Skip to content
2000
Volume 31, Issue 22
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.

Methods

The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus isolated from leaf tissues of the Linn. plant. Four endophytic fungi were obtained from leaf tissues of Linn., and identified morphologically and molecularly as distinct species. Each ethyl acetate extract of the isolated fungi exhibited a unique chemical profile in the HPTLC fingerprint at various wavelengths. The ethyl acetate (EA) extract from the fungal strain ACL-4 () demonstrated the strongest antioxidant activity among the four fungal endophytes examined, with an EC value of 292.64 ± 3.558 µg/mL. Remarkably, fungal endophyte ACL-4 extract exhibited superior antimicrobial activity at the less concentrations compared to ACL-ME extract of leaf crude.

Results

The extract of ACL-ME-treated HEK 293T cells exhibited significant toxicity, with an IC value of 1481.74 ± 23.772 µg/mL, compared to fungal strain ACL-4-treated HEK 293T cells, which had an IC value greater than 2000 µg/mL. Consequently, the crude extract of ACL-4 and ACL-ME along with the standard drug methotrexate exhibited cytotoxic activity against cancer cell line MDA-MB-231 with IC concentrations of 146.65 ± 0.394 µg/mL, 528.46 ± 10.912 µg/mL, and 134.11 ± 3.446 µg/mL, respectively. A total of 2,255 compounds were detected through LC-HRMS-based metabolomics in the crude metabolites of , with certain compounds identified in multiple instances. Among this repertoire, 62 robust bioactive compounds were identified through meticulous screening, guided by existing literature. Comparative HPTLC fingerprint analysis, along with antioxidant efficacy assays of ethyl acetate extracts of derived from leaves and twigs revealed the host-specific production of bioactive chemicals.

Conclusion

The top-scoring Keap1 inhibitors derived from , including Pregabalin (-6.083 Kcal/mol), Ferulic acid (-5.434 Kcal/mol), (R)-Piperidine-2-carboxylic acid (-5.31 Kcal/mol), Genipin (-5.197 Kcal/mol), and Brivaracetam (-5.17 Kcal/mol), respectively were considered as Keap 1 inhibitors, potentially mitigate oxidative stress.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337697250106001808
2025-01-24
2025-10-04
Loading full text...

Full text loading...

References

  1. KuldauG. BaconC. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses.Biol. Control2008461577110.1016/j.biocontrol.2008.01.023
    [Google Scholar]
  2. PanF. SuT.J. CaiS.M. WuW. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: Diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds.Sci. Rep.2017714200810.1038/srep4200828165019
    [Google Scholar]
  3. KhalilA.M.A. AbdelazizA.M. KhaleilM.M. HashemA.H. Fungal endophytes from leaves of Avicennia marina growing in semi‐arid environment as a promising source for bioactive compounds.Lett. Appl. Microbiol.202172326327410.1111/lam.1341433063859
    [Google Scholar]
  4. SinghA. SinghD.K. KharwarR.N. WhiteJ.F. GondS.K. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges.Microorganisms20219119710.3390/microorganisms901019733477910
    [Google Scholar]
  5. CarrollG. Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont.Ecology19886912910.2307/1943154
    [Google Scholar]
  6. GuptaS. ChaturvediP. KulkarniM.G. Van StadenJ. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi.Biotechnol. Adv.20203910746210.1016/j.biotechadv.2019.10746231669137
    [Google Scholar]
