Skip to content
2000
Volume 32, Issue 1
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

With the development of microfluidics technology, it is now possible in medical biotechnology to examine clinical and rapid diagnostic operations involving pathogens, like bacteria and viruses. The method of separating bacteria from complicated homogeneous and heterogeneous samples is one of the most important steps in the diagnostic process. The microfluidic technology for bacterial separation offers a better and more promising platform by combining several physical properties and characteristics of bacteria. In contrast, the conventional method is time-consuming, limited to a few cell properties, and necessitates the completion of several challenging steps and processes involving skilled manpower. The microfluidics platform also has a number of advantages, including small-scale size, low cost, high efficiency, and simultaneous detection and execution of further steps. This enables cell separation, analysis, and experimental processing on a single chip. In this paper, we have analysed the mechanism of the bacterial separation process depending on pheno-characteristics along with their benefits, constraints, and applications. In addition, the performance metrics needed for the separation of the devices along with the challenges and future possibilities of developed devices, which are described in the literature, are discussed in detail. Thus, this review offers a holistic analysis of the separation of bacteria using microfluidic technology.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128315140240828110618
2024-09-24
2026-01-31
Loading full text...

Full text loading...

References

  1. World Health Organization. Diarrhoeal disease.2017Available from: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal disease (accessed on 12-8-2024)
    [Google Scholar]
  2. BintsisT. Foodborne pathogens.AIMS Microbiol.20173352956310.3934/microbiol.2017.3.529 31294175
    [Google Scholar]
  3. GouldL.H. DemmaL. JonesT.F. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000-2006.Clin. Infect. Dis.200949101480148510.1086/644621 19827953
    [Google Scholar]
  4. ChristopherJ.L. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.The Lancet J20223991032562965510.1016/S0140‑6736(21)02724‑0
    [Google Scholar]
  5. BentleyT. Bacterial infection.Oxford University Press2018
    [Google Scholar]
  6. TianW.C. FinehoutE. Current and future trends in microfluidics within biotechnology research.In:Microfluidics for biological applications.Springer2008
    [Google Scholar]
  7. WhitesidesG.M. The origins and the future of microfluidics.Nature2006442710136837310.1038/nature05058 16871203
    [Google Scholar]
  8. MengE. Microfluidics.In:Biomedical Microsystems.CRC Press2010137184
    [Google Scholar]
  9. LeiK.F. Introduction: The origin, current status, and future of microfluidics In: Microfluidics: Fundamental, devices and applicationsWeinheim, Germany: Wiley-VCH Verlag GmbH & Co.KGaA2018
    [Google Scholar]
  10. BohrA. ColomboS. JensenH. Future of microfluidics in research and in the market. Microfluidics for Pharmaceutical Applications.Elsevier201942546510.1016/B978‑0‑12‑812659‑2.00016‑8
    [Google Scholar]
  11. SantiagoJ. Main contributors to the fundamental principles and techniques in microfluidics issue.Lab Chip200992425242710.1039/b911520j
    [Google Scholar]
  12. MinhasH. Lab on a Chip 200th issue.Lab Chip201414162880288110.1039/C4LC90066A
    [Google Scholar]
  13. StreetsA.M. HuangY. Chip in a lab: Microfluidics for next generation life science research.Biomicrofluidics20137101130210.1063/1.4789751 23460772
    [Google Scholar]
  14. SenA.K. NathA. SudeepthiA. JainS.K. BanerjeeU. Microfluidics-based point-of-care diagnostic devices. Advanced microfluidics-based point-of-care diagnostics.Boca RatonCRC Press20229912010.1201/9781003033479‑4
    [Google Scholar]
