Skip to content
2000
image of Structural and Functional Characterization of Type IV Pilus-Associated Proteins PilV, Pil94, and Pil96 of Aeromonas hydrophila: Potential Role in Human Pathogenesis

Abstract

Objective

Recent genomic analyses identified a distinct pilVWXY operon in hypervirulent ATCC 7966, encoding PilV and two previously uncharacterized orthologs, AHA_0694 (Pil94) and AHA_0695 (Pil96), hypothesized to mediate host–pathogen interactions.

Methods

Complete genomes (n = 53) were retrieved from NCBI, and the distribution of , , and was assessed using STRING v11.5. Physicochemical and structural features were analyzed ExPASy-ProtParam, homology modeling, and validation using RAMPAGE, ProQ, and ProSA. Representative models were docked with eight human β-integrins using the HADDOCK server and evaluated by HADDOCK score, cluster size, van der Waals energy, RMSD (root-mean-square deviation), buried surface area, and Z-score.

Results and Discussion

Twenty-eight strains of (predominantly hypervirulent) encoded all three proteins, whereas 11 non-virulent strains lacked them. Structural modelling revealed a conserved lollipop-like conformation with an extended N-terminal α-helix characteristic of Type IV pilins. Docking simulations indicated selective, high-affinity binding patterns (PilV with Integrin β3/β4/β7; Pil94 with integrin β1/β2/β3/β5; Pil96 with integrin β1/β3/β5/β7/β8), suggesting roles in multi-tissue adhesion and systemic dissemination.