  7. ToghueoR. M. K. BoyomF. F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications.3 Biotech.202010310710.1007/s13205‑020‑2081‑132095421
    [Google Scholar]
  8. YadavM. YadavA. YadavJ.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam.Asian Pac. J. Trop. Med.20147S256S26110.1016/S1995‑7645(14)60242‑X25312132
    [Google Scholar]
  9. MeenaH. HnamteS. SiddhardhaB. Secondary metabolites from endophytic fungi: Chemical diversity and application.In: Advances in Endophytic Fungal Research. Fungal Biology.ChamSpringer201914516910.1007/978‑3‑030‑03589‑1_7
    [Google Scholar]
  10. SchulzB. BoyleC. DraegerS. RömmertA.K. KrohnK. Endophytic fungi: A source of novel biologically active secondary metabolites.Mycol. Res.20021069996100410.1017/S0953756202006342
    [Google Scholar]
  11. KharwarR.N. MishraA. GondS.K. StierleA. StierleD. Anticancer compounds derived from fungal endophytes: Their importance and future challenges.Nat. Prod. Rep.20112871208122810.1039/c1np00008j21455524
    [Google Scholar]
  12. PrabhaS. KumarJ. Gas chromatographic and mass spectroscopic (GC-MS) analysis of rhizome of Acorus calamus Linn. for identification of potent antimicrobial bio-active compounds.J Sci Res202113126327310.3329/jsr.v13i1.48452
    [Google Scholar]
  13. SharmaV. SharmaR. GautamD. KucaK. NepovimovaE. MartinsN. Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: Evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study.J. Clin. Med.202094117610.3390/jcm904117632325895
    [Google Scholar]
  14. AlaspureR.N. NagdeveS.R. Isolation of active constituent of Acorus calamus rhizomes extract and evaluation of its anti-cancer activity.Res. J. Pharm. Technol.201141218251832
    [Google Scholar]
  15. ImamH. RiazZ. AzharM. SofiG. HussainA. Sweet flag (Acorus calamus Linn.): An incredible medicinal herb.Int J Green Pharm20137428810.4103/0973‑8258.122053
    [Google Scholar]
  16. MukherjeeP.K. KumarV. MalM. HoughtonP.J. Acorus calamus.: Scientific validation of ayurvedic tradition from natural resources.Pharm. Biol.200745865166610.1080/13880200701538724
    [Google Scholar]
  17. BarikB.P. TayungK. JagadevP.N. DuttaS.K. Phylogenetic placement of an endophytic fungus Fusarium oxysporum isolated from Acorus calamus Rhizomes with antimicrobial activity.Eur. J. Biol. Sci.20102816
    [Google Scholar]
  18. ManiP.G. AudipudiA.V. Penicillium citrinum AVGE1 an endophyte of Acorus calamus its role in biocontrol and PGP in chilli seedlings.Int. J. Curr. Microbiol. Appl. Sci.20165565766710.20546/ijcmas.2016.505.066
    [Google Scholar]
  19. DettmerK. AronovP.A. HammockB.D. Mass spectrometry‐based metabolomics.Mass Spectrom. Rev.2007261517810.1002/mas.2010816921475
    [Google Scholar]
  20. KusariS. SpitellerM. Metabolomics of endophytic fungi producing associated plant secondary metabolites: Progress, challenges and opportunities.In: Metabolomics.In-Tech2012241266
    [Google Scholar]
  21. TanW.N. NagarajanK. LimV. AziziJ. KhawK.Y. TongW.Y. LeongC.R. ChearN.J.Y. Metabolomics analysis and antioxidant potential of endophytic Diaporthe fraxini ED2 grown in different culture media.J. Fungi20228551910.3390/jof805051935628774
    [Google Scholar]
  22. StuartK.A. WelshK. WalkerM.C. Edrada-EbelR. Metabolomic tools used in marine natural product drug discovery.Expert Opin. Drug Discov.202015449952210.1080/17460441.2020.172263632026730
    [Google Scholar]
  23. GuptaN. SinghG. QayumA. Ovais DarM. SinghS. KatochM. SangwanP.L. In vitro and in silico anticancer evaluation of secondary metabolites from an endophytic fungus Aspergillus fumigatus isolated from Monarda citriodora.ChemistrySelect2024913e20240063710.1002/slct.202400637