  15. NasiriR. ShamlooA. AhadianS. Microfluidic‐based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications.Small20201629200017110.1002/smll.202000171 32529791
    [Google Scholar]
  16. ChoeS. KimB. KimM. Progress of microfluidic continuous separation techniques for micro-/nanoscale bioparticles.Biosensors (Basel)2021111146410.3390/bios11110464 34821680
    [Google Scholar]
  17. WuZ. WillingB. BjerketorpJ. JanssonJ.K. HjortK. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.Lab Chip2009991193119910.1039/b817611f 19370236
    [Google Scholar]
  18. ParisetE. ParentC. FouilletY. Separation of biological particles in a modular platform of cascaded deterministic lateral displacement modules.Sci. Rep.2009817762
    [Google Scholar]
  19. FaridiM.A. RamachandraiahH. BanerjeeI. ArdabiliS. ZeleninS. RussomA. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics.J. Nanobiotechnology2017151310.1186/s12951‑016‑0235‑4 28052769
    [Google Scholar]
  20. LeeJ.H. LeeS.K. KimJ.H. ParkJ.H. Separation of particles with bacterial size range using the control of sheath flow ratio in spiral microfluidic channel.Sens. Actuators A Phys.201928621121910.1016/j.sna.2018.12.047
    [Google Scholar]
  21. AiY. SandersC.K. MarroneB.L. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.Anal. Chem.201385199126913410.1021/ac4017715 23968497
    [Google Scholar]
  22. SilvaR. DowP. DubayR. Rapid prototyping and parametric optimization of plastic acoustofluidic devices for blood-bacteria separation.Biomed. Microdevices20171937010.1007/s10544‑017‑0210‑3 28779375
    [Google Scholar]
  23. LiS. MaF. BachmanH. CameronC.E. ZengX. HuangT.J. Acoustofluidic bacteria separation.J Micromech Microengin Struct Dev Sys201727101503110.1088/1361‑6439/27/1/015031
    [Google Scholar]
  24. DoanV.S. SaingamP. YanT. ShinS. A trace amount of surfactants enables diffusiophoretic swimming of bacteria.ACS Nano20201410142191422710.1021/acsnano.0c07502 33000940
    [Google Scholar]
  25. ParkS. ZhangY. WangT.H. YangS. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity.Lab Chip201111172893290010.1039/c1lc20307j 21776517
    [Google Scholar]
  26. WangS. ZhengL. CaiG. A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing.Biosens. Bioelectron.201914011133310.1016/j.bios.2019.111333 31153017
    [Google Scholar]
  27. MyklatunA. CappettaM. WinklhoferM. NtziachristosV. WestmeyerG.G. Microfluidic sorting of intrinsically magnetic cells under visual control.Sci. Rep.201771694210.1038/s41598‑017‑06946‑x 28761104
    [Google Scholar]
  28. LeeS. KimH. YangS. Microfluidic label‐free hydrodynamic separation of blood cells: Recent developments and future perspectives.Adv. Mater. Technol.202389220142510.1002/admt.202201425
    [Google Scholar]
  29. NoruzshamsianO. MohseniA. MojaddamM. Design of a micro-separator for circulating tumor cells (CTCs) from blood flow using hybrid pinched flow fractionation (PFF) and dielectrophoresis methods.J Solid and Fluid Mechanics202010128129610.22044/JSFM.2020.8089.2838
    [Google Scholar]
  30. de TimaryG. RousseauC.J. Van MelderenL. ScheidB. Shear-enhanced sorting of ovoid and filamentous bacterial cells using pinch flow fractionation.Lab Chip202323465967010.1039/D2LC00969B 36562423
    [Google Scholar]
  31. SherbazA. KonakB.M.K. PezeshkpourP. Di VenturaB. RappB.E. Deterministic lateral displacement microfluidic chip for minicell purification.Micromachines (Basel)202213336510.3390/mi13030365 35334657
    [Google Scholar]
  32. ShresthaJ. BazazS.R. DingL. Rapid separation of bacteria from primary nasal samples using inertial microfluidics.Lab Chip202223114615610.1039/D2LC00794K 36484411
    [Google Scholar]
  33. ZengK. OsaidM. van der WijngaartW. Efficient filter-in-centrifuge separation of low-concentration bacteria from blood.Lab Chip202323194334434210.1039/D3LC00594A 37712252
    [Google Scholar]
  34. LvY. YanT. ZhouS. XuY. Like stars falling down from the sky: Resins effectively assist in and facilitate centrifugal separation and recycling of tiny microbial cells.Green Chem.202325187234724210.1039/D3GC00909B
