Skip to content
2000
Volume 31, Issue 22
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Aim

Quercetin, a bioactive flavonoid extracted from traditional Chinese medicine, has anti-hepatocellular carcinoma effects. Farnesoid X receptor (FXR), a nuclear receptor highly expressed in the liver, plays important roles in maintaining hepatic glucose homeostasis, anti-inflammation, liver regeneration, and anti-cancer properties. Whether quercetin regulates the glycolysis/glycolysis pathway through FXR signaling remains unknown.

Methods

KEGG Enrichment, GO Enrichment, Protein-Protein Interaction (PPI) Network, Molecular Docking, and RNA-Seq Analysis (Swiss Target Prediction, GeneCard databases, Kaplan-Meier Plotter, ). Cell activity, cell proliferation, and cell cycles were separately analyzed by CCK-8 assay, clone formation assay, and flow cytometry. QRT-PCR determined the mRNA levels of related genes in response to quercetin. HPLC-MS/MSHPLC-MS/MS determined the metabolite profiles. FXR deficiency Hep3B cells were used for discriminating the quercetin’s effects with or without FXR.

Results

Quercetin-related genes were significantly correlated with FXR in hepatocarcinogenesis, especially in glycolysis. The top 30 related genes between FXR, quercetin, and glycolysis were enriched and chosen to further study. Furthermore, the strongest binding energy determined by the molecular docking model of between quercetin and FXR was -6.55 kcal/mol. Quercetin inhibited cell proliferation by the accumulation of Hep3B cells in the S-phase. The differential expressed genes (C-MYC, PCNA, CYCLIN-D1, and P21) associated with glycolysis were observed. Furthermore, quercetin also inhibited the expression of HK2, GAPDH, and LDHA. Meanwhile, the levels of glycolysis/gluconeogenesis-related metabolites were regulated by quercetin.

Conclusion

Quercetin makes an essential anti-HCC effect by crippling the glycolysis/gluconeogenesis process FXR signaling.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128342642250111055339
2025-02-04
2025-10-19
Loading full text...

Full text loading...