    [Google Scholar]
  24. RaufA. RashidU. AkramZ. GhafoorM. MuhammadN. Al MasoudN. AlomarT.S. NazS. IritiM. In vitro and in silico antiproliferative potential of isolated flavonoids constitutes from Pistacia integerrima.Z. Naturforsch. C J. Biosci.2024797-818719310.1515/znc‑2023‑015338549290
    [Google Scholar]
  25. AshokaG.B. ShivannaM.B. Metabolite profiling, in vitro and in silico assessment of antibacterial and anticancer activities of Alternaria alternata endophytic in Jatropha heynei.Arch. Microbiol.202320526110.1007/s00203‑022‑03388‑636625985
    [Google Scholar]
  26. HassanM.G. ElmezainW.A. BarakaD.M. AboElmaatyS.A. ElhassaneinA. IbrahimR.M. HamedA.A. Anti-Cancer and anti-oxidant bioactive metabolites from Aspergillus fumigatus wa7s6 isolated from marine sources: In vitro and in silico studies.Microorganisms202412112710.3390/microorganisms1201012738257954
    [Google Scholar]
  27. El-HawaryS.S. MoawadA.S. BahrH.S. AttiaE.Z. El-KatatnyM.H. MustafaM. Al-KarmalawyA.A. RatebM.E. ZhangJ. AbdelmohsenU.R. MohammedR. Promising cytotoxic butenolides from the Soybean endophytic fungus Aspergillus terreus: A combined molecular docking and in-vitro studies.J. Appl. Microbiol.20231347lxad12910.1093/jambio/lxad12937401132
    [Google Scholar]
  28. VellurS. PavadaiP. BabkiewiczE. RamKPS. MaszczykP. KunjiappanS. An in silico molecular modelling-based prediction of potential Keap1 inhibitors from Hemidesmus indicus (L.) R. Br. against oxidative-stress-induced diseases.Molecules20232811454110.3390/molecules2811454137299017
    [Google Scholar]
  29. El-HawaryS.S. SayedA.M. RatebM.E. BakeerW. AbouZidS.F. MohammedR. Secondary metabolites from fungal endophytes of Solanum nigrum.Nat. Prod. Res.201731212568257110.1080/14786419.2017.132785928532171
    [Google Scholar]
  30. LarranS. MónacoC. AlippiH.E. Endophytic fungi in leaves of Lycopersicon esculentum Mill.World J. Microbiol. Biotechnol.200117218118410.1023/A:1016670000288
    [Google Scholar]
  31. RajaM. PraveenaG. WilliamS.J. Isolation and identification of fungi from soil in Loyola college campus, Chennai, India.Int. J. Curr. Microbiol. Appl. Sci.2017621789179510.20546/ijcmas.2017.602.200
    [Google Scholar]
  32. VermaV.C. LobkovskyE. GangeA.C. SinghS.K. PrakashS. Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L.J. Antibiot. (Tokyo)201164642743110.1038/ja.2011.2721505472
    [Google Scholar]
  33. TayungK. BarikB.P. JhaD.K. DekaD.C. Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew.Mycosphere201123203213
    [Google Scholar]
  34. RadjiM. SumiatiA. RachmayaniR. ElyaB. Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity.Afr. J. Biotechnol.2011101103107
    [Google Scholar]
  35. AnsariA. SiddiquiV.U. RehmanW.U. AkramM.K. SiddiqiW.A. AlosaimiA.M. HusseinM.A. RafatullahM. Green synthesis of TiO2 nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity.Catalysts202212218110.3390/catal12020181
    [Google Scholar]
  36. SingletonV.L. OrthoferR. Lamuela-RaventósR.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Chapter 14.In: Methods in EnzymologyElsevier199929915217810.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  37. VermaA. GuptaP. RaiN. TiwariR.K. KumarA. SalviP. KambleS.C. SinghS.K. GautamV. Assessment of biological activities of fungal endophytes derived bioactive compounds isolated from Amoora rohituka.J. Fungi20228328510.3390/jof803028535330287
    [Google Scholar]