    [Google Scholar]
  35. WeberM.U. PetkowskiJ.J. WeberR.E. Chip for dielectrophoretic microbial capture, separation and detection II: Experimental study.Nanotechnology2023341717550210.1088/1361‑6528/acb321 36640445
    [Google Scholar]
  36. QiM. DangD. YangX. WangJ. ZhangH. LiangW. Surface acoustic wave manipulation of bioparticles.Soft Matter202319234166418710.1039/D3SM00457K 37212436
    [Google Scholar]
  37. LinX. ZhaoM. PengT. ZhangP. ShenR. JiaY. Detection and discrimination of pathogenic bacteria with nanomaterials-based optical biosensors: A review.Food Chem.202342613657810.1016/j.mee.2021.111523
    [Google Scholar]
  38. RuanJ. ZhangW. ZhangC. LiN. JiangJ. SuH. A magnetophoretic microdevice for multi-magnetic particles separation based on size: A numerical simulation study.Eng. Appl. Comput. Fluid Mech.20221611781179510.1080/19942060.2022.2109064
    [Google Scholar]
  39. AshkezariA.H.K. DizaniM. ShamlooA. Integrating hydrodynamic and acoustic cell separation in a hybrid microfluidic device: A numerical analysis.Acta Mech.202223351881189410.1007/s00707‑022‑03206‑6
    [Google Scholar]
  40. LiangW. LiuJ. YangX. Microfluidic-based cancer cell separation using active and passive mechanisms.Microfluid. Nanofluidics20202442610.1007/s10404‑020‑2331‑x
    [Google Scholar]
  41. ZhangY. ZhengT. WangL. From passive to active sorting in microfluidics: A review.Rev. Adv. Mater. Sci.202160131332410.1515/rams‑2020‑0044
    [Google Scholar]
  42. Kersaudy-KerhoasM. DhariwalR. DesmulliezM.P.Y. JouvetL. Hydrodynamic blood plasma separation in microfluidic channels.Microfluid. Nanofluidics20108110511410.1007/s10404‑009‑0450‑5
    [Google Scholar]
  43. PittW.G. AlizadehM. HusseiniG.A. Rapid separation of bacteria from blood-review and outlook.Biotechnol. Prog.201632482383910.1002/btpr.2299 27160415
    [Google Scholar]
  44. TangH. NiuJ. JinH. LinS. CuiD. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation.Microsyst. Nanoeng.2022816210.1038/s41378‑022‑00386‑y 35685963
    [Google Scholar]
  45. NguyenN-T. HejazianM. OoiC. KashaninejadN. Recent advances and future perspectives on microfluidic liquid handling.Micromachines (Basel)20178618610.3390/mi8060186
    [Google Scholar]
  46. YoonY. KimS. LeeJ. Clogging-free microfluidics for continuous size-based separation of microparticles.Sci. Rep.2016612653110.1038/srep26531 27198601
    [Google Scholar]
  47. ChiuY.Y. HuangC.K. LuY.W. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.Biomicrofluidics201610101190610.1063/1.4939944 26858812
    [Google Scholar]
  48. DaviesR.T. KimJ. JangS.C. ChoiE.J. GhoY.S. ParkJ. Microfluidic filtration system to isolate extracellular vesicles from blood.Lab Chip201212245202521010.1039/c2lc41006k 23111789
    [Google Scholar]
  49. BolzeH. RieweJ. BunjesH. DietzelA. BurgT.P. Protective filtration for microfluidic nanoparticle precipitation for pharmaceutical applications.Chem. Eng. Technol.202144345746410.1002/ceat.202000475
    [Google Scholar]
  50. CrowleyT.A. PizziconiV. Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications.Lab Chip20055992292910.1039/b502930a 16100575
    [Google Scholar]
  51. ChenJ. ChenD. YuanT. Blood plasma separation microfluidic chip with gradual filtration.Microelectron. Eng.2014128364110.1016/j.mee.2014.05.032
    [Google Scholar]
  52. WeiH. ChuehB. WuH. Particle sorting using a porous membrane in a microfluidic device.Lab Chip201111223824510.1039/C0LC00121J 21057685
    [Google Scholar]
  53. YinH. Davila-MonteroS. MasonA.J. Analysis of Section Scaling for Multiple-Size DLD Microfluidic Particle Separation 2020 IEEE International Symposium on Circuits and Systems (ISCAS).IEEE2020pp. 1510.1109/ISCAS45731.2020.9180798
    [Google Scholar]
  54. InglisD. VernekarR. KrügerT. FengS. The fluidic resistance of an array of obstacles and a method for improving boundaries in deterministic lateral displacement arrays.Microfluid. Nanofluidics20202431810.1007/s10404‑020‑2323‑x
    [Google Scholar]
