Skip to content
2000
Volume 31, Issue 23
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Cardiovascular diseases (CVDs) remain a global health challenge, with hypertension emerging as a leading risk factor. Hypertension, characterized by elevated arterial blood pressure (BP), significantly increases the risk of stroke and other CVDs. Despite advancements in antihypertensive medication, the effectiveness of hypertension treatment is often hindered by poor bioavailability and limited drug efficacy. In this quest, nanoparticles (NPs) offer a promising avenue for addressing the limitations associated with conventional antihypertensive drugs in hypertension treatment. Among several NPs, solid lipid nanoparticles (SLNs) have emerged as a potential candidate, presenting a multifaceted approach to revolutionize drug delivery within this domain. SLNs, characterized by a lipophilic matrix and stabilized by surfactants, offer scalability and compatibility with biological systems compared to several polymer-based nanosystems. By encapsulating antihypertensive drugs, SLNs enhance drug solubility and bioavailability and provide sustained release, thereby improving treatment efficacy. In this context, this review provides an overview of the pathophysiology of hypertension and the role of SLNs in drug delivery. Various preparation techniques of SLNs are discussed, highlighting their versatility and potential in pharmaceutical applications. Furthermore, the role of SLNs in the management of hypertension is thoroughly examined, with a focus on enhancing the physicochemical properties of antihypertensive drugs. Overall, SLNs represent a promising strategy for optimizing hypertension treatment by addressing the limitations of conventional drug delivery systems. By enhancing drug stability, bioavailability, and efficacy, SLNs offer new possibilities for improving patient outcomes and reducing the global burden of cardiovascular diseases. This review aims to contribute to the ongoing research and development of innovative therapies for hypertension management.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337166241219081400
2025-03-14
2025-09-02
Loading full text...

Full text loading...

References

  1. Cardiovascular disease risk factors and mortality around the world.2024Available from: https://www.thelancet.com/infographics-do/cardiovascular-disease-risk
  2. DrozdM. CubbonR. Inflammation, infection, and cardiovascular risk.Lancet2024403104311022102310.1016/S0140‑6736(23)02871‑438492937
    [Google Scholar]
  3. EttehadD. EmdinC.A. KiranA. AndersonS.G. CallenderT. EmbersonJ. ChalmersJ. RodgersA. RahimiK. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis.Lancet20163871002295796710.1016/S0140‑6736(15)01225‑826724178
    [Google Scholar]
  4. LiuJ. VargheseB.M. HansenA. ZhangY. DriscollT. MorganG. DearK. GourleyM. CaponA. BiP. Heat exposure and cardiovascular health outcomes: A systematic review and meta-analysis.Lancet Planet. Health202266e484e49510.1016/S2542‑5196(22)00117‑635709806
    [Google Scholar]
  5. VaduganathanM. MensahG.A. TurcoJ.V. FusterV. RothG.A. The global burden of cardiovascular diseases and risk.J. Am. Coll. Cardiol.202280252361237110.1016/j.jacc.2022.11.00536368511
    [Google Scholar]
  6. Cardiovascular diseases (CVDs).2021Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  7. PoulterN.R. PrabhakaranD. CaulfieldM. Hypertension.Lancet2015386999580181210.1016/S0140‑6736(14)61468‑925832858
    [Google Scholar]
  8. MackenzieI.S. RogersA. PoulterN.R. WilliamsB. BrownM.J. WebbD.J. FordI. RorieD.A. GuthrieG. GrieveJ.W.K. PigazzaniF. RothwellP.M. YoungR. McConnachieA. StruthersA.D. LangC.C. MacDonaldT.M. Cardiovascular outcomes in adults with hypertension with evening versus morning dosing of usual antihypertensives in the UK (TIME study): A prospective, randomised, open-label, blinded-endpoint clinical trial.Lancet2022400103611417142510.1016/S0140‑6736(22)01786‑X36240838
    [Google Scholar]
  9. The global challenge of hypertension.Lancet Neurol.20232212108710.1016/S1474‑4422(23)00420‑9
    [Google Scholar]
  10. RahimiK. BidelZ. NazarzadehM. CoplandE. CanoyD. RamakrishnanR. Pinho-GomesA-C. WoodwardM. AdlerA. AgodoaL. AlgraA. AsselbergsF.W. BeckettN.S. BergeE. BlackH. BrouwersF.P.J. BrownM. BulpittC.J. ByingtonR.P. CushmanW.C. CutlerJ. DevereauxR.B. DwyerJ. EstacioR. FagardR. FoxK. FukuiT. GuptaA.K. HolmanR.R. ImaiY. IshiiM. JuliusS. KannoY. KjeldsenS.E. KostisJ. KuramotoK. LankeJ. LewisE. LewisJ.B. LievreM. LindholmL.H. LuedersS. MacMahonS. ManciaG. MatsuzakiM. MehlumM.H. NissenS. OgawaH. OgiharaT. OhkuboT. PalmerC.R. PatelA. PfefferM.A. PittB. PoulterN.R. RakugiH. ReboldiG. ReidC. RemuzziG. RuggenentiP. SarutaT. SchraderJ. SchrierR. SeverP. SleightP. StaessenJ.A. SuzukiH. ThijsL. UeshimaK. UmemotoS. van GilstW.H. VerdecchiaP. WachtellK. WheltonP. WingL. YuiY. YusufS. ZanchettiA. ZhangZ-Y. AndersonC. BaigentC. BrennerB.M. CollinsR. de ZeeuwD. LubsenJ. MalaccoE. NealB. PerkovicV. RodgersA. RothwellP. Salimi-KhorshidiG. SundströmJ. TurnbullF. VibertiG. WangJ. ChalmersJ. TeoK.K. PepineC.J. DavisB.R. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: An individual participant-level data meta-analysis.Lancet2021397102851625163610.1016/S0140‑6736(21)00590‑033933205
    [Google Scholar]
  11. First WHO report details devastating impact of hypertension and ways to stop it. 2023. Available from: https://www.who.int/ news/item/19-09-2023-first-who-report-details-devastating-impact-of-hypertension-and-ways-to-stop-it
  12. KarioK. OkuraA. HoshideS. MogiM. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy.Hypertens. Res.20244751099110210.1038/s41440‑024‑01622‑w38443614
    [Google Scholar]
  13. HallerH. Effective management of hypertension with dihydropyridine calcium channel blocker-based combination therapy in patients at high cardiovascular risk.Int. J. Clin. Pract.200862578179010.1111/j.1742‑1241.2008.01713.x18355239
    [Google Scholar]
  14. StraussM.H. HallA.S. NarkiewiczK. The combination of beta-blockers and ACE inhibitors across the spectrum of cardiovascular diseases.Cardiovasc. Drugs Ther.202337475777010.1007/s10557‑021‑07248‑134533690