References

  1. RumgayH. ArnoldM. FerlayJ. LesiO. CabasagC.J. VignatJ. LaversanneM. McGlynnK.A. SoerjomataramI. Global burden of primary liver cancer in 2020 and predictions to 2040.J. Hepatol.20227761598160610.1016/j.jhep.2022.08.02136208844
    [Google Scholar]
  2. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. RossiZ.J. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  3. SingalA.G. KanwalF. LlovetJ.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy.Nat. Rev. Clin. Oncol.2023201286488410.1038/s41571‑023‑00825‑337884736
    [Google Scholar]
  4. GonzalezF.J. JiangC. PattersonA.D. An intestinal microbiota–farnesoid x receptor axis modulates metabolic disease.Gastroenterology2016151584585910.1053/j.gastro.2016.08.05727639801
    [Google Scholar]
  5. TschuckJ. TheilackerL. RothenaignerI. WeißS.A.I. AkdoganB. LamV.T. MüllerC. GrafR. BrandnerS. PützC. RiederT. KopplinS.P. VincendeauM. ZischkaH. SchorppK. HadianK. Farnesoid X receptor activation by bile acids suppresses lipid peroxidation and ferroptosis.Nat. Commun.2023141690810.1038/s41467‑023‑42702‑837903763
    [Google Scholar]
  6. SunL. CaiJ. GonzalezF.J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer.Nat. Rev. Gastroenterol. Hepatol.202118533534710.1038/s41575‑020‑00404‑233568795
    [Google Scholar]
  7. DingL. YangL. WangZ. HuangW. Bile acid nuclear receptor FXR and digestive system diseases.Acta Pharm. Sin. B20155213514410.1016/j.apsb.2015.01.00426579439
    [Google Scholar]
  8. InagakiT. ChoiM. MoschettaA. PengL. CumminsC.L. McDonaldJ.G. LuoG. JonesS.A. GoodwinB. RichardsonJ.A. GerardR.D. RepaJ.J. MangelsdorfD.J. KliewerS.A. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis.Cell Metab.20052421722510.1016/j.cmet.2005.09.00116213224
    [Google Scholar]
  9. XuJ. LiY. ChenW.D. XuY. YinL. GeX. JadhavK. AdoriniL. ZhangY. Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis.Hepatology20145951761177110.1002/hep.2671424038130
    [Google Scholar]
  10. StayrookK.R. BramlettK.S. SavkurR.S. FicorilliJ. CookT. ChristeM.E. MichaelL.F. BurrisT.P. Regulation of carbohydrate metabolism by the farnesoid X receptor.Endocrinology2005146398499110.1210/en.2004‑096515564327
    [Google Scholar]
  11. WangY.D. ChenW.D. MooreD.D. HuangW. FXR: A metabolic regulator and cell protector.Cell Res.200818111087109510.1038/cr.2008.28918825165
    [Google Scholar]
  12. YangF. HuangX. YiT. YenY. MooreD.D. HuangW. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor.Cancer Res.200767386386710.1158/0008‑5472.CAN‑06‑107817283114
    [Google Scholar]
  13. NiuY. XieW. QinW. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma.Acta Pharm. Sin. B201112737910.1016/j.apsb.2011.06.001
    [Google Scholar]
  14. GuoJ. ZhuY. MaX. ShangG. LiuB. ZhangK. Virus infection and mRNA nuclear export.Int. J. Mol. Sci.202324161259310.3390/ijms24161259337628773
    [Google Scholar]
  15. SinghP. ArifY. BajguzA. HayatS. The role of quercetin in plants.Plant Physiol. Biochem.2021166101910.1016/j.plaphy.2021.05.02334087741
    [Google Scholar]
  16. ReisH.M. NetoA.C. NevesD. Impact of curcumin, quercetin, or resveratrol on the pathophysiology of endometriosis: A systematic review.Phytother. Res.20223662416243310.1002/ptr.746435583746
    [Google Scholar]
  17. HanJ. MengJ. ChenS. WangX. YinS. ZhangQ. LiuH. QinR. LiZ. ZhongW. ZhangC. ZhangH. TangY. LinT. GaoW. ZhangX. YangL. LiuY. ZhouH. SunT. YangC. YY1 complex promotes quaking expression via super-enhancer binding during emt of hepatocellular carcinoma.Cancer Res.20197971451146410.1158/0008‑5472.CAN‑18‑223830760518
    [Google Scholar]
  18. WuH. PanL. GaoC. XuH. LiY. ZhangL. MaL. MengL. SunX. QinH. Quercetin inhibits the proliferation of glycolysis-addicted HCC cells by reducing hexokinase 2 and Akt-mTOR Pathway.Molecules20192410199310.3390/molecules2410199331137633
    [Google Scholar]
  19. NieH. DengY. ZhengC. PanM. XieJ. ZhangY. YangQ. A network pharmacology‐based approach to explore the effects of Chaihu Shugan powder on a non‐alcoholic fatty liver rat model through nuclear receptors.J. Cell. Mol. Med.20202495168518410.1111/jcmm.1516632189432
    [Google Scholar]
  20. ChenX. WangY. WanJ. DouX. ZhangC. SunM. YeF. Quercetin alleviates liver fibrosis via regulating glycolysis of liver sinusoidal endothelial cells and neutrophil infiltration.Biomol Biomed20242461806181510.17305/bb.2024.1053038943679
    [Google Scholar]
  21. PalancaF.P. FondevilaF. BlancoM.C. TuñónM.J. GallegoG.J. MaurizJ.L. Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: A systematic review.Nutrients20191112287510.3390/nu1112287531775362
    [Google Scholar]
  22. ShresthaR. MohankumarK. MartinG. HailemariamA. LeeS. JinU. BurghardtR. SafeS. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth.J. Exp. Clin. Cancer Res.202140139210.1186/s13046‑021‑02199‑934906197
    [Google Scholar]
  23. WuD.N. GuanL. JiangY.X. MaS.H. SunY.N. LeiH.T. YangW.F. WangQ.F. Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis.Cardiovasc. Diagn. Ther.20199654556010.21037/cdt.2019.12.0432038944
    [Google Scholar]
  24. WuX. NiZ. SongT. LvW. ChenY. HuangD. XieY. HuangW. NiuY. C-Terminal truncated hbx facilitates oncogenesis by modulating cell cycle and glucose metabolism in fxr-deficient hepatocellular carcinoma.Int. J. Mol. Sci.2023246517410.3390/ijms2406517436982249