  55. McGrathJ. JimenezM. BridleH. Deterministic lateral displacement for particle separation: A review.Lab Chip201414214139415810.1039/C4LC00939H 25212386
    [Google Scholar]
  56. HochstetterA. VernekarR. AustinR.H. Deterministic lateral displacement: Challenges and perspectives.ACS Nano2020149107841079510.1021/acsnano.0c05186 32844655
    [Google Scholar]
  57. HuangL.R. CoxE.C. AustinR.H. SturmJ.C. Continuous particle separation through deterministic lateral displacement.Science2004304567398799010.1126/science.1094567 15143275
    [Google Scholar]
  58. InglisD.W. DavisJ.A. AustinR.H. SturmJ.C. Critical particle size for fractionation by deterministic lateral displacement.Lab Chip20066565565810.1039/b515371a 16652181
    [Google Scholar]
  59. BeechJ.P. HoB.D. GarrissG. OliveiraV. Henriques-NormarkB. TegenfeldtJ.O. Separation of pathogenic bacteria by chain length.Anal. Chim. Acta2018100022323110.1016/j.aca.2017.11.050 29289314
    [Google Scholar]
  60. SalafiT. ZhangY. ZhangY. A review on deterministic lateral displacement for particle separation and detection.Nano-Micro Lett.20191117710.1007/s40820‑019‑0308‑7 34138050
    [Google Scholar]
  61. RanjanS. ZemingK.K. JureenR. FisherD. ZhangY. DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles.Lab Chip201414214250426210.1039/C4LC00578C 25209150
    [Google Scholar]
  62. CruzJ. HjortK. Fundamentals of inertial focusing in high aspect ratio curved microfluidics.Res Square202010.21203/rs.3.rs‑123615/v1
    [Google Scholar]
  63. CruzJ. HjortK. High-resolution particle separation by inertial focusing in high aspect ratio curved microfluidics.Sci. Rep.20211111395910.1038/s41598‑021‑93177‑w 34230536
    [Google Scholar]
  64. ChungA.J. A minireview on inertial microfluidics fundamentals: Inertial particle focusing and secondary flow.Biochip J.2019131536310.1007/s13206‑019‑3110‑1
    [Google Scholar]
  65. IyengarS.N. KumarT. MårtenssonG. RussomA. High resolution and high throughput bacteria separation from blood using elasto-inertial microfluidics.Cold Spring Harbor Laboratory202010.1101/2020.10.19.344994
    [Google Scholar]
  66. ZhangJ. YanS. YuanD. Fundamentals and applications of inertial microfluidics: A review.Lab Chip2016161103410.1039/C5LC01159K 26584257
    [Google Scholar]
  67. ZhaoQ. YuanD. ZhangJ. LiW. A review of secondary flow in inertial microfluidics.Micromachines202011546110.3390/mi11050461
    [Google Scholar]
  68. NiveditaN. PapautskyI. Cell Separation using Inertial Microfluidics.Circulating Tumor Cells.Hoboken, NJ, USAJohn Wiley & Sons, Inc201612714610.1002/9781119244554.ch5
    [Google Scholar]
  69. AliM.A.M. KayaniA.B.A. MajlisB.Y. Biological particle control and separation using active forces in microfluidic environments.Microfluidics and Nanofluidics. InTech201810.5772/intechopen.75714
    [Google Scholar]
  70. ZhangH. ChangH. NeuzilP. DEP-on-a-Chip: Dielectrophoresis applied to microfluidic platforms.Micromachines (Basel)201910642310.3390/mi10060423 31238556
    [Google Scholar]
  71. AlnaimatF. DagherS. MathewB. Hilal-AlnqbiA. KhashanS. Microfluidics based magnetophoresis: A review.Chem. Rec.201818111596161210.1002/tcr.201800018 29888856
    [Google Scholar]
  72. SemenovA.N. LugovtsovA.E. ShirshinE.A. Assessment of fibrinogen macromolecules interaction with red blood cells membrane by means of laser aggregometry, flow cytometry, and optical tweezers combined with microfluidics.Biomolecules20201010144810.3390/biom10101448 33076409
    [Google Scholar]
  73. WuM. OzcelikA. RufoJ. WangZ. FangR. HuangT.J. Acoustofluidic separation of cells and particles.Microsyst. Nanoeng.2019513210.1038/s41378‑019‑0064‑3 31231539
    [Google Scholar]
  74. QianC. HuangH. ChenL. Dielectrophoresis for bioparticle manipulation.Int. J. Mol. Sci.20141510182811830910.3390/ijms151018281 25310652
    [Google Scholar]
  75. KuaC.H. Particle manipulation using moving dielectrophoresis.Doctoral thesis, Nanyang Technological University, Singapore,2007
    [Google Scholar]
  76. Dielectrophoresis.Chichester, UKJohn Wiley & Sons, Ltd2017381404