    [Google Scholar]
  15. HermanL.L. PadalaS.A. AhmedI. BashirK. Angiotensin-Converting Enzyme Inhibitors (ACEI).2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK431051/
  16. GoyalA. CusickA.S. ThielemierB. InhibitorsA.C.E. ACE inhibitors.StatPearlsStatPearls PublishingTreasure Island (FL)
    [Google Scholar]
  17. AbrahamH.M.A. WhiteC.M. WhiteW.B. The comparative efficacy and safety of the angiotensin receptor blockers in the management of hypertension and other cardiovascular diseases.Drug Saf.2015381335410.1007/s40264‑014‑0239‑725416320
    [Google Scholar]
  18. BarrerasA. Gurk-TurnerC. Angiotensin II receptor blockers.Proc. Bayl. Univ. Med. Cent.200316112312610.1080/08998280.2003.1192789316278727
    [Google Scholar]
  19. SuissaS. BourgaultC. BarkunA. SheehyO. ErnstP. Antihypertensive drugs and the risk of gastrointestinal bleeding.Am. J. Med.1998105323023510.1016/S0002‑9343(98)00239‑39753026
    [Google Scholar]
  20. HallC. ChoiH. Side effects of antihypertensive drugs.Side Effects of Drugs Annual20234519920810.1016/bs.seda.2023.07.004
    [Google Scholar]
  21. SharmaM. SharmaR. JainD.K. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs.Scientifica2016201611110.1155/2016/852567927239378
    [Google Scholar]
  22. Raunak SalianT. NoushidaN. MohantoS. GowdaB.H.J. ChakrabortyM. NasrineA. NarayanaS. AhmedM.G. Development of optimized resveratrol/piperine-loaded phytosomal nanocomplex for isoproterenol-induced myocardial infarction treatment.J. Liposome Res.20241211810.1080/08982104.2024.237813039001631
    [Google Scholar]
  23. MirhadiE. KesharwaniP. JohnstonT.P. SahebkarA. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension.Drug Discov. Today202328610359910.1016/j.drudis.2023.10359937116826
    [Google Scholar]
  24. StoryD. AminoroayaA. SkeltonZ. KumariM. ZhangY. SmithB.R. Nanoparticle-based therapies in hypertension.Hypertension202380122506251410.1161/HYPERTENSIONAHA.123.1952337767725
    [Google Scholar]
  25. AlamT. KhanS. GabaB. HaiderM.F. BabootaS. AliJ. Nanocarriers as treatment modalities for hypertension.Drug Deliv.201724135836910.1080/10717544.2016.125599928165823
    [Google Scholar]
  26. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  27. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  28. KhanM.S. Jaswanth GowdaB.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  29. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  30. BanazadehM. BehnamB. GanjooeiN.A. GowdaB.H.J. KesharwaniP. SahebkarA. Curcumin-based nanomedicines: A promising avenue for brain neoplasm therapy.J. Drug Deliv. Sci. Technol.20238910504010.1016/j.jddst.2023.105040
    [Google Scholar]
  31. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. Singh ThakurR.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  32. Sameer KhanM. Jaswanth GowdaB.H. HasanN. GuptaG. SinghT. MdS. KesharwaniP. Carbon nanotube-mediated platinum-based drug delivery for the treatment of cancer: Advancements and future perspectives.Eur. Polym. J.202420611280010.1016/j.eurpolymj.2024.112800
    [Google Scholar]
  33. ArifY. SameeyaN. HasanN. GowdaB.H.J. GuptaG. AlsayariA. WahabS. KesharwaniP. Advancements in dendrimer-based drug delivery for combinatorial cancer therapy.J. Drug Deliv. Sci. Technol.20249710575510.1016/j.jddst.2024.105755
    [Google Scholar]
  34. NarayanaS. GowdaB.H.J. HaniU. ShimuS.S. PaulK. DasA. AshiqueS. AhmedM.G. TarighatM.A. AbdiG. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges.J. Nanobiotechnology202422142710.1186/s12951‑024‑02701‑339030546
    [Google Scholar]
  35. AS. AhmedM.G. GowdaB.H.J. SuryaS. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo.J. Dispers. Sci. Technol.20224511010.1080/01932691.2022.2139716
    [Google Scholar]
  36. GowdaB.H.J. MohantoS. SinghA. BhuniaA. AbdelgawadM.A. GhoshS. AnsariM.J. PramanikS. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  37. NagS. MitraO. PS. BhattacharjeeA. MohantoS. GowdaB.H.J. KarS. RamaiahS. AnbarasuA. AhmedM.G. Exploring the emerging trends in the synthesis and theranostic paradigms of cerium oxide nanoparticles (CeONPs): A comprehensive review.Mater. Today Chem.20243510189410.1016/j.mtchem.2023.101894
    [Google Scholar]
  38. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.10395938228257
    [Google Scholar]
  39. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update post COVID-19 vaccines.Bioeng. Transl. Med.202163e1024610.1002/btm2.1024634514159
    [Google Scholar]
  40. LiuY. ChengW. XinH. LiuR. WangQ. CaiW. PengX. YangF. XinH. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy.Cancer Nanotechnol.20231412810.1186/s12645‑023‑00174‑x37009262
    [Google Scholar]
  41. AnselmoA.C. MitragotriS. Nanoparticles in the clinic: An update.Bioeng. Transl. Med.201943e1014310.1002/btm2.1014331572799
    [Google Scholar]
  42. ShanX. GongX. LiJ. WenJ. LiY. ZhangZ. Current approaches of nanomedicines in the market and various stage of clinical translation.Acta Pharm. Sin. B20221273028304810.1016/j.apsb.2022.02.02535865096
    [Google Scholar]
  43. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.D.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  44. HaniU. Jaswanth GowdaB.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  45. GowdaB.H.J. AhmedM.G. HusainA. Transferosomal in situ gel administered through umbilical skin tissues for improved systemic bioavailability of drugs: A novel strategy to replace conventional transdermal route.Med. Hypotheses202216111080510.1016/j.mehy.2022.110805
    [Google Scholar]
  46. NarayanaS. AhmedM.G. GowdaB.H.J. ShettyP.K. NasrineA. ThriveniM. NoushidaN. SanjanaA. Recent advances in ocular drug delivery systems and targeting VEGF receptors for management of ocular angiogenesis: A comprehensive review.Future J. Pharm. Sci.20217112110.1186/s43094‑021‑00331‑2
    [Google Scholar]
  47. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  48. VargasonA.M. AnselmoA.C. MitragotriS. The evolution of commercial drug delivery technologies.Nat. Biomed. Eng.20215995196710.1038/s41551‑021‑00698‑w33795852