  38. Salomé-AbarcaL.F. van den HondelC.A.M.J.J. ErolÖ. KlinkhamerP.G.L. KimH.K. ChoiY.H. HPTLC-based chemical profiling: An approach to monitor plant metabolic expansion caused by fungal endophytes.Metabolites202111317410.3390/metabo1103017433802951
    [Google Scholar]
  39. RaiN. KeshriP.K. GuptaP. VermaA. KambleS.C. SinghS.K. GautamV. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity.PLoS One2022173e026467310.1371/journal.pone.026467335298472
    [Google Scholar]
  40. BauerA.W. KirbyW.M.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.Am. J. Clin. Pathol.196645449349610.1093/ajcp/45.4_ts.4935325707
    [Google Scholar]
  41. ClaranceP. LuvankarB. SalesJ. KhusroA. AgastianP. TackJ.C. Al KhulaifiM.M. AL-ShwaimanH.A. ElgorbanA.M. SyedA. KimH.J. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications.Saudi J. Biol. Sci.202027270671210.1016/j.sjbs.2019.12.02632210692
    [Google Scholar]
  42. TaritlaS. KumariM. KamatS. BhatS.G. JayabaskaranC. Optimization of physicochemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal–derived endophytic fungus Aspergillus sp.Front. Pharmacol.20211254289110.3389/fphar.2021.54289133981211
    [Google Scholar]
  43. SinghR.K. RanjanA. SrivastavaA.K. SinghM. ShuklaA.K. AtriN. MishraA. SinghA.K. SinghS.K. Cytotoxic and apoptotic inducing activity of Amoora rohituka leaf extracts in human breast cancer cells.J. Ayurveda Integr. Med.202011438339010.1016/j.jaim.2018.12.00530846274
    [Google Scholar]
  44. SinghV.K. ThakurD.C. RajakN. GiriR. GargN. Immunomodulatory potential of bioactive glycoside syringin: A network pharmacology and molecular modeling approach.J. Biomol. Struct. Dyn.202342839061937243678
    [Google Scholar]
  45. PuranikN.V. SrivastavaP. BhattG. JohnMD.J.S. LimayeA.M. SivaramanJ. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach.Sci. Rep.201991745010.1038/s41598‑019‑43768‑531092862
    [Google Scholar]
  46. AshfaqF. BarkatM.A. AhmadT. HassanM.Z. AhmadR. BarkatH. Idreesh KhanM. Saad AlhodiebF. AsiriY.I. SiddiquiS. Phytocompound screening, antioxidant activity and molecular docking studies of pomegranate seed: A preventive approach for SARS-CoV-2 pathogenesis.Sci. Rep.20231311706910.1038/s41598‑023‑43573‑137816760
    [Google Scholar]
  47. BanavathH.N. SharmaO.P. KumarM.S. BaskaranR. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: A virtual screening and molecular dynamics simulations study.Sci. Rep.201441694810.1038/srep0694825382104
    [Google Scholar]
  48. ChinnasamyS. SelvarajG. SelvarajC. KaushikA.C. KaliamurthiS. KhanA. SinghS.K. WeiD.Q. Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2).Int. J. Biol. Macromol.2020144536610.1016/j.ijbiomac.2019.12.09131838071
    [Google Scholar]
  49. FriesnerR.A. BanksJ.L. MurphyR.B. HalgrenT.A. KlicicJ.J. MainzD.T. RepaskyM.P. KnollE.H. ShelleyM. PerryJ.K. ShawD.E. FrancisP. ShenkinP.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm030643015027865
    [Google Scholar]
  50. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  51. GreenidgeP.A. KramerC. MozziconacciJ.C. WolfR.M. MM/GBSA binding energy prediction on the PDBbind data set: Successes, failures, and directions for further improvement.J. Chem. Inf. Model.201353120120910.1021/ci300425v23268595
    [Google Scholar]
  52. PalanichamyC. PavadaiP. PanneerselvamT. ArunachalamS. BabkiewiczE. Ram Kumar PandianS. Shanmugampillai JeyarajaguruK. Nayak AmmunjeD. KannanS. ChandrasekaranJ. SundarK. MaszczykP. KunjiappanS. Aphrodisiac performance of bioactive compounds from Mimosa pudica linn.: In silico molecular docking and dynamics simulation approach.Molecules20222712379910.3390/molecules2712379935744923
