Skip to content
2000
Volume 31, Issue 22
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Novel vaccine formulations called nano vaccines which use nanoparticles (NPs) as adjuvants or carriers, are being developed in place of conventional vaccines. The field of study on peptide-based nano vaccines is enlarging fast as a result of combining antigenic peptides with nano-transport systems. This paper explores advancements in anticancer nano vaccines, focusing on their mechanisms, challenges, and opportunities. It discusses peptide nano vaccines, personalized vaccines, cancer prevention strategies, clinical translation, and self-assembling multivalent nanovaccines. It also discusses nanocarriers' role in delivering tumor-associated antigens and immune-stimulatory adjuvants. In 2024, the American Cancer Society projects over 2 million new cancer cases in the United States, marking the first year this milestone has been surpassed. This equates to approximately 5,480 new cancer diagnoses daily. Additionally, over 611,000 cancer-related deaths are expected, which translates to more than 1,600 deaths per day. The National Centre for Health Statistics mentions the mortality data also shows the various types of cancer percentages. This guideline provides comprehensive recommendations for sponsors submitting a novel drug under Investigation use of curative cancer vaccinations, focusing on safety, effectiveness, dosage optimization, adjuvant use, patient group selection, immune response monitoring, biomarker evaluation, multi-antigen vaccine development, phase-specific difficulties, non-clinical testing, and legal frameworks, while also referencing relevant legal foundations and recommendations.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128364722250126172914
2025-02-14
2025-08-16
Loading full text...

Full text loading...

References

  1. XuF. YuanY. WangY. YinQ. Emerging peptide-based nanovaccines: From design synthesis to defense against cancer and infection.Biomed. Pharmacother.202315811411710.1016/j.biopha.2022.11411736528914
    [Google Scholar]
  2. PlattenM. BunseL. WickA. BunseT. Le CornetL. HartingI. SahmF. SanghviK. TanC.L. PoschkeI. GreenE. JustesenS. BehrensG.A. BreckwoldtM.O. FreitagA. RotherL.M. SchmittA. SchnellO. HenseJ. MischM. KrexD. StevanovicS. TabatabaiG. SteinbachJ.P. BendszusM. von DeimlingA. SchmittM. WickW. A vaccine targeting mutant IDH1 in newly diagnosed glioma.Nature2021592785446346810.1038/s41586‑021‑03363‑z33762734
    [Google Scholar]
  3. SudaM. ShimizuI. KatsuumiG. YoshidaY. HayashiY. IkegamiR. MatsumotoN. YoshidaY. MikawaR. KatayamaA. WadaJ. SekiM. SuzukiY. IwamaA. NakagamiH. NagasawaA. MorishitaR. SugimotoM. OkudaS. TsuchidaM. OzakiK. Nakanishi-MatsuiM. MinaminoT. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice.Nat. Aging20211121117112610.1038/s43587‑021‑00151‑237117524
    [Google Scholar]
  4. YoshidaS. NakagamiH. HayashiH. IkedaY. SunJ. TenmaA. TomiokaH. KawanoT. ShimamuraM. MorishitaR. RakugiH. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice.Nat. Commun.2020111248210.1038/s41467‑020‑16347‑w32424156
    [Google Scholar]
  5. HeitmannJ.S. BilichT. TandlerC. NeldeA. MaringerY. MarconatoM. ReuschJ. JägerS. DenkM. RichterM. AntonL. WeberL.M. RoerdenM. BauerJ. RiethJ. WackerM. HörberS. PeterA. MeisnerC. FischerI. LöfflerM.W. KarbachJ. JägerE. KleinR. RammenseeH.G. SalihH.R. WalzJ.S. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity.Nature2022601789461762210.1038/s41586‑021‑04232‑534814158
    [Google Scholar]
  6. DewanganH.K. ShahK. SharmaR. SharmaS. KumarA. KhanM.I. AlghamdiA.A. AbbasM. Emerging trends on nanovaccine administration and functionalization strategies for immunization.J. Comput. Biophy. Chem.202423557560410.1142/S2737416524500066