    [Google Scholar]
  49. HuY. SongJ. FengA. LiJ. LiM. ShiY. SunW. LiL. Recent advances in nanotechnology-based targeted delivery systems of active constituents in natural medicines for cancer treatment.Molecules20232823776710.3390/molecules2823776738067497
    [Google Scholar]
  50. GowdaB.H.J. VoraL.K. GadeS. GloverK. AhmedM.G. ThakurR.R.S. Therapeutic applications of nanobiomaterials for the management of ocular diseases.Biomaterial-Inspired Nanomedicines for Targeted Therapies202432934810.1007/978‑981‑97‑3925‑7_12
    [Google Scholar]
  51. KhafoorA.A. KarimA.S. SajadiS.M. Recent progress in synthesis of nano based liposomal drug delivery systems: A glance to their medicinal applications.Results in Surfaces and Interfaces20231110012410.1016/j.rsurfi.2023.100124
    [Google Scholar]
  52. JurakM. WiącekA.E. ŁadniakA. PrzykazaK. SzafranK. What affects the biocompatibility of polymers?Adv. Colloid Interface Sci.202129410245110.1016/j.cis.2021.10245134098385
    [Google Scholar]
  53. SilvaR.R.A. MarquesC.S. ArrudaT.R. TeixeiraS.C. de OliveiraT.V. Biodegradation of polymers: Stages, measurement, standards and prospects.Macromol20233237139910.3390/macromol3020023
    [Google Scholar]
  54. KalirajanC. DukleA. NathanaelA.J. OhT.H. ManivasagamG. A critical review on polymeric biomaterials for biomedical applications.Polymers20211317301510.3390/polym1317301534503054
    [Google Scholar]
  55. DuanY. DharA. PatelC. KhimaniM. NeogiS. SharmaP. Siva KumarN. VekariyaR.L. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Advances20201045267772679110.1039/D0RA03491F35515778
    [Google Scholar]
  56. AdityaN.P. KoS. Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives.RSC Advances2015539309023091110.1039/C4RA17127F
    [Google Scholar]
  57. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  58. GargG. GargS. PatelP. Das GuptaG. Das KurmiB. Advances in solid-lipid nanoparticle chemistry as drug delivery vehiclesInt. J. Polym. Mater. Polym. Biomater.202411510.1080/00914037.2024.2344603
    [Google Scholar]
  59. GaspariniS. FerlazzoE. SueriC. CianciV. AscoliM. CavalliS.M. BeghiE. BelcastroV. BianchiA. BennaP. CantelloR. ConsoliD. De FalcoF.A. Di GennaroG. GambardellaA. GigliG.L. IudiceA. LabateA. MichelucciR. PaciaroniM. PalumboP. PrimaveraA. SartucciF. StrianoP. VillaniF. RussoE. De SarroG. AgugliaU. Hypertension, seizures, and epilepsy: A review on pathophysiology and management.Neurol. Sci.20194091775178310.1007/s10072‑019‑03913‑431055731
    [Google Scholar]
  60. FuruyaM. IshidaJ. AokiI. FukamizuA. Pathophysiology of placentation abnormalities in pregnancy-induced hypertension.Vasc. Health Risk Manag.2008461301131310.2147/VHRM.S400919337544
    [Google Scholar]
  61. LanN.S.H. MassamB.D. KulkarniS.S. LangC.C. Pulmonary arterial hypertension: Pathophysiology and treatment.Diseases2018623810.3390/diseases602003829772649
    [Google Scholar]
  62. SaxenaT. AliA.O. SaxenaM. Pathophysiology of essential hypertension: An update.Expert Rev. Cardiovasc. Ther.2018161287988710.1080/14779072.2018.154030130354851
    [Google Scholar]
  63. LaMarcaB.D. GilbertJ. GrangerJ.P. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia.Hypertension200851498298810.1161/HYPERTENSIONAHA.107.10883718259004
    [Google Scholar]
  64. MontecuccoF. PendeA. QuercioliA. MachF. Inflammation in the pathophysiology of essential hypertension.J. Nephrol.2011241233410.5301/JN.2010.472920437401
    [Google Scholar]
  65. SalmanL.A. ShulmanR. CohenJ.B. Obstructive sleep apnea, hypertension, and cardiovascular risk: Epidemiology, pathophysiology, and management.Curr. Cardiol. Rep.2020222610.1007/s11886‑020‑1257‑y31955254
    [Google Scholar]
  66. ShariqO.A. McKenzieT.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery.Gland Surg.202091809310.21037/gs.2019.12.0332206601
    [Google Scholar]
  67. ThoonenR. SipsP.Y. BlochK.D. BuysE.S. Pathophysiology of hypertension in the absence of nitric oxide/cyclic GMP signaling.Curr. Hypertens. Rep.2013151475810.1007/s11906‑012‑0320‑523233080
    [Google Scholar]
  68. MayetJ. HughesA. Cardiac and vascular pathophysiology in hypertension.Br. Heart J.20038991104110910.1136/heart.89.9.110412923045
    [Google Scholar]
  69. RodrigoR. GonzálezJ. PaolettoF. The role of oxidative stress in the pathophysiology of hypertension.Hypertens. Res.201134443144010.1038/hr.2010.26421228777
    [Google Scholar]
  70. PandeyK.N. Emerging roles of natriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation.J. Am. Soc. Hypertens.20082421022610.1016/j.jash.2008.02.00119746200
    [Google Scholar]
  71. HallJ.E. OmotoA.C.M. WangZ. MoutonA. LiX. HallM.E. Pathophysiology of HypertensionElsevier2024, pp. 71-8610.1016/B978‑0‑323‑88369‑6.00005‑0
    [Google Scholar]
  72. ZoubariG. StaufenbielS. VolzP. AlexievU. BodmeierR. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery.Eur. J. Pharm. Biopharm.2017110394610.1016/j.ejpb.2016.10.02127810471
    [Google Scholar]
  73. GastaldiL. BattagliaL. PeiraE. ChirioD. MuntoniE. SolazziI. GallarateM. DosioF. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art.Eur. J. Pharm. Biopharm.201487343344410.1016/j.ejpb.2014.05.00424833004
    [Google Scholar]
  74. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑410840199
    [Google Scholar]
  75. zur MühlenA. SchwarzC. MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery – Drug release and release mechanism.Eur. J. Pharm. Biopharm.199845214915510.1016/S0939‑6411(97)00150‑19704911
    [Google Scholar]
  76. CaiS. YangQ. BagbyT.R. ForrestM.L. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles.Adv. Drug Deliv. Rev.20116310-1190190810.1016/j.addr.2011.05.01721712055
    [Google Scholar]
  77. ChenM.L. Lipid excipients and delivery systems for pharmaceutical development: A regulatory perspective.Adv. Drug Deliv. Rev.200860676877710.1016/j.addr.2007.09.01018077051
    [Google Scholar]
  78. SalahE. AbouelfetouhM.M. PanY. ChenD. XieS. Solid lipid nanoparticles for enhanced oral absorption: A review.Colloids Surf. B Biointerfaces202019611130510.1016/j.colsurfb.2020.11130532795844