Conclusion

The restricted occurrence of , , and in virulent strains and their predicted affinity for human β-integrins underscore their importance in host colonization and pathogenesis, identifying them as promising molecular targets for diagnostic or therapeutic development.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010430558251125201911
2026-01-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Chen R.Y. Chen J. Liu Z.M. Lin Z.H. Guo Z.P. Barbel steed (Hemibarbus labeo) NK-lysin protects against Aeromonas hydrophila infection via immunomodulatory activity. Dev. Comp. Immunol. 2021 122 104114 10.1016/j.dci.2021.104114 33945835
    [Google Scholar]
  2. Pessoa R.B.G. Oliveira W.F. Correia M.T.S. Fontes A. Coelho L.C.B.B. Aeromonas and human health disorders: Clinical approaches. Front. Microbiol. 2022 13 868890 10.3389/fmicb.2022.868890 35711774
    [Google Scholar]
  3. Guerra I.M.F. Fadanelli R. Figueiró M. Schreiner F. Delamare A.P.L. Wollheim C. Costa S.O.P. Echeverrigaray S. Aeromonas associated diarrhoeal disease in south Brazil: Prevalence, virulence factors and antimicrobial resistance. Braz. J. Microbiol. 2007 38 4 638 643 10.1590/S1517‑83822007000400011
    [Google Scholar]
  4. Ramos J.M. Cuenca-Estrella M. Esteban J. Soriano F. Soft-tissue infection caused by Aeromonas hydrophila. Enferm. Infecc. Microbiol. Clin. 1995 13 8 469 472 8555306
    [Google Scholar]
  5. Mathew M. Bharadwaj T.P. Nambi P.S. Mani A. The first-ever reported primary spinal infection with Aeromonas. Indian Journal of Case Reports 2024 9 9 281 285 10.32677/ijcr.v9i9.4179
    [Google Scholar]
  6. Ghatak S. Blom J. Das S. Sanjukta R. Puro K. Mawlong M. Shakuntala I. Sen A. Goesmann A. Kumar A. Ngachan S.V. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila. Antonie van Leeuwenhoek 2016 109 7 945 956 10.1007/s10482‑016‑0693‑6 27075453
    [Google Scholar]
  7. Asai N. Suematsu H. Sakanashi D. Kato H. Shiota A. Hagihara M. Koizumi Y. Yamagishi Y. Mikamo H. Empyema and bacteremia caused by Aeromonas hydrophila: Case report and review of the literature. J. Infect. Chemother. 2022 28 5 705 708 10.1016/j.jiac.2021.12.029 35031202
    [Google Scholar]
  8. Tena D. González-Praetorius A. Gimeno C. Pérez-Pomata M.T. Bisquert J. Extraintestinal infection due to Aeromonas spp.: Review of 38 cases. Enferm. Infecc. Microbiol. Clin. 2007 25 4 235 241 10.1157/13100463 17386217
    [Google Scholar]
  9. Hazen T.C. Fliermans C.B. Hirsch R.P. Esch G.W. Prevalence and distribution of Aeromonas hydrophila in the United States. Appl. Environ. Microbiol. 1978 36 5 731 738 10.1128/aem.36.5.731‑738.1978 31839
    [Google Scholar]
  10. Meng S. Du X.L. Wang Y.L. Qu F.T. Xie G.L. Zhou H.J. Hu J.R. Qin Z. Wang Y. Kan B. Cui Z.G. Comparative study of the genetic diversity, antimicrobial resistance, and pathogenicity of Aeromonas isolates from clinical patients and healthy individuals. Biomed. Environ. Sci. 2021 34 6 454 464 10.3967/bes2021.062 34284853
    [Google Scholar]
  11. Tomás J. The main Aeromonas pathogenic factors. ISRN Microbiol. 2012 2012 256261 10.5402/2012/256261 23724321
    [Google Scholar]
  12. Davis W.A. Kane J.G. Garagusi V.F. Human aeromonas infections: A review of the literature and a case report of endocarditis. Medicine 1978 57 3 267 277 10.1097/00005792‑197805000‑00006 347223
    [Google Scholar]
  13. Bhattacharyya A. Banerjee G. Chattopadhyay P. Probable role of type IV Pili of Aeromonas hydrophila in human pathogenicity. Pathogens 2024 13 5 365 10.3390/pathogens13050365 38787217
    [Google Scholar]
  14. Guo S. Chang Y. Brun Y.V. Howell P.L. Burrows L.L. Liu J. PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa. Nat. Commun. 2024 15 1 9382 10.1038/s41467‑024‑53638‑y 39477930
    [Google Scholar]
  15. Pepe C.M. Eklund M.W. Strom M.S. Cloning of an Aeromonas hydrophila type IV pilus biogenesis gene cluster: Complementation of pilus assembly functions and characterization of a type IV leader peptidase/N-methyltransferase required for extracellular protein secretion. Mol. Microbiol. 1996 19 4 857 869 10.1046/j.1365‑2958.1996.431958.x 8820654
    [Google Scholar]
  16. Mattick J.S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 2002 56 1 289 314 10.1146/annurev.micro.56.012302.160938 12142488
    [Google Scholar]