    [Google Scholar]
  7. KalitaP. PadhiA.K. ZhangK.Y.J. TripathiT. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2.Microb. Pathog.202014510423610.1016/j.micpath.2020.10423632376359
    [Google Scholar]
  8. BagweP.V. BagweP.V. PonugotiS.S. JoshiS.V. Peptide-based vaccines and therapeutics for COVID-19.Int. J. Pept. Res. Ther.20222839410.1007/s10989‑022‑10397‑y35463185
    [Google Scholar]
  9. SharmaA.N. DewanganH.K. UpadhyayP.K. Comprehensive review on herbal medicine: Emphasis on current therapy and role of phytoconstituents for cancer treatment.Chem. Biodivers.2024213e20230146810.1002/cbdv.20230146838206170
    [Google Scholar]
  10. Lakshmi SinghS. VijayakumarM.R. DewanganH.K. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophilic vinorelbine bitartrate: Preparation, optimization, characterization and in vitro safety assessment for intravenous administration.Curr. Drug Deliv.20181591284129310.2174/156720181566618071611245730009708
    [Google Scholar]
  11. WoolfS.H. ChapmanD.A. SaboR.T. ZimmermanE.B. Excess deaths from COVID-19 and other causes in the US, March 1, 2020, to January 2, 2021.JAMA2021325171786178910.1001/jama.2021.519933797550
    [Google Scholar]
  12. SEER is an authoritative source for cancer statistics in the United States.Available from: https://seer.cancer.gov/
    [Google Scholar]
  13. DewanganH.K. TomarS. Nanovaccine for transdermal delivery system.J. Drug Deliv. Sci. Technol.20226710298810.1016/j.jddst.2021.102988
    [Google Scholar]
  14. SkwarczynskiM. TothI. Recent advances in peptide-based subunit nanovaccines.Nanomedicine20149172657266910.2217/nnm.14.18725529569
    [Google Scholar]
  15. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd261418758474
    [Google Scholar]
  16. MarwahH. PantJ. YadavJ. ShahK. DewanganH.K. Biosensor detection of COVID-19 in lung cancer: Hedgehog and mucin signaling insights.Curr. Pharm. Des.202329433442345710.2174/011381612827694823120411153138270161
    [Google Scholar]
  17. DewanganH.K. RaghuvanshiA. ShahK. Emerging trends and future challenges of nanovaccine delivery via nasal route.Curr. Drug Targets202324326127310.2174/138945012466622120516225636475350
    [Google Scholar]
  18. RoldãoA. MelladoM.C.M. CastilhoL.R. CarrondoM.J.T. AlvesP.M. Virus-like particles in vaccine development.Expert Rev. Vaccines20109101149117610.1586/erv.10.11520923267
    [Google Scholar]
  19. RajniS.K. ShahK. DewanganH.K. Delivery of nano-emulgel carrier: Optimization, evaluation and in vivo anti-inflammation estimations for osteoarthritis.Ther. Deliv.202415318119210.4155/tde‑2023‑010938356357
    [Google Scholar]
  20. ZhuG. MeiL. VishwasraoH.D. JacobsonO. WangZ. LiuY. YungB.C. FuX. JinA. NiuG. WangQ. ZhangF. ShroffH. ChenX. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for cancer immunotherapy.Nat. Commun.201781148210.1038/s41467‑017‑01386‑729133898
    [Google Scholar]
  21. DasA. AliN. Nanovaccine: An emerging strategy.Expert Rev. Vaccines202120101273129010.1080/14760584.2021.198489034550859
    [Google Scholar]
  22. RaghuvanshiA. ShahK. DewanganH.K. Ethosome as antigen delivery carrier: Optimisation, evaluation and induction of immunological response via nasal route against hepatitis B.J. Microencapsul.202239435236310.1080/02652048.2022.208416935635238
    [Google Scholar]
  23. MellmanI. CoukosG. DranoffG. Cancer immunotherapy comes of age.Nature2011480737848048910.1038/nature1067322193102
    [Google Scholar]