    [Google Scholar]
  77. CrowtherC.V. HiltonS.H. KempL. HayesM.A. Isolation and identification of Listeria monocytogenes utilizing DC insulator-based dielectrophoresis.Anal. Chim. Acta20191068415110.1016/j.aca.2019.03.019 31072476
    [Google Scholar]
  78. SarnoB. HeineckD. HellerM.J. IbsenS.D. Dielectrophoresis: Developments and applications from 2010 to 2020.Electrophoresis202142553956410.1002/elps.202000156 33191521
    [Google Scholar]
  79. SunM. AgarwalP. ZhaoS. ZhaoY. Continuous on-chip cell separation based on conductivity-induced dielectrophoresis with 3d self-assembled ionic liquid electrodes.Anal. Chem.2016881682648827
    [Google Scholar]
  80. KumarC.L. JulietA.V. RamakrishnaB. ChakrabortyS. MohammedM.A. Computational microfluidic channel for separation of Esherichia coli from blood-cells.Comput. Mater. Continua2021671369138410.32604/cmc.2021.015116
    [Google Scholar]
  81. JungT. JungY. AhnJ. YangS. Continuous, rapid concentration of foodborne bacteria (Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes) using magnetophoresis-based microfluidic device.Food Control202011410722910.1016/j.foodcont.2020.107229
    [Google Scholar]
  82. HanH. SohnB. ChoiJ. JeonS. Recent advances in magnetic nanoparticle-based microfluidic devices for the pretreatment of pathogenic bacteria.Biomed. Eng. Lett.202111429730710.1007/s13534‑021‑00202‑y 34426777
    [Google Scholar]
  83. WuM. OuyangY. WangZ. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.Proc. Natl. Acad. Sci.201711440105841058910.1073/pnas.2020183117
    [Google Scholar]
  84. LuoJ.K. FuY.Q. Acoustic wave based microfluidics and lab-on-a-chip.In:Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices.Intech Open2013
    [Google Scholar]
  85. HashimotoK. Bulk acoustic and surface acoustic waves.In:Surface Acoustic Wave Devices in Telecommunications.Berlin, HeidelbergSpringer200010.1007/978‑3‑662‑04223‑6_1
    [Google Scholar]
  86. ZhangP. BachmanH. OzcelikA. HuangT.J. Acoustic microfluidics.Annu. Rev. Anal. Chem. (Palo Alto, Calif.)2020131174310.1146/annurev‑anchem‑090919‑102205 32531185
    [Google Scholar]
  87. DowP. KotzK. GruszkaS. HolderJ. FieringJ. Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage.Lab Chip201818692393210.1039/C7LC01180F 29445800
    [Google Scholar]
  88. GhorbanzadehM. Moravvej-FarshiM.K. DarbariS. Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro- and nano-particles.J. Lightwave Technol.201533163453346010.1109/JLT.2015.2407408
    [Google Scholar]
  89. GhorbanzadehM. Moravvej-FarshiM.K. DarbariS. Plasmonic optophoresis for manipulating, in situ position monitoring, sensing, and 3-D trapping of micro/nanoparticles.IEEE J. Sel. Top. Quantum Electron.201723218519210.1109/JSTQE.2016.2593008
    [Google Scholar]
  90. KumarP.T. DecropD. SafdarS. Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers.Micromachines (Basel) 202011330810.3390/mi11030308 32183431
    [Google Scholar]
  91. ProbstC. GrünbergerA. KohlheyerD. WiechertW. Phenotypic sorting and analysis of bacteria production strains using optical tweezers and microfluidics.Chemieingenieurtechnik (Weinh.)2012848134410.1002/cite.201250339
    [Google Scholar]
  92. RighiniM. GhenucheP. CherukulappurathS. MyroshnychenkoV. García de AbajoF.J. QuidantR. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas.Nano Lett.20099103387339110.1021/nl803677x 19159322
    [Google Scholar]
  93. KarbalaeiA. ChoH. Microfluidic devices developed for and inspired by thermotaxis and chemotaxis.Micromachines (Basel)20189414910.3390/mi9040149 30424083
    [Google Scholar]
  94. ErrarteA. Martin-MayorA. AginagaldeM. Thermophoresis as a technique for separation of nanoparticle species in microfluidic devices.Int. J. Therm. Sci.202015610643510.1016/j.ijthermalsci.2020.106435
    [Google Scholar]
  95. TsujiT. MatsumotoY. KugimiyaR. DoiK. KawanoS. Separation of nano- and microparticle flows using thermophoresis in branched microfluidic channels.Micromachines (Basel)201910532110.3390/mi10050321 31083630