    [Google Scholar]
  53. ThavasiV. LeongL.P. BettensR.P.A. Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols.J. Phys. Chem. A2006110144918492310.1021/jp057315r16599462
    [Google Scholar]
  54. MustafaR.A. HamidA.A. MohamedS. BakarF.A. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants.J. Food Sci.2010751C28C3510.1111/j.1750‑3841.2009.01401.x20492146
    [Google Scholar]
  55. Sánchez-RangelJ.C. BenavidesJ. HerediaJ.B. Cisneros-ZevallosL. Jacobo-VelázquezD.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination.Anal. Methods20135215990599910.1039/c3ay41125g
    [Google Scholar]
  56. BrglezME. KnezHM. ŠkergetM. KnezŽ. BrenU. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects.Molecules201621790110.3390/molecules2107090127409600
    [Google Scholar]
  57. KrishnamoorthyD. SwaminathanA. AlGarawiA.M. NallasamyL. MurugaveluG.S. SelvarajS.L. Exploring the therapeutic potential of Cynanchum tunicatum (Retz.) Alston-assessment of phytochemicals and biological activities.J. King Saud Univer. - Sci.202436710323810.1016/j.jksus.2024.103238
    [Google Scholar]
  58. RomeroRC. RamasamyK. MengLS. MajeedA.B.A. Agatonovic-KustrinS. HPTLC based approach for bioassay-guided evaluation of antidiabetic and neuroprotective effects of eight essential oils of the Lamiaceae family plants.J. Pharm. Biomed. Anal.202017811290910.1016/j.jpba.2019.11290931618702
    [Google Scholar]
  59. Agatonovic-KustrinS. KustrinE. GegechkoriV. MortonD.W. Bioassay-guided identification of α-amylase inhibitors in herbal extracts.J. Chromatogr. A2020162046097010.1016/j.chroma.2020.46097032089291
    [Google Scholar]
  60. CharltonN.C. MastyuginM. TörökB. TörökM. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity.Molecules2023283105710.3390/molecules2803105736770724
    [Google Scholar]
  61. KahlR. Synthetic antioxidants: Biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens.Toxicology1984333-418522810.1016/0300‑483X(84)90038‑66393452
    [Google Scholar]
  62. KhansariN. ShakibaY. MahmoudiM. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer.Recent Pat. Inflamm. Allergy Drug Discov.200931738010.2174/18722130978715837119149749
    [Google Scholar]
  63. Sharifi-RadM. AnilKN.V. ZuccaP. VaroniE.M. DiniL. PanzariniE. RajkovicJ. Tsouh FokouP.V. AzziniE. PelusoI. Prakash MishraA. NigamM. El RayessY. BeyrouthyM.E. PolitoL. IritiM. MartinsN. MartorellM. DoceaA.O. SetzerW.N. CalinaD. ChoW.C. Sharifi-RadJ. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.0069432714204
    [Google Scholar]
  64. KumariM. TaritlaS. SharmaA. JayabaskaranC. Antiproliferative and antioxidative bioactive compounds in extracts of marine-derived endophytic fungus Talaromyces purpureogenus.Front. Microbiol.20189177710.3389/fmicb.2018.0177730123207
    [Google Scholar]
  65. PrajapatiC. KumarD. AmbasthaV. SinghS.K. Fungal endophytes as potential anticancer candidate over synthetic drugs: Latest development and future prospects.In: Endophytic Fungi: The Hidden Sustainable Jewels for the Pharmaceutical and Agricultural Industries.ChamSpringer2024275610.1007/978‑3‑031‑49112‑2_2
    [Google Scholar]
  66. HuangW.Y. CaiY.Z. XingJ. CorkeH. SunM. A potential antioxidant resource: Endophytic fungi from medicinal plants.Econ. Bot.2007611143010.1663/0013‑0001(2007)61[14:APAREF]2.0.CO;2
    [Google Scholar]