  24. AlatrashG. QiaoN. ZhangM. ZopeM. PerakisA.A. SukhumalchandraP. PhilipsA.V. GarberH.R. KerrosC. St JohnL.S. KhouriM.R. KhongH. Clise-DwyerK. MillerL.P. WolpeS. OverwijkW.W. MolldremJ.J. MaQ. ShpallE.J. MittendorfE.A. Fucosylation enhances the efficacy of adoptively transferred antigen-specific cytotoxic T lymphocytes.Clin. Cancer Res.20192582610262010.1158/1078‑0432.CCR‑18‑152730647079
    [Google Scholar]
  25. DewanganH.K. Rational application of nanoadjuvant for mucosal vaccine delivery system.J. Immunol. Methods2020481-48211279110.1016/j.jim.2020.11279132387695
    [Google Scholar]
  26. Van Der BruggenP. ZhangY. ChauxP. StroobantV. PanichelliC. SchultzE.S. ChapiroJ. Van den EyndeB.J. BrasseurF. BoonT. Tumor‐specific shared antigenic peptides recognized by human T cells.Immunol. Rev.20021881516410.1034/j.1600‑065X.2002.18806.x12445281
    [Google Scholar]
  27. DewanganH.K. SinghS. MishraR. DubeyR.K. A review on application of nanoadjuvant as delivery system.Int J Appl Pharm2020124243310.22159/ijap.2020v12i4.36856
    [Google Scholar]
  28. FangR.H. HuC.M.J. LukB.T. GaoW. CoppJ.A. TaiY. O’ConnorD.E. ZhangL. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery.Nano Lett.20141442181218810.1021/nl500618u24673373
    [Google Scholar]
  29. DewanganH.K. RaghuvanshiA. ShahK. Emerging nanovaccine technology: Defense against infection by oral administration.Micro Nanosyst.2023151465410.2174/1876402914666220523105129
    [Google Scholar]
  30. MaL. DiaoL. PengZ. JiaY. XieH. LiB. MaJ. ZhangM. ChengL. DingD. ZhangX. ChenH. MoF. JiangH. XuG. MengF. ZhongZ. LiuM. Immunotherapy and prevention of cancer by nanovaccines loaded with whole‐cell components of tumor tissues or cells.Adv. Mater.20213343210484910.1002/adma.20210484934536044
    [Google Scholar]
  31. SchijnsV. Mechanisms of vaccine adjuvant activity: Initiation and regulation of immune responses by vaccine adjuvants.Vaccine2003219-1082983110.1016/S0264‑410X(02)00527‑312547589
    [Google Scholar]
  32. GargA. DewanganH.K. Nanoparticles as adjuvants in vaccine delivery.Crit. Rev. Ther. Drug Carrier Syst.202037218320410.1615/CritRevTherDrugCarrierSyst.202003327332865905
    [Google Scholar]
  33. SchwaningerR. WaeltiE. ZajacP. WetterwaldA. MuellerD. GimmiC.D. Virosomes as new carrier system for cancer vaccines.Cancer Immunol. Immunother.200453111005101710.1007/s00262‑004‑0545‑515185010
    [Google Scholar]
  34. DewanganH.K. PandeyT. MauryaL. SinghS. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers.Int. J. Biol. Macromol.201811180481210.1016/j.ijbiomac.2018.01.07329343454
    [Google Scholar]
  35. GnjaticS. SawhneyN.B. BhardwajN. Toll-like receptor agonists: Are they good adjuvants?Cancer J.201016438239110.1097/PPO.0b013e3181eaca6520693851
    [Google Scholar]
  36. DewanganH.K. SinghS. MauryaL. SrivastavaA. HepatitisB. Antigen loaded biodegradable polymeric nanoparticles: Formulation optimization and in-vivo immunization fin BALB/c mice.Curr. Drug Deliv.20181581204121510.2174/156720181566618060411045729866006
    [Google Scholar]
  37. DeepikaD. DewanganH.K. MauryaL. SinghS. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting.J. Pharm. Sci.2019108285185910.1016/j.xphs.2018.07.01330053555
    [Google Scholar]
  38. DewanganH.K. PandeyT. SinghS. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model.Artif Cells Nanomed Biotechnol.20184682033204210.1080/21691401.2017.140811829179600
    [Google Scholar]
  39. WilhelmM. MuellerL. MillerM.C. LinkK. HoldenriederS. BertschT. KunzmannV. StoetzerO.J. SuttmannI. BraessJ. BirkmannJ. RoesslerM. MoritzB. KraffS. SalamoneS.J. JaehdeU. Prospective, multicenter study of 5-fluorouracil therapeutic drug monitoring in metastatic colorectal cancer treated in routine clinical practice.Clin. Colorectal Cancer201615438138810.1016/j.clcc.2016.04.00127256667