  17. Craig L. Forest K.T. Maier B. Type IV pili: Dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 2019 17 7 429 440 10.1038/s41579‑019‑0195‑4 30988511
    [Google Scholar]
  18. Nguyen Y. Sugiman-Marangos S. Harvey H. Bell S.D. Charlton C.L. Junop M.S. Burrows L.L. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J. Biol. Chem. 2015 290 1 601 611 10.1074/jbc.M114.616904 25389296
    [Google Scholar]
  19. Handfield M. Simard P. Couillard M. Letarte R. Aeromonas hydrophila isolated from food and drinking water: Hemagglutination, hemolysis, and cytotoxicity for a human intestinal cell line (HT-29). Appl. Environ. Microbiol. 1996 62 9 3459 3461 10.1128/aem.62.9.3459‑3461.1996 8795237
    [Google Scholar]
  20. Boyd J.M. Dacanay A. Knickle L.C. Touhami A. Brown L.L. Jericho M.H. Johnson S.C. Reith M. Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.). Infect. Immun. 2008 76 4 1445 1455 10.1128/IAI.01019‑07 18212071
    [Google Scholar]
  21. Arshad F. Pervaiz R. Sarfraz A. Ejaz H. Alotaibi A. Ullah R. Nishan U. Ali A. Khan M.U. Shah M. Computational identification of membrane proteins for vaccine design against drug-resistant Moraxella catarrhalis. Mol. Genet. Genomics 2025 300 1 92 10.1007/s00438‑025‑02288‑w 40913648
    [Google Scholar]
  22. Shah M. Anum H. Sarfraz A. Aktaruzzaman M. Hasan A.R. Khan M.U. Fawy K.F. Altwaim S.A. Alasmari S.M.N. Ali A. Nishan U. Chen K. Bioinformatics-guided decoding of the Ancylostoma duodenale genome for the identification of potential vaccine targets. BMC Genomics 2025 26 1 468 10.1186/s12864‑025‑11652‑4 40355819
    [Google Scholar]
  23. Hsieh C-Y. Wang X. Zhang D. Xue D. Ye F. Huang S. Elucidating the design space of multimodal protein language models. arXiv 2025 arXiv:2504.11454v3 10.48550/arXiv.2504.11454
    [Google Scholar]
  24. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  25. Honorato R.V. Trellet M.E. Jiménez-García B. Schaarschmidt J.J. Giulini M. Reys V. Koukos P.I. Rodrigues J.P.G.L.M. Karaca E. van Zundert G.C.P. Roel-Touris J. van Noort C.W. Jandová Z. Melquiond A.S.J. Bonvin A.M.J.J. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 2024 19 11 3219 3241 10.1038/s41596‑024‑01011‑0 38886530
    [Google Scholar]
  26. Porter K.A. Desta I. Kozakov D. Vajda S. What method to use for protein–protein docking? Curr. Opin. Struct. Biol. 2019 55 1 7 10.1016/j.sbi.2018.12.010 30711743
    [Google Scholar]
  27. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  28. Bienert S. Waterhouse A. de Beer T.A.P. Tauriello G. Studer G. Bordoli L. Schwede T. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 2017 45 D1 D313 D319 10.1093/nar/gkw1132 27899672
    [Google Scholar]
  29. Studer G. Tauriello G. Bienert S. Biasini M. Johner N. Schwede T. ProMod3—A versatile homology modelling toolbox. PLOS Comput. Biol. 2021 17 1 e1008667 10.1371/journal.pcbi.1008667 33507980
    [Google Scholar]
  30. Benkert P. Biasini M. Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011 27 3 343 350 10.1093/bioinformatics/btq662 21134891
    [Google Scholar]
  31. Lovell S.C. Davis I.W. Arendall W.B. de Bakker P.I.W. Word J.M. Prisant M.G. Richardson J.S. Richardson D.C. Structure validation by Cα geometry: Φ,ψ and Cβ deviation. Proteins 2003 50 3 437 450 10.1002/prot.10286 12557186
    [Google Scholar]
  32. Ramachandran G.N. Molecular structure of collagen. Int. Rev. Connect. Tissue Res. 1963 1 127 182 10.1016/B978‑1‑4831‑6755‑8.50009‑7 14110864
    [Google Scholar]
  33. van Zundert G.C.P. Rodrigues J.P.G.L.M. Trellet M. Schmitz C. Kastritis P.L. Karaca E. Melquiond A.S.J. van Dijk M. de Vries S.J. Bonvin A.M.J.J. The HADDOCK2. 2 web server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 2016 428 4 720 725 10.1016/j.jmb.2015.09.014 26410586
    [Google Scholar]
  34. Rasmussen-Ivey C.R. Figueras M.J. McGarey D. Liles M.R. Virulence factors of Aeromonas hydrophila: In the wake of reclassification. Front. Microbiol. 2016 7 1337 10.3389/fmicb.2016.01337 27610107
    [Google Scholar]
  35. Maity H. Wei A. Chen E. Haidar J.N. Srivastava A. Goldstein J. Comparison of predicted extinction coefficients of monoclonal antibodies with experimental values as measured by the Edelhoch method. Int. J. Biol. Macromol. 2015 77 260 265 10.1016/j.ijbiomac.2015.03.027 25819219
    [Google Scholar]
