating NF-kappaB activation in periodontal ligament fibroblasts infected with oral pathogenic bacteria.Int. J. Mol. Sci.2020217245310.3390/ijms2107245332244806
    [Google Scholar]
  12. MendesF.S.F. GarciaL.M. MoraesT.S. CasemiroL.A. AlcântaraC.B. AmbrósioS.R. VenezianiR.C.S. MirandaM.L.D. MartinsC.H.G. Antibacterial activity of Salvia officinalis L. against periodontopathogens: An in vitro study.Anaerobe20206310219410.1016/j.anaerobe.2020.10219432205191
    [Google Scholar]
  13. MingJ. ZhuonengL. GuangxunZ. Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: A literature review.Complement. Ther. Med.201838111810.1016/j.ctim.2018.03.01029857875
    [Google Scholar]
  14. KoychevS. DommischH. ChenH. PischonN. Antimicrobial effects of mastic extract against oral and periodontal pathogens.J. Periodontol.201788551151710.1902/jop.2017.15069128067105
    [Google Scholar]
  15. MiliaE. UsaiM. SzotákováB. ElstnerováM. KrálováV. D’hallewinG. SpissuY. BarberisA. MarchettiM. BortoneA. CampanellaV. MastandreaG. LanghansováL. EickS. The pharmaceutical ability of Pistacia lentiscus L. leaves essential oil against periodontal bacteria and Candida sp. and its anti-inflammatory potential.Antibiotics20209628110.3390/antibiotics906028132466371
    [Google Scholar]
  16. Musarra-PizzoM. PennisiR. Ben-AmorI. SmeriglioA. MandalariG. SciortinoM.T. In vitro anti-HSV-1 activity of polyphenol-rich extracts and pure polyphenol compounds derived from Pistachios kernels (Pistacia vera L.).Plants20209226710.3390/plants902026732085514
    [Google Scholar]
  17. TabancaN. NalbantsoyA. KendraP.E. DemirciF. DemirciB. Chemical characterization and biological activity of the mastic gum essential oils of Pistacia lentiscus var. chia from Turkey.Molecules2020259213610.3390/molecules2509213632370246
    [Google Scholar]
  18. PachiV.K. MikropoulouE.V. GkiouvetidisP. SiafakasK. ArgyropoulouA. AngelisA. MitakouS. HalabalakiM. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review.J. Ethnopharmacol.202025411248510.1016/j.jep.2019.11248532092498
    [Google Scholar]
  19. GortziO. RovoliM. KatsoulisK. GraikouK. KaragkiniD.A. StagosD. KouretasD. TsaknisJ. ChinouI. Study of stability, cytotoxic and antimicrobial activity of chios mastic gum fractions (neutral, acidic) after encapsulation in liposomes.Foods202211327110.3390/foods1103027135159423
    [Google Scholar]
  20. RafieeZ. BarzegarM. SahariM.A. MaheraniB. Nanoliposomal carriers for improvement the bioavailability of high valued phenolic compounds of pistachio green hull extract.Food Chem.201722011512210.1016/j.foodchem.2016.09.20727855878
    [Google Scholar]
  21. AllawM. ManconiM. CaboniP. BacchettaG. Escribano-FerrerE. PerisJ.E. NacherA. Diez-SalesO. MancaM.L. Formulation of liposomes loading lentisk oil to ameliorate topical delivery, attenuate oxidative stress damage and improve cell migration in scratch assay.Biomed. Pharmacother.202114411235110.1016/j.biopha.2021.11235134794231
    [Google Scholar]
  22. VijayakumarA. BaskaranR. BaekJ.H. SundaramoorthyP. YooB.K. In vitro cytotoxicity and bioavailability of ginsenoside-modified nanostructured lipid carrier containing curcumin.AAPS PharmSciTech20192028810.1208/s12249‑019‑1295‑130675630
    [Google Scholar]
  23. VijayakumarA. BaskaranR. MaengH.J. YooB.K. Ginsenoside improves physicochemical properties and bioavailability of curcumin-loaded nanostructured lipid carrier.Arch. Pharm. Res.201740786487410.1007/s12272‑017‑0930‑128712035
    [Google Scholar]
  24. SelvarajK. YooB.K. Curcumin-loaded nanostructured lipid carrier modified with partially hydrolyzed ginsenoside.AAPS Pharm Sci Tech201920625210.1208/s12249‑019‑1467‑z31300965
    [Google Scholar]
  25. SelvarajK. ShinD.C. YooB.K. Effect of partially hydrolyzed ginsenoside on in vitro skin permeation and retention of collagen pentapeptide (Palmitoyl-KTTKS).Indian J. Pharm. Sci.2021831
    [Google Scholar]
  26. JeongH.J. LeeH.J. VuongT.A. ChoiK.S. ChoiD. KooS.H. ChoS.C. ChoH. KangJ.S. Prmt7 deficiency causes reduced skeletal muscle oxidative metabolism and age-related obesity.Diabetes20166571868188210.2337/db15‑150027207521
    [Google Scholar]
  27. RezaeeY. RezaeeE. KaramiL. TorshabiM. HaeriA. Crocin-phospholipid complex: Molecular docking, molecular dynamics simulation, preparation, characterization, and antioxidant activity.Iran. J. Pharm. Res.2024231e14404110.5812/ijpr‑14404139005730
    [Google Scholar]
  28. DaherC. ParisC. Le HôA.S. Bellot-GurletL. ÉchardJ.P. A joint use of raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes.J. Raman Spectrosc.201041111494149910.1002/jrs.2693
    [Google Scholar]
  29. WuJ.Y. DingH.Y. WangT.Y. ZhangY.R. ChangT.S. Glycosylation of ganoderic acid G by Bacillus Glycosyltransferases.Int. J. Mol. Sci.20212218974410.3390/ijms2218974434575908
    [Google Scholar]
  30. KaruppaiahA. BabuD. SelvarajD. NatrajanT. RajanR. GautamM. RanganathanH. SiramK. NesamonyJ. SankarV. Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats.Eur. J. Pharm. Sci.202116510593810.1016/j.ejps.2021.10593834256103
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128353794241225083428
Loading
/content/journals/cpd/10.2174/0113816128353794241225083428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test