    [Google Scholar]
  40. Vanshita GargA. DewanganH.K. Recent advances in drug design and delivery across biological barriers using computational models.Lett. Drug Des. Discov.2022191086587610.2174/1570180819999220204110306
    [Google Scholar]
  41. MishraA.K. RaniL. SinghR. DewanganH.K. SahooP.K. KumarV. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review.J. Drug Deliv. Sci. Technol.20249310544610.1016/j.jddst.2024.105446
    [Google Scholar]
  42. TomarS. YadavR.K. ShahK. DewanganH.K. A comprehensive review on carrier mediated nose to brain targeting: Emphasis on molecular targets, current trends, future prospects, and challenges.Int. J. Polym. Mater.20227329110310.1080/00914037.2022.2124255
    [Google Scholar]
  43. MannaI. QuattroneA. De BenedittisS. VescioB. IaccinoE. QuattroneA. Exosomal miRNA as peripheral biomarkers in Parkinson’s disease and progressive supranuclear palsy: A pilot study.Parkinsonism Relat. Disord.202193778410.1016/j.parkreldis.2021.11.02034839044
    [Google Scholar]
  44. WenZ.S. XuY.L. ZouX.T. XuZ.R. Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice.Mar. Drugs2011961038105510.3390/md906103821747747
    [Google Scholar]
  45. StienekerF. KreuterJ. LöwerJ. High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines.AIDS19915443143610.1097/00002030‑199104000‑000122059385
    [Google Scholar]
  46. PengY. ZhaoZ. LiuT. LiX. HuX. WeiX. ZhangX. TanW. Smart human‐serum‐albumin–As2O3 nanodrug with self‐amplified folate receptor‐targeting ability for chronic myeloid leukemia treatment.Angew. Chem. Int. Ed.20175636108451084910.1002/anie.20170136628686804
    [Google Scholar]
  47. TaneichiM. IshidaH. KajinoK. OgasawaraK. TanakaY. KasaiM. MoriM. NishidaM. YamamuraH. MizuguchiJ. UchidaT. Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity.J Immunol.200617742324233010.4049/jimmunol.177.4.232416887993
    [Google Scholar]
  48. RezvantalabS. DrudeN.I. MoravejiM.K. GüvenerN. KoonsE.K. ShiY. LammersT. KiesslingF. PLGA-based nanoparticles in cancer treatment.Front. Pharmacol.20189126010.3389/fphar.2018.0126030450050
    [Google Scholar]
  49. LiJ. RenH. ZhangY. Metal-based nano-vaccines for cancer immunotherapy.Coord. Chem. Rev.202245521434510.1016/j.ccr.2021.214345
    [Google Scholar]
  50. DewanganH.K. The emerging role of nanosuspensions for drug delivery and stability.Curr. Nanomed.202111421322310.2174/2468187312666211222123307
    [Google Scholar]
  51. AzharuddinM. ZhuG.H. SenguptaA. HinkulaJ. SlaterN.K.H. PatraH.K. Nano toolbox in immune modulation and nanovaccines.Trends Biotechnol.202240101195121210.1016/j.tibtech.2022.03.01135450779
    [Google Scholar]
  52. YadavD. SemwalB.C. DewanganH.K. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell.J. Biomater. Sci. Polym. Ed.20221411436469754
    [Google Scholar]
  53. ShenH. ZhangW. AbrahamC. ChoJ.H. Age and CD161 expression contribute to inter-individual variation in interleukin-23 response in CD8+ memory human T cells.PLoS One201383e5774610.1371/journal.pone.005774623469228
    [Google Scholar]
  54. ShivenA. AlamA. DewanganH.K. ShahK. AlamP. KapoorD.N. Optimisation and in-vivo evaluation of extracted Karanjin loaded liposomal topical formulation for treatment of psoriasis in tape-stripped mouse model.J. Microencapsul.202441534535910.1080/02652048.2024.235424938780157
    [Google Scholar]
  55. LiM. LiS. ZhouH. TangX. WuY. JiangW. TianZ. ZhouX. YangX. WangY. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy.Nat. Commun.2020111112610.1038/s41467‑020‑14963‑032111847
    [Google Scholar]
  56. JiaJ. ZhangY. XinY. JiangC. YanB. ZhaiS. Interactions between nanoparticles and dendritic cells: from the perspective of cancer immunotherapy.Front. Oncol.2018840410.3389/fonc.2018.0040430319969