    [Google Scholar]
  79. LinC.H. ChenC.H. LinZ.C. FangJ.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers.J. Food Drug Anal.201725221923410.1016/j.jfda.2017.02.00128911663
    [Google Scholar]
  80. GhasemiyehP. Mohammadi-SamaniS. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res Pharm Sci2018134288303
    [Google Scholar]
  81. ShahM.K. KhatriP. VoraN. PatelN.K. JainS. LinS. Lipid nanocarriers: Preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water- soluble drugs.Biomedical Applications of Nanoparticles201911714710.1016/B978‑0‑12‑816506‑5.00003‑6
    [Google Scholar]
  82. ChircovC. GrumezescuA.M. Nanoemulsion preparation, characterization, and application in the field of biomedicine.Nanoarchitectonics in Biomedicine201916918810.1016/B978‑0‑12‑816200‑2.00019‑0
    [Google Scholar]
  83. DuongV.A. NguyenT.T.L. MaengH.J. ChiS.C. Data on optimization and drug release kinetics of nanostructured lipid carriers containing ondansetron hydrochloride prepared by cold high-pressure homogenization method.Data Brief20192610447510.1016/j.dib.2019.10447531667240
    [Google Scholar]
  84. ViegasC. SeckF. FonteP. An insight on lipid nanoparticles for therapeutic proteins delivery.J. Drug Deliv. Sci. Technol.20227710383910.1016/j.jddst.2022.103839
    [Google Scholar]
  85. GascoM.R. PrianoL. ZaraG.P. Solid lipid nanoparticles and microemulsions for drug delivery.Prog. Brain Res.200918018119210.1016/S0079‑6123(08)80010‑620302835
    [Google Scholar]
  86. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method.Molecules20202520478110.3390/molecules2520478133081021
    [Google Scholar]
  87. StahlM.A. LüdtkeF.L. GrimaldiR. GiganteM.L. RibeiroA.P.B. Characterization and stability of solid lipid nanoparticles produced from different fully hydrogenated oils.Food Res. Int.202417611382110.1016/j.foodres.2023.11382138163721
    [Google Scholar]
  88. SilvaA.C. González-MiraE. GarcíaM.L. EgeaM.A. FonsecaJ. SilvaR. SantosD. SoutoE.B. FerreiraD. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound.Colloids Surf. B Biointerfaces201186115816510.1016/j.colsurfb.2011.03.03521530187
    [Google Scholar]
  89. DuongV.A. NguyenT.T.L. MaengH.J. ChiS.C. Nanostructured lipid carriers containing ondansetron hydrochloride by cold high- pressure homogenization method: Preparation, characterization, and pharmacokinetic evaluation.J. Drug Deliv. Sci. Technol.20195310118510.1016/j.jddst.2019.101185
    [Google Scholar]
  90. KasongoK.W. MüllerR.H. WalkerR.B. The use of hot and cold high pressure homogenization to enhance the loading capacity and encapsulation efficiency of nanostructured lipid carriers for the hydrophilic antiretroviral drug, didanosine for potential administration to paediatric patients.Pharm. Dev. Technol.201217335336210.3109/10837450.2010.54216321241166
    [Google Scholar]
  91. SoniG. KaleK. ShettyS. GuptaM.K. YadavK.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer.Heliyon202064e0384610.1016/j.heliyon.2020.e0384632373744
    [Google Scholar]
  92. ChauhanO.P. ChandelA. SmithaP.M. SemwalA.D. High pressure homogenization and retention of bioactive compounds in fruits and vegetables products.Food and Humanity202311559156910.1016/j.foohum.2023.11.003
    [Google Scholar]
  93. InguvaP. GrasselliS. HengP.W.S. High pressure homogenization- An update on its usage and understanding.Chem. Eng. Res. Des.202420228430210.1016/j.cherd.2023.12.026
    [Google Scholar]
  94. YadavM. SchiavoneN. Guzman-AranguezA. GiansantiF. PapucciL. Perez de LaraM.J. SinghM. KaurI.P. Atorvastatin-loaded solid lipid nanoparticles as eye drops: Proposed treatment option for age-related macular degeneration (AMD).Drug Deliv. Transl. Res.202010491994410.1007/s13346‑020‑00733‑432270439
    [Google Scholar]
  95. ÜnerM. YenerG. ErgüvenM. Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia.Mater. Sci. Eng. C201910310987410.1016/j.msec.2019.10987431349508
    [Google Scholar]
  96. OlbrichC. GessnerA. KayserO. MüllerR.H. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate.J. Drug Target.200210538739610.1080/106118602100000183212442809
    [Google Scholar]
  97. SuterF. SchmidD. WandreyF. ZülliF. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications.Eur. J. Pharm. Biopharm.201610830430910.1016/j.ejpb.2016.06.01427343822
    [Google Scholar]
  98. ŠtecováJ. MehnertW. BlaschkeT. KleuserB. SivaramakrishnanR. ZouboulisC.C. SeltmannH. KortingH.C. KramerK.D. Schäfer-KortingM. Cyproterone acetate loading to lipid nanoparticles for topical acne treatment: Particle characterisation and skin uptake.Pharm. Res.2007245991100010.1007/s11095‑006‑9225‑917372681
    [Google Scholar]
  99. BättigK. FischerH. Do patent analgetics and placebos have a different effect on subjective feelings, personality tests and psychomotor performance?Schweiz. Med. Wochenschr.196696175705755984014
    [Google Scholar]
  100. SharmaG. ChopraK. PuriS. BishnoiM. RishiP. KaurI.P. Topical delivery of TRPsiRNA-loaded solid lipid nanoparticles confer reduced pain sensation via TRPV1 silencing, in rats.J. Drug Target.201826213514910.1080/1061186X.2017.135085728670930
    [Google Scholar]
  101. ZhangS-J. ZhangY-T. ZhaoJ-H. ShenL-N. ShiF. FengN-P. Preparation and in vitro anti-tumor properties of toad venom extract- loaded solid lipid nanoparticles.Pharmazie201368865366024020119
    [Google Scholar]
  102. SeverinoP. SantanaM.H.A. SoutoE.B. OptimizingS.L.N. Optimizing SLN and NLC by 22 full factorial design: Effect of homogenization technique.Mater. Sci. Eng. C20123261375137910.1016/j.msec.2012.04.01724364934
    [Google Scholar]
  103. Fazly BazzazB.S. KhamenehB. NamaziN. IranshahiM. DavoodiD. GolmohammadzadehS. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: The novel nanoparticulate systems with broad-spectrum antimicrobial activity.Lett. Appl. Microbiol.201866650651310.1111/lam.1288629569372
    [Google Scholar]
  104. Akhoond ZardiniA. MohebbiM. FarhooshR. BolurianS. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification.J. Food Sci. Technol.201855128729810.1007/s13197‑017‑2937‑529358821
    [Google Scholar]