  36. Tokmakov A.A. Kurotani A. Sato K.I. Protein pI and intracellular localization. Front. Mol. Biosci. 2021 8 775736 10.3389/fmolb.2021.775736 34912847
    [Google Scholar]
  37. Kurotani A. Tokmakov A.A. Sato K.I. Stefanov V.E. Yamada Y. Sakurai T. Localization-specific distributions of protein pI in human proteome are governed by local pH and membrane charge. BMC Mol. Cell Biol. 2019 20 1 36 10.1186/s12860‑019‑0221‑4 31429701
    [Google Scholar]
  38. Gamage D.G. Gunaratne A. Periyannan G.R. Russell T.G. Applicability of instability index for in vitro protein stability prediction. Protein Pept. Lett. 2019 26 5 339 347 10.2174/0929866526666190228144219 30816075
    [Google Scholar]
  39. Panda S. Chandra G. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation 2012 8 18 891 896 10.6026/97320630008891 23144546
    [Google Scholar]
  40. Ho S.L. Wang A.H.J. Structural bioinformatics analysis of free cysteines in protein environments. J. Taiwan Inst. Chem. Eng. 2009 40 2 123 129 10.1016/j.jtice.2008.07.015 32288881
    [Google Scholar]
  41. Baker J.L. Dahlberg T. Bullitt E. Andersson M. Impact of an alpha helix and a cysteine–cysteine disulfide bond on the resistance of bacterial adhesion pili to stress. Proc. Natl. Acad. Sci. USA 2021 118 21 e2023595118 10.1073/pnas.2023595118 34011607
    [Google Scholar]
  42. Sobolev O.V. Afonine P.V. Moriarty N.W. Hekkelman M.L. Joosten R.P. Perrakis A. A global Ramachandran score identifies protein structures with unlikely stereochemistry. Struct. 2020 28 11 1249 1258.e2 10.1016/j.str.2020.08.005 32857966
    [Google Scholar]
  43. Giltner C.L. Nguyen Y. Burrows L.L. Type IV pilin proteins: Versatile molecular modules. Microbiol. Mol. Biol. Rev. 2012 76 4 740 772 10.1128/MMBR.00035‑12 23204365
    [Google Scholar]
  44. Douzi B. Ball G. Cambillau C. Tegoni M. Voulhoux R. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J. Biol. Chem. 2011 286 47 40792 40801 10.1074/jbc.M111.294843 21949187
    [Google Scholar]
  45. Sun D. Lafferty M.J. Peek J.A. Taylor R.K. Domains within the Vibrio cholerae toxin coregulated pilin subunit that mediate bacterial colonization. Gene 1997 192 1 79 85 10.1016/S0378‑1119(97)00007‑3 9224877
    [Google Scholar]
  46. Jacobsen T. Bardiaux B. Francetic O. Izadi-Pruneyre N. Nilges M. Structure and function of minor pilins of type IV pili. Med. Microbiol. Immunol. 2020 209 3 301 308 10.1007/s00430‑019‑00642‑5 31784891
    [Google Scholar]
  47. Barnier J.P. Meyer J. Kolappan S. Bouzinba-Ségard H. Gesbert G. Jamet A. Frapy E. Schönherr-Hellec S. Capel E. Virion Z. Dupuis M. Bille E. Morand P. Schmitt T. Bourdoulous S. Nassif X. Craig L. Coureuil M. The minor pilin PilV provides a conserved adhesion site throughout the antigenically variable meningococcal type IV pilus. Proc. Natl. Acad. Sci. USA 2021 118 45 e2109364118 10.1073/pnas.2109364118 34725157
    [Google Scholar]
  48. Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002 110 6 673 687 10.1016/s0092‑8674(02)00971‑6 12297042
    [Google Scholar]
  49. Takada Y. Ye X. Simon S. The integrins. Genome Biol. 2007 8 5 215 10.1186/gb‑2007‑8‑5‑215 17543136
    [Google Scholar]
  50. Banerjee A. Kim B.J. Carmona E.M. Cutting A.S. Gurney M.A. Carlos C. Feuer R. Prasadarao N.V. Doran K.S. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat. Commun. 2011 2 1 462 10.1038/ncomms1474 21897373
    [Google Scholar]
  51. Johnson M.D.L. Garrett C.K. Bond J.E. Coggan K.A. Wolfgang M.C. Redinbo M.R. Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. PLoS One 2011 6 12 e29629 10.1371/journal.pone.0029629 22242136
    [Google Scholar]
  52. Yan Y. Tao H. He J. Huang S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc. 2020 15 5 1829 1852 10.1038/s41596‑020‑0312‑x 32269383
    [Google Scholar]
  53. Huang S.Y. Zou X. An iterative knowledge-based scoring function for protein–protein recognition. Proteins 2008 72 2 557 579 10.1002/prot.21949 18247354
    [Google Scholar]
  54. Kufareva I. Abagyan R. Methods of protein structure comparison. Methods Mol. Biol. 2012 857 231 257 10.1007/978‑1‑61779‑588‑6_10 22323224
    [Google Scholar]
  55. Yan Y. Wang W. Sun Z. Zhang J.Z.H. Ji C. Protein–ligand empirical interaction components for virtual screening. J. Chem. Inf. Model. 2017 57 8 1793 1806 10.1021/acs.jcim.7b00017 28678484
    [Google Scholar]