  67. RaniA. SainiK. BastF. MehariyaS. BhatiaS. LavecchiaR. ZuorroA. Microorganisms: A potential source of bioactive molecules for antioxidant applications.Molecules2021264114210.3390/molecules2604114233672774
    [Google Scholar]
  68. LiuX. DongM. ChenX. JiangM. LvX. YanG. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba.Food Chem.2007105254855410.1016/j.foodchem.2007.04.00822868127
    [Google Scholar]
  69. Pham-HuyL.A. HeH. Pham-HuycC. Free radicals, antioxidants in disease and health.Int. J. Biomed. Sci.200842899610.59566/IJBS.2008.408923675073
    [Google Scholar]
  70. RanjanA. SinghR.K. KhareS. TripathiR. PandeyR.K. SinghA.K. GautamV. TripathiJ.S. SinghS.K. Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity.Sci. Rep.2019911730210.1038/s41598‑019‑53227‑w31754154
    [Google Scholar]
  71. SiddhurajuP. MohanP.S. BeckerK. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp.Food Chem.2002791616710.1016/S0308‑8146(02)00179‑6
    [Google Scholar]
  72. BahorunT. NeergheenV.S. AruomaO.I. Phytochemical constituents of Cassia fistula.Afr. J. Biotechnol.2005413
    [Google Scholar]
  73. DasB.K. SwamyA.H.M.V. KotiB.C. GadadP.C. Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention.Heliyon201955e0158510.1016/j.heliyon.2019.e0158531193009
    [Google Scholar]
  74. EfferthT. KochE. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy.Curr. Drug Targets201112112213210.2174/13894501179359162620735354
    [Google Scholar]
  75. AnandU. Jacobo-HerreraN. AltemimiA. LakhssassiN. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery.Metabolites201991125810.3390/metabo911025831683833
    [Google Scholar]
  76. KasparJ.W. NitureS.K. JaiswalA.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress.Free Radic. Biol. Med.20094791304130910.1016/j.freeradbiomed.2009.07.03519666107
    [Google Scholar]
  77. QinS. HouD.X. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals.Mol. Nutr. Food Res.20166081731175510.1002/mnfr.20150101727523917
    [Google Scholar]
  78. ZhangD.D. The Nrf2-Keap1-ARE signaling pathway: The regulation and dual function of Nrf2 in cancer.Antioxid. Redox Signal.201013111623162610.1089/ars.2010.330120486759
    [Google Scholar]
  79. MukherjeeA.G. GopalakrishnanA.V. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: A deadly scenario.Med. Oncol.202340924810.1007/s12032‑023‑02124‑437480500
    [Google Scholar]
  80. ShahcheraghiS.H. SalemiF. PeiroviN. AyatollahiJ. AlamW. KhanH. SasoL. Nrf2 regulation by curcumin: molecular aspects for therapeutic prospects.Molecules202127116710.3390/molecules2701016735011412
    [Google Scholar]
  81. LiuC. RokavecM. HuangZ. HermekingH. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis.Cell Death Differ.20233071771178510.1038/s41418‑023‑01178‑137210578
    [Google Scholar]
  82. SuprihatinT. WidyartiS. Rifa’iM. RahayuS. Computational study of curcumin as antioxidant and potential inhibitor to abrogate Keap1-Nrf2 interaction.Med. Plant.-Int. J. Phytomedic. Relat. Ind.201793150153
    [Google Scholar]
  83. RenL. ZhanP. WangQ. WangC. LiuY. YuZ. ZhangS. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions.Biochem. Biophys. Res. Commun.2019514369169810.1016/j.bbrc.2019.05.01031078267
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337697250106001808
Loading
/content/journals/cpd/10.2174/0113816128337697250106001808
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Acorus calamus Linn.; Antioxidants; HPTLC; LCHRMS; metabolomic; Xylaria ellisii
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test