    [Google Scholar]
  96. VigoloD. RusconiR. StoneH.A. PiazzaR. Thermophoresis: Microfluidics characterization and separation.Soft Matter2010615348910.1039/c002057e
    [Google Scholar]
  97. KehH.J. Diffusiophoresis.In:Encyclopedia of Microfluidics and Nanofluidics.New YorkSpringer2015
    [Google Scholar]
  98. ShinS. ShardtO. WarrenP.B. StoneH.A. Membraneless water filtration using CO2.Nat. Commun.2017811518110.1038/ncomms15181 28462929
    [Google Scholar]
  99. ShimS. Diffusiophoresis, diffusioosmosis, and microfluidics: Surface-flow-driven phenomena in the presence of flow.Chem. Rev.202212276986700910.1021/acs.chemrev.1c00571 35285634
    [Google Scholar]
  100. GurungJ.P. GelM. BakerM.A.B. Microfluidic techniques for separation of bacterial cells via taxis.Microb. Cell202073667910.15698/mic2020.03.710 32161767
    [Google Scholar]
  101. BrenA. EisenbachM. How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation.J. Bacteriol.2000182246865687310.1128/JB.182.24.6865‑6873.2000 11092844
    [Google Scholar]
  102. StockerR. Studies of bacterial chemotaxis using microfluidics-interview.J. Vis. Exp.2007420410.3791/204 18979008
    [Google Scholar]
  103. WangX. Application of Microfluidics for the Study of Bacterial Chemotaxis to NAPL in Porous Media. Thesis, University of Virginia2013
    [Google Scholar]
  104. SenthamilselviS. Transport of bacterial chemotaxis through porous media.J Xidian University20201471812182010.37896/jxu14.7/208
    [Google Scholar]
  105. WangC. DangT. BasteJ. JoshiA.A. BhushanA. A novel standalone microfluidic device for local control of oxygen tension for intestinal-bacteria interactions.bioRxiv202010.1101/2020.05.22.111096
    [Google Scholar]
  106. SongJ. ZhangY. ZhangC. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting.Sci. Rep.201881639410.1038/s41598‑018‑24748‑7 29686328
    [Google Scholar]
  107. AtaeiA. LauA.W.C. AsgharW. A microfluidic sperm-sorting device based on rheotaxis effect.Microfluid. Nanofluidics20212565210.1007/s10404‑021‑02453‑8
    [Google Scholar]
  108. Marcos, Fu HC, Powers TR, Stocker R. Bacterial rheotaxis. Proceedings of the National Academy of Sciences2012109134780478510.1073/pnas.1120955109
    [Google Scholar]
  109. SharmaS. KabirM.A. AsgharW. Selection of healthy sperm based on positive rheotaxis using a microfluidic device.Analyst (Lond.)202214781589159710.1039/D1AN02311J 35293399
    [Google Scholar]
  110. ZhuangJ. CarlsenR.W. SittiM. pH-Taxis of biohybrid microsystems.Sci. Rep.2015511140310.1038/srep11403 26073316
    [Google Scholar]
  111. KiharaM. MacnabR.M. Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria.J. Bacteriol.198114531209122110.1128/jb.145.3.1209‑1221.1981 7009572
    [Google Scholar]
  112. AdlerM. ErickstadM. GutierrezE. GroismanA. Studies of bacterial aerotaxis in a microfluidic device.Lab Chip201212224835484710.1039/c2lc21006a 23010909
    [Google Scholar]
  113. ErickstadM.J. TadristL. GroismanA. A microfluidic device for high throughput measurements of thermotaxis.Biophys. J.20121023151a10.1016/j.bpj.2011.11.826
    [Google Scholar]
  114. Bazylinski, DA, Lefèvre, CT, Schüler, D. Magnetotactic bacteria. In: Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (eds). The Prokaryotes. Springer, Berlin, Heidelberg.201310.1007/978‑3‑642‑30141‑4_74
    [Google Scholar]
  115. LaugaE. Bacterial hydrodynamics.Annu. Rev. Fluid Mech.20164810513010.1146/annurev‑fluid‑122414‑034606
    [Google Scholar]
  116. VermaN PandyaA Challenges and opportunities in micro/nanofluidic and lab-on-a-chip Progress in Molecular Biology and Translational ScienceElsevier2022289302
    [Google Scholar]
  117. LeeC.S. Grand challenges in microfluidics: A call for biological and engineering action.Front. Sens.2020158303510.3389/fsens.2020.583035
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128315140240828110618
Loading
/content/journals/cpd/10.2174/0113816128315140240828110618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test