  56. Singh A. Kaushik R. Jayaram B. Quality assessment of protein tertiary structures: Past, present, and future. Bioinformatics: Sequences, Structures, Phylogeny. Singapore Springer 2018 271 288 10.1007/978‑981‑13‑1562‑6_12
    [Google Scholar]
  57. Yadav B.S. Tripathi V. Kumar A. Khan M.F. Barate A. Kumar A. Sharma B. Molecular modeling and docking characterization of Dectin-1 (PAMP) receptor of Bubalus bubalis. Exp. Mol. Pathol. 2012 92 1 7 12 10.1016/j.yexmp.2011.09.018 22015804
    [Google Scholar]
  58. Wiederstein M. Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 35 Web Server W407 W410 (Suppl. 2) 10.1093/nar/gkm290 17517781
    [Google Scholar]
  59. Gupta C.L. Akhtar S. Bajpaib P. Kandpal K.N. Desai G.S. Tiwari A.K. Computational modeling and validation studies of 3-D structure of neuraminidase protein of H1N1 influenza A virus and subsequent in silico elucidation of piceid analogues as its potent inhibitors. EXCLI J. 2013 12 215 225 26417228
    [Google Scholar]
  60. Xue B. Dunbrack R.L. Williams R.W. Dunker A.K. Uversky V.N. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta. Proteins Proteomics 2010 1804 4 996 1010 10.1016/j.bbapap.2010.01.011 20100603
    [Google Scholar]
  61. Hebditch M. Warwicker J. Web-based display of protein surface and pH-dependent properties for assessing the developability of biotherapeutics. Sci. Rep. 2019 9 1 1969 10.1038/s41598‑018‑36950‑8 30760735
    [Google Scholar]
  62. Mikaty G. Soyer M. Mairey E. Henry N. Dyer D. Forest K.T. Morand P. Guadagnini S. Prévost M.C. Nassif X. Duménil G. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog. 2009 5 2 e1000314 10.1371/journal.ppat.1000314 19247442
    [Google Scholar]
  63. Bernard S.C. Simpson N. Join-Lambert O. Federici C. Laran-Chich M.P. Maïssa N. Bouzinba-Ségard H. Morand P.C. Chretien F. Taouji S. Chevet E. Janel S. Lafont F. Coureuil M. Segura A. Niedergang F. Marullo S. Couraud P.O. Nassif X. Bourdoulous S. Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat. Med. 2014 20 7 725 731 10.1038/nm.3563 24880614
    [Google Scholar]
  64. Chang Y.W. Kjær A. Ortega D.R. Kovacikova G. Sutherland J.A. Rettberg L.A. Taylor R.K. Jensen G.J. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat. Microbiol. 2017 2 4 16269 10.1038/nmicrobiol.2016.269 28165453
    [Google Scholar]
  65. Burrows L.L. Pseudomonas aeruginosa twitching motility: Type IV pili in action. Annu. Rev. Microbiol. 2012 66 1 493 520 10.1146/annurev‑micro‑092611‑150055 22746331
    [Google Scholar]
  66. Liao Z. Long R. Ding W. Yu Y. Naseer A. Li L. Ye H. Xu H. Li Y. Pan X. Wu R. Contribution of the type IV pili secretin tapQ to motility, growth, adhesion, stress tolerance and virulence of Aeromonas hydrophila. Int. J. Biol. Macromol. 2025 307 Pt 4 142203 10.1016/j.ijbiomac.2025.142203 40107542
    [Google Scholar]
  67. Huang J. Li X. Shi X. Zhu M. Wang J. Huang S. Huang X. Wang H. Li L. Deng H. Zhou Y. Mao J. Long Z. Ma Z. Ye W. Pan J. Xi X. Jin J. Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019 12 1 26 10.1186/s13045‑019‑0709‑6 30845955
    [Google Scholar]
  68. Becerril C. Montaño M. Cisneros J. Mendoza-Milla C. Pardo A. Ortiz-Quintero B. Selman M. Ramos C. Mesenchymal–epithelial transition in fibroblasts of human normal lungs and interstitial lung diseases. Biomolecules 2021 11 3 378 10.3390/biom11030378 33806618
    [Google Scholar]
  69. Baltes F. Pfeifer V. Silbermann K. Caspers J. Wantoch von Rekowski K. Schlesinger M. Bendas G. β1-Integrin binding to collagen type 1 transmits breast cancer cells into chemoresistance by activating ABC efflux transporters. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 5 118663 10.1016/j.bbamcr.2020.118663 31987794
    [Google Scholar]
  70. Dib K. Andersson T. szlig 2 integrin signaling in leukocytes. Front. Biosci. 2000 5 3 A524 10.2741/A524 10762594
    [Google Scholar]
  71. McCarty J.H. αvβ8 integrin adhesion and signaling pathways in development, physiology and disease. J. Cell Sci. 2020 133 12 jcs239434 10.1242/jcs.239434 32540905
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010430558251125201911
Loading
/content/journals/cpb/10.2174/0113892010430558251125201911
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: homology modeling ; β-integrins ; PilV ; T4P ; docking ; A. hydrophila
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test