  105. ShahP. ChavdaK. VyasB. PatelS. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: Role of P-gp inhibition.Drug Deliv. Transl. Res.20211131166118510.1007/s13346‑020‑00839‑932804301
    [Google Scholar]
  106. ZhuC. LiW. WangX. XueJ. ZhaoL. SongY. ZhouT. ZhangM. Thiopental sodium loaded solid lipid nano-particles attenuates obesity-induced cardiac dysfunction and cardiac hypertrophy via inactivation of inflammatory pathway.Drug Deliv.20202711188120010.1080/10717544.2020.180344932762480
    [Google Scholar]
  107. MasiiwaW.L. GadagaL.L. Intestinal permeability of artesunate-loaded solid lipid nanoparticles using the everted gut method.J. Drug Deliv.201820181910.1155/2018/302173829854465
    [Google Scholar]
  108. YasirM. GaurP.K. PuriD. PreetiS. KumarS.S. Solid lipid nanoparticles approach for lymphatic targeting through intraduodenal delivery of quetiapine fumarate.Curr. Drug Deliv.201815681882810.2174/156720181466617052512104928545354
    [Google Scholar]
  109. ShahR.M. EldridgeD.S. PalomboE.A. HardingI.H. Microwave-assisted microemulsion technique for production of miconazole nitrate- and econazole nitrate-loaded solid lipid nanoparticles.Eur. J. Pharm. Biopharm.201711714115010.1016/j.ejpb.2017.04.00728411057
    [Google Scholar]
  110. CortesiR. EsposjtoE. LucaG. NastruzziC. Production of lipospheres as carriers for bioactive compounds.Biomaterials200223112283229410.1016/S0142‑9612(01)00362‑312013175
    [Google Scholar]
  111. Fathy Abd-EllatefG.E. GazzanoE. ChirioD. Ragab HamedA. BelisarioD.C. ZuddasC. PeiraE. RolandoB. KopeckaJ. Assem Said MarieM. SapinoS. Ramadan FahmyS. GallarateM. Zaki Abdel-HamidA-H. RigantiC. Curcumin-loaded solid lipid nanoparticles bypass p-glycoprotein mediated doxorubicin resistance in triple negative breast cancer cells.Pharmaceutics20201229610.3390/pharmaceutics1202009631991669
    [Google Scholar]
  112. GuptaS. WairkarS. BhattL.K. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne.J. Microencapsul.202037855756510.1080/02652048.2020.182349932924680
    [Google Scholar]
  113. MukherjeeS. MaityS. GhoshB. ChakrabortyT. MondalA. BishayeeA. Assessment of the antidiabetic potentiality of glyburide loaded glyceryl monostearate solid lipid nanoparticles.J. Drug Deliv. Sci. Technol.20205510145110.1016/j.jddst.2019.101451
    [Google Scholar]
  114. TrottaM. DebernardiF. CaputoO. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique.Int. J. Pharm.20032571-215316010.1016/S0378‑5173(03)00135‑212711170
    [Google Scholar]
  115. HuF.Q. YuanH. ZhangH.H. FangM. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization.Int. J. Pharm.20022391-212112810.1016/S0378‑5173(02)00081‑912052697
    [Google Scholar]
  116. TrottaM. CavalliR. CarlottiM.E. BattagliaL. DebernardiF. Solid lipid micro-particles carrying insulin formed by solvent-in-water emulsion–diffusion technique.Int. J. Pharm.2005288228128810.1016/j.ijpharm.2004.10.01415620868
    [Google Scholar]
  117. YassemiA. KashanianS. ZhalehH. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment.Pharm. Dev. Technol.202025439740710.1080/10837450.2019.170373931893979
    [Google Scholar]
  118. BattagliaL. TrottaM. GallarateM. CarlottiM.E. ZaraG.I.A.N.P. BargoniA. Solid lipid nanoparticles formed by solvent-in-water emulsion–diffusion technique: Development and influence on insulin stability.J. Microencapsul.200724767268410.1080/0265204070153298117763060
    [Google Scholar]
  119. DhaundiyalA. JenaS.K. SamalS.K. SonvaneB. ChandM. SangamwarA.T. Alpha-lipoic acid–stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: Formulation, optimization, in vivo pharmacokinetic and hepatotoxicity study.J. Pharm. Pharmacol.201668121535155010.1111/jphp.1264427709612
    [Google Scholar]
  120. PoojaD. KulhariH. TunkiL. ChindeS. KunchaM. GroverP. RachamallaS.S. SistlaR. Nanomedicines for targeted delivery of etoposide to non-small cell lung cancer using transferrin functionalized nanoparticles.RSC Advances2015561491224913110.1039/C5RA03316K
    [Google Scholar]
  121. SjöströmB. KaplunA. TalmonY. CabaneB. Structures of nanoparticles prepared from oil-in-water emulsions.Pharm. Res.1995121394810.1023/A:10162783020467724486
    [Google Scholar]
  122. PoojaD. TunkiL. KulhariH. ReddyB.B. SistlaR. Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of Rifampicin.Chem. Phys. Lipids2015193111710.1016/j.chemphyslip.2015.09.00826409629
    [Google Scholar]
  123. SinghB. VuddandaP.R. M RV. KumarV. SaxenaP.S. SinghS. Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm.Colloids Surf. B Biointerfaces2014121929810.1016/j.colsurfb.2014.03.04624945607
    [Google Scholar]
  124. PatelK.K. GadeS. AnjumM.M. SinghS.K. MaitiP. AgrawalA.K. SinghS. Effect of penetration enhancers and amorphization on transdermal permeation flux of raloxifene-encapsulated solid lipid nanoparticles: An ex vivo study on human skin.Appl. Nanosci.2019961383139410.1007/s13204‑019‑01004‑6
    [Google Scholar]
  125. FonteP. NogueiraT. GehmC. FerreiraD. SarmentoB. Chitosan- coated solid lipid nanoparticles enhance the oral absorption of insulin.Drug Deliv. Transl. Res.20111429930810.1007/s13346‑011‑0023‑525788364
    [Google Scholar]
  126. SinghS. DobhalA.K. JainA. PanditJ.K. ChakrabortyS. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine.Chem. Pharm. Bull.201058565065510.1248/cpb.58.65020460791
    [Google Scholar]
  127. LiZ. YuL. ZhengL. GengF. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method.J. Therm. Anal. Calorim.201099268969310.1007/s10973‑009‑0127‑z
    [Google Scholar]
  128. García-FuentesM. TorresD. AlonsoM.J. Design of lipid nanoparticles for the oral delivery of hydrophilic macromolecules.Colloids Surf. B Biointerfaces2003272-315916810.1016/S0927‑7765(02)00053‑X
    [Google Scholar]
  129. Nabi-MeibodiM. VatanaraA. NajafabadiA.R. RouiniM.R. RamezaniV. GilaniK. EtemadzadehS.M.H. AzadmaneshK. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method.Colloids Surf. B Biointerfaces201311240841410.1016/j.colsurfb.2013.06.01324036624
    [Google Scholar]