    [Google Scholar]
  57. XuJ. LvJ. ZhuangQ. YangZ. CaoZ. XuL. PeiP. WangC. WuH. DongZ. ChaoY. WangC. YangK. PengR. ChengY. LiuZ. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy.Nat. Nanotechnol.202015121043105210.1038/s41565‑020‑00781‑433139933
    [Google Scholar]
  58. NiQ. ZhangF. LiuY. WangZ. YuG. LiangB. NiuG. SuT. ZhuG. LuG. ZhangL. ChenX. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer.Sci. Adv.2020612eaaw607110.1126/sciadv.aaw607132206706
    [Google Scholar]
  59. XiongX. ZhaoJ. PanJ. LiuC. GuoX. ZhouS. Personalized nanovaccine coated with calcinetin-expressed cancer cell membrane antigen for cancer immunotherapy.Nano Lett.202121198418842510.1021/acs.nanolett.1c0300434546061
    [Google Scholar]
  60. TangY. FanW. ChenG. ZhangM. TangX. WangH. ZhaoP. XuQ. WuZ. LinX. HuangY. Recombinant cancer nanovaccine for targeting tumor-associated macrophage and remodeling tumor microenvironment.Nano Today20214010124410.1016/j.nantod.2021.101244
    [Google Scholar]
  61. YinY. LiX. MaH. ZhangJ. YuD. ZhaoR. YuS. NieG. WangH. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy.Nano Lett.20212152224223110.1021/acs.nanolett.0c0503933594887
    [Google Scholar]
  62. SasadaT. NoguchiM. YamadaA. ItohK. Personalized peptide vaccination: A novel immunotherapeutic approach for advanced cancer.Hum. Vaccin. Immunother.2012891309131310.4161/hv.2098822894962
    [Google Scholar]
  63. Navneet SharmaN. BhatiA. AggarwalS. ShahK. DewanganH.K. PARP pioneers: Using BRCA1/2 mutation-targeted inhibition to revolutionize breast cancer treatment.Curr. Pharm. Des.20243110.2174/0113816128322894241004051814
    [Google Scholar]
  64. MarwahH. DewanganH.K. Advancements in solid lipid nanoparticles and nanostructured lipid carriers for breast cancer therapy.Curr. Pharm. Des.202430372922293610.2174/011381612831923324072510370639150028
    [Google Scholar]
  65. SharmaA.N. UpadhyayP.K. DewanganH.K. Dual combination of resveratrol and pterostilbene aqueous core nanocapsules for integrated prostate cancer targeting.Ther. Deliv.202415968569810.1080/20415990.2024.238023939129676
    [Google Scholar]
  66. SahinU. DerhovanessianE. MillerM. KlokeB.P. SimonP. LöwerM. BukurV. TadmorA.D. LuxemburgerU. SchrörsB. OmokokoT. VormehrM. AlbrechtC. ParuzynskiA. KuhnA.N. BuckJ. HeeschS. SchreebK.H. MüllerF. OrtseiferI. VoglerI. GodehardtE. AttigS. RaeR. BreitkreuzA. TolliverC. SuchanM. MarticG. HohbergerA. SornP. DiekmannJ. CieslaJ. WaksmannO. BrückA.K. WittM. ZillgenM. RothermelA. KasemannB. LangerD. BolteS. DikenM. KreiterS. NemecekR. GebhardtC. GrabbeS. HöllerC. UtikalJ. HuberC. LoquaiC. TüreciÖ. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer.Nature2017547766222222610.1038/nature2300328678784
    [Google Scholar]
  67. DubeyR.K. ShuklaS. ShahK. DewanganH.K. A Comprehensive review of self-assembly techniques used to fabricate as DNA origami, block copolymers, and colloidal nanostructures.Curr. Nanosci.202420114
    [Google Scholar]
  68. PolS. MichelM.L. Therapeutic vaccination in chronic hepatitis B virus carriers.Expert Rev. Vaccines20065570771610.1586/14760584.5.5.70717181443
    [Google Scholar]
  69. FinnO.J. Cancer vaccines: Between the idea and the reality.Nat. Rev. Immunol.20033863064110.1038/nri115012974478
    [Google Scholar]
  70. SharmaA.N. UpadhyayP.K. DewanganH.K. Development, evaluation, pharmacokinetic and biodistribution estimation of resveratrol-loaded solid lipid nanoparticles for prostate cancer targeting.J. Microencapsul.202239656357410.1080/02652048.2022.213578536222429
    [Google Scholar]