    [Google Scholar]
  25. NakamuraM.T. YudellB.E. LoorJ.J. Regulation of energy metabolism by long-chain fatty acids.Prog. Lipid Res.20145312414410.1016/j.plipres.2013.12.00124362249
    [Google Scholar]
  26. NiuY. XuM. SlagleB.L. HuangH. LiS. GuoG.L. ShiG. QinW. XieW. Farnesoid X receptor ablation sensitizes mice to hepatitis b virus X protein–induced hepatocarcinogenesis.Hepatology201765389390610.1002/hep.2892428102638
    [Google Scholar]
  27. KhanH. NiZ. FengH. XingY. WuX. HuangD. ChenL. NiuY. ShiG. Combination of curcumin with N-n-butyl haloperidol iodide inhibits hepatocellular carcinoma malignant proliferation by downregulating enhancer of zeste homolog 2 (EZH2) - lncRNA H19 to silence Wnt/β-catenin signaling.Phytomedicine20219115370610.1016/j.phymed.2021.15370634517264
    [Google Scholar]
  28. NiuY. ChenL. WuM. HuangW. WuX. HuangD. XieY. ShiG. Partial abrogation of FXR-KNG1 signaling by carboxyl-terminal truncated HBx-C30 in hepatitis B virus-associated hepatocellular carcinoma.Virus Res.202129319826410.1016/j.virusres.2020.19826433359549
    [Google Scholar]
  29. CaillotM. BourgeaisJ. DakikH. CostéÉ. MazureN.M. LelièvreÉ. CoqueretO. HéraultO. MazurierF. SolaB. Cyclin D1 targets hexokinase 2 to control aerobic glycolysis in myeloma cells.Oncogenesis2020976810.1038/s41389‑020‑00253‑332709889
    [Google Scholar]
  30. JinX. KuangY. LiL. LiH. ZhaoT. HeY. DiC. KangJ. YuanL. YuB. LiQ. A positive feedback circuit comprising p21 and HIF‐1α aggravates hypoxia‐induced radioresistance of glioblastoma by promoting Glut1/LDHA‐mediated glycolysis.FASEB J.2022363e2222910.1096/fj.202101736R35199870
    [Google Scholar]
  31. FoersterF. GairingS.J. MüllerL. GalleP.R. NAFLD-driven HCC: Safety and efficacy of current and emerging treatment options.J. Hepatol.202276244645710.1016/j.jhep.2021.09.00734555422
    [Google Scholar]
  32. YangC. ZhangH. ZhangL. ZhuA.X. BernardsR. QinW. WangC. Evolving therapeutic landscape of advanced hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202320420322210.1038/s41575‑022‑00704‑936369487
    [Google Scholar]
  33. HuangA. YangX.R. ChungW.Y. DennisonA.R. ZhouJ. Targeted therapy for hepatocellular carcinoma.Signal Transduct. Target. Ther.20205114610.1038/s41392‑020‑00264‑x32782275
    [Google Scholar]
  34. TangK. DuS. WangQ. ZhangY. SongH. Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma.J. Integr. Med.202018319620210.1016/j.joim.2020.02.00232067923
    [Google Scholar]
  35. LotfiN. YousefiZ. GolabiM. KhalilianP. GhezelbashB. MontazeriM. ShamsM.H. BaghbadoraniP.Z. EskandariN. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update.Front. Immunol.202314107753110.3389/fimmu.2023.107753136926328
    [Google Scholar]
  36. KhanF. NiazK. MaqboolF. HassanI.F. AbdollahiM. VenkataN.K. NabaviS. BishayeeA. Molecular targets underlying the anticancer effects of quercetin: An update.Nutrients20168952910.3390/nu809052927589790
    [Google Scholar]
  37. HuangX. WangB. ChenR. ZhongS. GaoF. ZhangY. NiuY. LiC. ShiG. The nuclear farnesoid x receptor reduces p53 ubiquitination and inhibits cervical cancer cell proliferation.Front. Cell Dev. Biol.2021958314610.3389/fcell.2021.58314633889569
    [Google Scholar]
  38. MaW. LiuM. LiangF. ZhaoL. GaoC. JiangX. ZhangX. ZhanH. HuH. ZhaoZ. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis.Basic Clin. Pharmacol. Toxicol.2020126216618010.1111/bcpt.1331831483925
    [Google Scholar]
  39. ZhangH. ZhangW. JiangL. ChenY. Recent advances in systemic therapy for hepatocellular carcinoma.Biomark. Res.2022101310.1186/s40364‑021‑00350‑435000616
    [Google Scholar]
  40. TesoriV. PiscagliaA.C. SamengoD. BarbaM. BernardiniC. ScatenaR. PontoglioA. CastelliniL. SpelbrinkJ.N. MaulucciG. PuglisiM.A. PaniG. GasbarriniA. The multikinase inhibitor Sorafenib enhances glycolysis and synergizes with glycolysis blockade for cancer cell killing.Sci. Rep.201551914910.1038/srep0914925779766
    [Google Scholar]
  41. YanX. TianR. SunJ. ZhaoY. LiuB. SuJ. LiM. SunW. XuX. Sorafenib-induced autophagy promotes glycolysis by upregulating the p62/HDAC6/HSP90 axis in hepatocellular carcinoma cells.Front. Pharmacol.20221278866710.3389/fphar.2021.78866735250553
    [Google Scholar]
  42. YuanS. WeiC. LiuG. ZhangL. LiJ. LiL. CaiS. FangL. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF‐1α/SLC7A11 pathway.Cell Prolif.2022551e1315810.1111/cpr.1315834811833
    [Google Scholar]
  43. AbduS. JuaidN. AminA. MoulayM. MiledN. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In vitro and in vivo approaches.Molecules.202227220
    [Google Scholar]
  44. ZhangZ. WuH. ZhangY. ShenC. ZhouF. Dietary antioxidant quercetin overcomes the acquired resistance of sorafenib in sorafenib-resistant hepatocellular carcinoma cells through epidermal growth factor receptor signaling inactivation.Naunyn. Schmiedebergs. Arch. Pharmacol.2024397155957410.1007/s00210‑023‑02605‑337490119
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128342642250111055339
Loading
/content/journals/cpd/10.2174/0113816128342642250111055339
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Farnesoid X receptor; glycolysis; HCC; hepatocarcinogenesis; HPLC-MS/MS; Quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test