  130. MazurK.L. FeuserP.E. ValérioA. Poester CordeiroA. de OliveiraC.I. AssoliniJ.P. PavanelliW.R. SayerC. AraújoP.H.H. Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro.Colloids Surf. B Biointerfaces201917650751210.1016/j.colsurfb.2018.12.04830711703
    [Google Scholar]
  131. Becker PeresL. Becker PeresL. de AraújoP.H.H. SayerC. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique.Colloids Surf. B Biointerfaces201614031732310.1016/j.colsurfb.2015.12.03326764112
    [Google Scholar]
  132. MontenegroL. SinicoC. CastangiaI. CarboneC. PuglisiG. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation.Int. J. Pharm.20124341-216917410.1016/j.ijpharm.2012.05.04622659127
    [Google Scholar]
  133. RogerK. CabaneB. OlssonU. Formation of 10-100 nm size-controlled emulsions through a sub-PIT cycle.Langmuir20102663860386710.1021/la903401g19899785
    [Google Scholar]
  134. HeurtaultB. SaulnierP. PechB. ProustJ.E. BenoitJ.P. A novel phase inversion-based process for the preparation of lipid nanocarriers.Pharm. Res.200219687588010.1023/A:101612131966812134960
    [Google Scholar]
  135. MontenegroL. SarpietroM.G. OttimoS. PuglisiG. CastelliF. Differential scanning calorimetry studies on sunscreen loaded solid lipid nanoparticles prepared by the phase inversion temperature method.Int. J. Pharm.20114151-230130610.1016/j.ijpharm.2011.05.07621679757
    [Google Scholar]
  136. ShindeU.A. ParmarS.J. EaswaranS. Metronidazole-loaded nanostructured lipid carriers to improve skin deposition and retention in the treatment of rosacea.Drug Dev. Ind. Pharm.20194571039105110.1080/03639045.2019.156902630727789
    [Google Scholar]
  137. GomesG.V.L. SolaM.R. RochettiA.L. FukumasuH. VicenteA.A. PinhoS.C. β-carotene and α-tocopherol coencapsulated in nanostructured lipid carriers of murumuru (Astrocaryum murumuru) butter produced by phase inversion temperature method: Characterisation, dynamic in vitro digestion and cell viability study.J. Microencapsul.2019361435210.1080/02652048.2019.158598230836027
    [Google Scholar]
  138. AliH. SinghS.K. Preparation and characterization of solid lipid nanoparticles of furosemide using quality by design.Particul. Sci. Technol.201836669570910.1080/02726351.2017.1295293
    [Google Scholar]
  139. CharcossetC. El-HaratiA. FessiH. Preparation of solid lipid nanoparticles using a membrane contactor.J. Control. Release2005108111212010.1016/j.jconrel.2005.07.02316169111
    [Google Scholar]
  140. D’oriaC. CharcossetC. BarresiA.A. FessiH. Preparation of solid lipid particles by membrane emulsification—Influence of process parameters.Colloids Surf. A Physicochem. Eng. Asp.20093381-311411810.1016/j.colsurfa.2009.01.003
    [Google Scholar]
  141. Ahmed El-HaratiA. CharcossetC. FessiH. Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor.Pharm. Dev. Technol.200611215315710.1080/1083745060056118216749525
    [Google Scholar]
  142. KhayataN. AbdelwahedW. ChehnaM.F. CharcossetC. FessiH. Preparation of vitamin E loaded nanocapsules by the nanoprecipitation method: From laboratory scale to large scale using a membrane contactor.Int. J. Pharm.2012423241942710.1016/j.ijpharm.2011.12.01622197757
    [Google Scholar]
  143. TrucilloP. CampardelliR. Production of solid lipid nanoparticles with a supercritical fluid assisted process.J. Supercrit. Fluids2019143162310.1016/j.supflu.2018.08.001
    [Google Scholar]
  144. ChattopadhyayP. ShekunovB. YimD. CipollaD. BoydB. FarrS. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system.Adv. Drug Deliv. Rev.200759644445310.1016/j.addr.2007.04.01017582648
    [Google Scholar]
  145. AndradeL.N. OliveiraD.M.L. ChaudM.V. AlvesT.F.R. NeryM. da SilvaC.F. GonsalvesJ.K.C. NunesR.S. CorrêaC.B. AmaralR.G. Sanchez-LopezE. SoutoE.B. SeverinoP. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: Physicochemical characterization, release profile, and cytotoxicity.Molecules20192421388110.3390/molecules2421388131661906
    [Google Scholar]
  146. Acevedo-MorantesC.Y. Acevedo-MorantesM.T. Suleiman-RosadoD. Ramírez-VickJ.E. Evaluation of the cytotoxic effect of camptothecin solid lipid nanoparticles on MCF7 cells.Drug Deliv.201320833834810.3109/10717544.2013.83441224024505
    [Google Scholar]
  147. BattagliaL. GallarateM. CavalliR. TrottaM. Solid lipid nanoparticles produced through a coacervation method.J. Microencapsul.2010271788510.3109/0265204090303127919538034
    [Google Scholar]
  148. MuntoniE. MariniE. AhmadiN. MillaP. GhèC. BargoniA. CapucchioM.T. BiasibettiE. BattagliaL. Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: Preliminary ex vivo and in vivo studies.Acta Diabetol.201956121283129210.1007/s00592‑019‑01403‑931407113
    [Google Scholar]
  149. ClementeN. FerraraB. GigliottiC. BoggioE. CapucchioM. BiasibettiE. SchifferD. MellaiM. AnnovazziL. CangemiL. MuntoniE. MiglioG. DianzaniU. BattagliaL. DianzaniC. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies.Int. J. Mol. Sci.201819225510.3390/ijms1902025529364157
    [Google Scholar]
  150. ChirioD. GallarateM. PeiraE. BattagliaL. MuntoniE. RigantiC. BiasibettiE. CapucchioM.T. ValazzaA. PancianiP. LanotteM. AnnovazziL. CalderaV. MellaiM. FiliceG. CoronaS. SchifferD. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment.Eur. J. Pharm. Biopharm.201488374675810.1016/j.ejpb.2014.10.01725445304
    [Google Scholar]
  151. BattagliaL. MuntoniE. ChirioD. PeiraE. AnnovazziL. SchifferD. MellaiM. RigantiC. SalaroglioI.C. LanotteM. PancianiP. CapucchioM.T. ValazzaA. BiasibettiE. GallarateM. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: Preliminary study for glioma treatment.Nanomedicine201712663965610.2217/nnm‑2016‑038028186465
    [Google Scholar]
  152. BattagliaL. GallarateM. PeiraE. ChirioD. SolazziI. GiordanoS.M.A. GigliottiC.L. RigantiC. DianzaniC. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: Preliminary in vitro studies.Nanotechnology2015262525510210.1088/0957‑4484/26/25/25510226043866
    [Google Scholar]
  153. SchubertM. Müller-GoymannC.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters.Eur. J. Pharm. Biopharm.200355112513110.1016/S0939‑6411(02)00130‑312551713
    [Google Scholar]