  71. Center for Drug Evaluation, Research. FDA approval of new cancer treatment uses for marketed drug and biological products. U.S. Food and Drug Administration.2019Available from: [Cited 2024 Apr 12]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/fda-approval-new-cancer-treatment-uses-marketed-drug-and-biological-products
  72. OttP.A. HuZ. KeskinD.B. ShuklaS.A. SunJ. BozymD.J. ZhangW. LuomaA. Giobbie-HurderA. PeterL. ChenC. OliveO. CarterT.A. LiS. LiebD.J. EisenhaureT. GjiniE. StevensJ. LaneW.J. JaveriI. NellaiappanK. SalazarA.M. DaleyH. SeamanM. BuchbinderE.I. YoonC.H. HardenM. LennonN. GabrielS. RodigS.J. BarouchD.H. AsterJ.C. GetzG. WucherpfennigK. NeubergD. RitzJ. LanderE.S. FritschE.F. HacohenN. WuC.J. An immunogenic personal neoantigen vaccine for patients with melanoma.Nature2017547766221722110.1038/nature2299128678778
    [Google Scholar]
  73. KeskinD.B. AnandappaA.J. SunJ. TiroshI. MathewsonN.D. LiS. OliveiraG. Giobbie-HurderA. FeltK. GjiniE. ShuklaS.A. HuZ. LiL. LeP.M. AllesøeR.L. RichmanA.R. KowalczykM.S. AbdelrahmanS. GeduldigJ.E. CharbonneauS. PeltonK. IorgulescuJ.B. ElaginaL. ZhangW. OliveO. McCluskeyC. OlsenL.R. StevensJ. LaneW.J. SalazarA.M. DaleyH. WenP.Y. ChioccaE.A. HardenM. LennonN.J. GabrielS. GetzG. LanderE.S. RegevA. RitzJ. NeubergD. RodigS.J. LigonK.L. SuvàM.L. WucherpfennigK.W. HacohenN. FritschE.F. LivakK.J. OttP.A. WuC.J. ReardonD.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial.Nature2019565773823423910.1038/s41586‑018‑0792‑930568305
    [Google Scholar]
  74. BrunsvigP.F. AamdalS. GjertsenM.K. KvalheimG. Markowski-GrimsrudC.J. SveI. Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer.Cancer Immunol. Immunother.201160680981821365467
    [Google Scholar]
  75. CliftonG.T. VreelandT.J. HaleD.F. HickersonA.T. LittonJ.K. AlatrashG. Results of a randomized phase IIb trial of the Folate Receptor Alpha (FRα) peptide vaccine TPIV200 in patients with ovarian cancer in first remission.Ann. Oncol.2021324511520
    [Google Scholar]
  76. StelzerI. KoserF. LöfflerM.W. Siebenhandl-EhnS. VirgoliniI. BrunnerP. Immunological heterogeneity of colorectal cancer patients and its implications for peptide vaccine development.OncoImmunology2020911839796
    [Google Scholar]
  77. Center for drug evaluation, research. clinical trial endpoints for the approval of cancer drugs and biologics. U.S. Food and Drug Administration.2021Available from: [cited 2024 Apr 13]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/
  78. Guidance on IDE policies and procedures.1998Available from: [cited 2024 Apr 12]. https://www.fda.gov/MedicalDevices/DevicesRegulationGuidanceDocument s/ucm080202.htm
  79. Guidance for industry: Gene therapy clinical trials – Observing subjects for delayed adverse events (November 2006).2006Available from: [cited 2024 Apr 12]. https://www.fda.gov/media/72225/
  80. Guidance for industry: Special protocol assessment ( May 2002).2002Available from: [cited 2024 Apr 13]. https://www.fda.gov/downloads/drug/GuidanceComplianceRegulatoryInformation/Guidances /ucm080571
  81. Lakshmi SinghS. ShahK. DewanganH.K. Dual vinorelbine bitartrate and resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer.J. Microencapsul.202216115
    [Google Scholar]
  82. Guideline on clinical evaluation of vaccines EMEA/CHMP/VWP/164653/05 Rev. 1.2023Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-evaluation-vaccines-revision-1_en.pdf
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128364722250126172914
Loading
/content/journals/cpd/10.2174/0113816128364722250126172914
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; cancer therapeutic vaccines; immune system; nanoparticles; Nanovaccines; peptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test