  154. SinghA. AhmadI. AkhterS. JainG.K. IqbalZ. TalegaonkarS. AhmadF.J. Nanocarrier based formulation of Thymoquinone improves oral delivery: Stability assessment, in vitro and in vivo studies.Colloids Surf. B Biointerfaces201310282283210.1016/j.colsurfb.2012.08.03823104039
    [Google Scholar]
  155. HashemF.M. NasrM. KhairyA. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate.Pharm. Dev. Technol.201419782483210.3109/10837450.2013.83621824032414
    [Google Scholar]
  156. PanditaD. AhujaA. LatherV. DuttaT. VelpandianT. KharR.K. Development, characterization and in vitro assessement of stearylamine-based lipid nanoparticles of paclitaxel.Pharmazie201166317117721553646
    [Google Scholar]
  157. HansrajG.P. SinghS.K. KumarP. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential.Int. J. Biol. Macromol.20158146747610.1016/j.ijbiomac.2015.08.03526299709
    [Google Scholar]
  158. DodiyaS. ChavhanS. KordeA. SawantK.K. Solid lipid nanoparticles and nanosuspension of adefovir dipivoxil for bioavailability improvement: Formulation, characterization, pharmacokinetic and biodistribution studies.Drug Dev. Ind. Pharm.201339573374310.3109/03639045.2012.69488922690834
    [Google Scholar]
  159. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  160. SalminenH. KasapoğluK.N. ÖzçelikB. WeissJ. Stabilization of solid lipid nanoparticles with glycyrrhizin.Eur. Food Res. Technol.2023249378779810.1007/s00217‑022‑04176‑8
    [Google Scholar]
  161. MusielakE. Feliczak-GuzikA. NowakI. Optimization of the conditions of solid lipid nanoparticles (SLN) synthesis.Molecules2022277220210.3390/molecules2707220235408600
    [Google Scholar]
  162. AssefiM. AtaeinaeiniM. NazariA. GholipourA. Vertiz-OsoresJ.J. Melody Calla-VásquezK. Zuhair Talib Al-NaqeebB. Hussein JassimK. KalajahiH.G. YasaminehS. DadashpourM. A state-of-the-art review on solid lipid nanoparticles as a nanovaccines delivery system.J. Drug Deliv. Sci. Technol.20238610462310.1016/j.jddst.2023.104623
    [Google Scholar]
  163. AlmawashS. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs.Saudi Pharm. J.20233171167118010.1016/j.jsps.2023.05.01137273269
    [Google Scholar]
  164. DoukaS. BrandenburgL.E. CasadidioC. WaltherJ. GarciaB.B.M. SpanholtzJ. RaimoM. HenninkW.E. MastrobattistaE. CaiazzoM. Lipid nanoparticle- mediated messenger RNA delivery for ex vivo engineering of natural killer cells.J. Control. Release202336145546910.1016/j.jconrel.2023.08.01437567506
    [Google Scholar]
  165. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  166. AnjumM.M. PatelK.K. BhattacharyaS. AryaD.K. PandeyP. MrV. SinghS. RajinikanthP.S. Overcoming barriers in cystic fibrosis therapy through inhalational lipid nanoparticles: Challenges and advances.J. Drug Deliv. Sci. Technol.20238910506810.1016/j.jddst.2023.105068
    [Google Scholar]
  167. CárdenasM. CampbellR.A. Yanez ArtetaM. LawrenceM.J. SebastianiF. Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery.Curr. Opin. Colloid Interface Sci.20236610170510.1016/j.cocis.2023.101705
    [Google Scholar]
  168. MotsoeneF. AbrahamseH. Dhilip KumarS.S. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review.Adv. Colloid Interface Sci.202332110300210.1016/j.cis.2023.10300237804662
    [Google Scholar]
  169. HarishV. MohdS. TewariD. PandeyN.K. VishwasS. BabuM.R. SalkiniM.A. RehmanZ. AlotaibiJ.T. AlotaibiR.F. AlrashedF.A. PrasherP. SharmaN. GuptaG. JakhmolaV. SinghY. PintoT.J.A. PaudelK.R. MittalN. SinghT.G. AroraP. DuaK. SinghS.K. Unravelling the role of solid lipid nanoparticles in drug delivery: Journey from laboratory to clinical trial.J. Drug Deliv. Sci. Technol.20238510461610.1016/j.jddst.2023.104616
    [Google Scholar]
  170. El MoukhtariS.H. GarbayoE. AmundarainA. Pascual-GilS. Carrasco-LeónA. ProsperF. AgirreX. Blanco-PrietoM.J. Lipid nanoparticles for siRNA delivery in cancer treatment.J. Control. Release202336113014610.1016/j.jconrel.2023.07.05437532145
    [Google Scholar]
  171. SouzaI.D.L. SaezV. MansurC.R.E. Lipid nanoparticles containing coenzyme Q10 for topical applications: An overview of their characterization.Colloids Surf. B Biointerfaces202323011349110.1016/j.colsurfb.2023.11349137574615
    [Google Scholar]
  172. DudhipalaN. VeerabrahmaK. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: Characterization, pharmacokinetic and pharmacodynamic evaluation.Drug Deliv.201623239540410.3109/10717544.2014.91498624865287
    [Google Scholar]
  173. DudhipalaN. VeerabrahmaK. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design.Drug Dev. Ind. Pharm.201541121968197710.3109/03639045.2015.102468525830370
    [Google Scholar]
  174. HavanoorS.M. ManjunathK. Tippanna BhagawatiS. VeerapurV.P. Isradipine loaded solid LIPID nanoparticles for better treatment of hypertension – Preparation, characterization and in vivo evaluation.Int J Biopharm 201453218224
    [Google Scholar]
  175. DiwanR. RaviP.R. PathareN.S. AggarwalV. Pharmacodynamic, pharmacokinetic and physical characterization of cilnidipine loaded solid lipid nanoparticles for oral delivery optimized using the principles of design of experiments.Colloids Surf. B Biointerfaces202019311107310.1016/j.colsurfb.2020.11107332388122
    [Google Scholar]
  176. SalianT.R. NoushidaN. Jaswanth GowdaB.H. ChakrabortyM. Enumadisetty SrinivasuluS.P. AhmedM.G. SrinivasuluE. AhmedM.G. Cardioprotective potential of resveratrol alone and in combination with piperine on isoproterenol-induced myocardial infarction in rat: Investigation on oral bioavailability of resveratrol.Int. J. Pharm. Investig.202314110711610.5530/ijpi.14.1.14
    [Google Scholar]
  177. KarthikaP. GowdaB.H.J. DamiriF. HemalathaY.R. ChandanR.S. BerradaM. Nanophytomedicine and Their Applications. Polymer NanocompositesCRC Press2023; 83-94
    [Google Scholar]
  178. PaulK. GowdaB.H.J. HaniU. ChandanR.S. MohantoS. AhmedM.G. AshiqueS. KesharwaniP. Traditional uses, phytochemistry, and pharmacological activities of Coleus amboinicus: A comprehensive review.Curr. Pharm. Des.202430751953510.2174/011381612828326724013006260038321896
    [Google Scholar]
  179. KumarV. ChaudharyH. KambojA. Development and evaluation of isradipine via rutin-loaded coated solid–lipid nanoparticles.Interv. Med. Appl. Sci.201810423624610.1556/1646.10.2018.4530792921
    [Google Scholar]
  180. DudhipalaN. EttireddyS. YoussefA.A.A. PuchchakayalaG. Development and in vivo pharmacokinetic and pharmacodynamic evaluation of an oral innovative cyclodextrin complexed lipid nanoparticles of irbesartan formulation for enhanced bioavailability.Nanotheranostics20237111712710.7150/ntno.7810236593793
    [Google Scholar]
  181. BhaskarK. MohanC.K. LingamM. MohanS.J. VenkateswarluV. RaoY.M. BhaskarK. AnbuJ. RavichandranV. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: In vitro and in vivo characteristics.Drug Dev. Ind. Pharm.20093519811310.1080/0363904080219282218665979
    [Google Scholar]
  182. ChalikwarS.S. BelgamwarV.S. TaleleV.R. SuranaS.J. PatilM.U. Formulation and evaluation of Nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system.Colloids Surf. B Biointerfaces20129710911610.1016/j.colsurfb.2012.04.02722609590
    [Google Scholar]
  183. ZhangZ. GaoF. BuH. XiaoJ. LiY. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats.Nanomedicine20128574074710.1016/j.nano.2011.08.01621930110
    [Google Scholar]
  184. MahajanA. KaurS. KaurS. Design, formulation, and characterization of stearic acid-based solid lipid nanoparticles of candesartan cilexetil to augment its oral bioavailability.Asian J. Pharm. Clin. Res.201811434435010.22159/ajpcr.2018.v11i4.23849
    [Google Scholar]
  185. SomaD. AttariZ. ReddyM.S. DamodaramA. KoteshwaraK.B.G. Solid lipid nanoparticles of irbesartan: Preparation, characterization, optimization and pharmacokinetic studies. Braz. J. Pharm. Sci.2017531e15012
    [Google Scholar]
  186. El-SayK.M. HosnyK.M. Optimization of carvedilol solid lipid nanoparticles: An approach to control the release and enhance the oral bioavailability on rabbits.PLoS One2018138e020340510.1371/journal.pone.020340530161251
    [Google Scholar]
  187. PandyaN.T. JaniP. VanzaJ. TandelH. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension.Colloids Surf. B Biointerfaces2018165374410.1016/j.colsurfb.2018.02.01129453084
    [Google Scholar]
  188. KipriyeZ. ŞenelB. YenilmezE. Preparation and evaluation of carvedilol-loaded solid lipid nanoparticles for targeted drug delivery.Trop. J. Pharm. Res.2017169205710.4314/tjpr.v16i9.4
    [Google Scholar]
  189. ShahM.K. MadanP. LinS. Preparation, in vitro evaluation and statistical optimization of carvedilol-loaded solid lipid nanoparticles for lymphatic absorption via oral administration.Pharm. Dev. Technol.201419447548510.3109/10837450.2013.79516923697916
    [Google Scholar]
  190. Üstündağ-OkurN. YurdasiperA. GündoğduE. Homan GökçeE. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate.J. Microencapsul.2016331304210.3109/02652048.2015.109453226444187
    [Google Scholar]
  191. NooliM. ChellaN. KulhariH. ShastriN.R. SistlaR. Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: Formulation, optimization and in vivo evaluation.Drug Dev. Ind. Pharm.201743461161710.1080/03639045.2016.127566628005442
    [Google Scholar]
  192. HeY. ZhanC. PiC. ZuoY. YangS. HuM. BaiY. ZhaoL. WeiY. Enhanced oral bioavailability of felodipine from solid lipid nanoparticles prepared through effervescent dispersion technique.AAPS PharmSciTech202021517010.1208/s12249‑020‑01711‑232529303
    [Google Scholar]
  193. U.G. Formulation and evaluation of nanoparticle drug delivery system for treatment of hypertension.Int. J. Appl. Pharm.2023156909710.22159/ijap.2023v15i6.48971
    [Google Scholar]
  194. EkambaramP. Abdul Hasan SathaliA. Formulation and evaluation of solid lipid nanoparticles of ramipril.J. Young Pharm.20113321622010.4103/0975‑1483.8376521897661
    [Google Scholar]
  195. DugadT. KanugoA. Design optimization and evaluation of solid lipid nanoparticles of azelnidipine for the treatment of hypertension.Recent Pat. Nanotechnol.2024181223210.2174/1872210517666221019102543
    [Google Scholar]
  196. ManjunathK. VenkateswarluV. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration.J. Drug Target.200614963264510.1080/1061186060088885017090399
    [Google Scholar]
  197. PnR. ND. Formulation, development, and characterisation of cilnidipine loaded solid lipid nanoparticles.Asian J. Pharm. Clin. Res.201811912010.22159/ajpcr.2018.v11i9.24666
    [Google Scholar]
  198. AboudH.M. El komyM.H. AliA.A. El MenshaweS.F. Abd ElbaryA. Development, optimization, and evaluation of carvedilol-loaded solid lipid nanoparticles for intranasal drug delivery.AAPS PharmSciTech20161761353136510.1208/s12249‑015‑0440‑826743643
    [Google Scholar]
  199. WissingS.A. KayserO. MüllerR.H. Solid lipid nanoparticles for parenteral drug delivery.Adv. Drug Deliv. Rev.20045691257127210.1016/j.addr.2003.12.00215109768
    [Google Scholar]
  200. EkambaramP. AbdulA. SathaliH. PriyankaK. Solid lipid nanoparticles: A review.Sci. Revs. Chem. Commun.20122180102
    [Google Scholar]
  201. ShahK. DateA. JoshiM. PatravaleV. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery.Int. J. Pharm.20073451-216317110.1016/j.ijpharm.2007.05.06117644288
    [Google Scholar]
  202. TiwariR. PathakK. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake.Int. J. Pharm.20114151-223224310.1016/j.ijpharm.2011.05.04421640809
    [Google Scholar]
  203. NazemiP. RazaviM. Lipid-based nanobiomaterials.Nanobiomaterials Science, Development and Evaluation201712513310.1016/B978‑0‑08‑100963‑5.00006‑9
    [Google Scholar]
  204. BayraktarO. ErdoganI. KöseM.D. KalmazG. Nanocarriers for plant-derived natural compounds.NanoStructures for antimicrobial therapy: Nanostructures in therapeutic medicine series201739541210.1016/B978‑0‑323‑46152‑8.00017‑2
    [Google Scholar]
  205. CorreiaA.C. MonteiroA.R. SilvaR. MoreiraJ.N. Sousa LoboJ.M. SilvaA.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders.Adv. Drug Deliv. Rev.202218911448510.1016/j.addr.2022.11448535970274
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337166241219081400
Loading
/content/journals/cpd/10.2174/0113816128337166241219081400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test