Skip to content
2000
image of Preparation and Efficacy Validation of Dihydromyricetin Nanoliposomes

Abstract

Introduction

Dihydromyricetin (DMY), a phytoflavonoid with diverse pharmacological activities, is limited in cosmetic applications by poor solubility, easy discoloration, and low bioavailability. This study aimed to address these drawbacks for its practical cosmetic use.

Methods

DMY nanoliposomes (DMY-NL) were prepared via ethanol injection-high-pressure homogenization, with orthogonal tests optimizing the process using particle size, PDI, and zeta potential as indices. Tests included dialysis-based sustained-release assay, erythrocyte hemolysis/human patch tests (safety), and DPPH scavenging/hemolysis/human patch anti-irritation tests (soothing efficacy).

Results

DMY-NL had >90% encapsulation efficiency, 90-day stability under different storage conditions, and 48-h sustained release (superior to control). Safety was confirmed by hemolysis and patch tests; soothing efficacy was verified via DPPH scavenging and anti-irritation tests.

Discussion

DMY-NL’s high encapsulation, good stability, and sustained release solve DMY’s cosmetic application limitations. Confirmed safety and soothing effects support its practical use in cosmetics.

Conclusion

This study provides a theoretical and practical basis for DMY’s cosmetic application, expected to expand its use in the cosmetic industry.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010422759251118151659
2026-01-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Liu D. Mao Y. Ding L. Zeng X.A. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2019 91 586 597 10.1016/j.tifs.2019.07.038 32288229
    [Google Scholar]
  2. Chen S. Zhao X. Wan J. Ran L. Qin Y. Wang X. Gao Y. Shu F. Zhang Y. Liu P. Zhang Q. Zhu J. Mi M. Dihydromyricetin improves glucose and lipid metabolism and exerts anti-inflammatory effects in nonalcoholic fatty liver disease: A randomized controlled trial. Pharmacol. Res. 2015 99 74 81 10.1016/j.phrs.2015.05.009 26032587
    [Google Scholar]
  3. Ye L. Wang H. Duncan S.E. Eigel W.N. O’Keefe S.F. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef. Food Chem. 2015 172 416 422 10.1016/j.foodchem.2014.09.090 25442572
    [Google Scholar]
  4. Xia J. Guo S. Fang T. Feng D. Zhang X. Zhang Q. Liu J. Liu B. Li M. Zhu R. Dihydromyricetin induces autophagy in HepG2 cells involved in inhibition of mTOR and regulating its upstream pathways. Food Chem. Toxicol. 2014 66 7 13 10.1016/j.fct.2014.01.014 24444546
    [Google Scholar]
  5. Liu L. Wan J. Lang H. Si M. Zhu J. Zhou Y. Mi M. Dihydromyricetin delays the onset of hyperglycemia and ameliorates insulin resistance without excessive weight gain in Zucker diabetic fatty rats. Mol. Cell. Endocrinol. 2017 439 105 115 10.1016/j.mce.2016.10.028 27984083
    [Google Scholar]
  6. Chu J. Wang X. Bi H. Li L. Ren M. Wang J. Dihydromyricetin relieves rheumatoid arthritis symptoms and suppresses expression of pro-inflammatory cytokines via the activation of Nrf2 pathway in rheumatoid arthritis model. Int. Immunopharmacol. 2018 59 174 180 10.1016/j.intimp.2018.04.001 29656207
    [Google Scholar]
  7. Dong S. Ji J. Hu L. Wang H. Dihydromyricetin alleviates acetaminophen-induced liver injury via the regulation of transformation, lipid homeostasis, cell death and regeneration. Life Sci. 2019 227 20 29 10.1016/j.lfs.2019.04.019 30974116
    [Google Scholar]
  8. Liu T.T. Zeng Y. Tang K. Chen X. Zhang W. Xu X.L. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis 2017 262 39 50 10.1016/j.atherosclerosis.2017.05.003 28500865
    [Google Scholar]
  9. Rahman M.M. Rahaman M.S. Islam M.R. Rahman F. Mithi F.M. Alqahtani T. Almikhlafi M.A. Alghamdi S.Q. Alruwaili A.S. Hossain M.S. Ahmed M. Das R. Emran T.B. Uddin M.S. Role of phenolic compounds in human disease: current knowledge and future prospects. Molecules 2021 27 1 233 233 10.3390/molecules27010233
    [Google Scholar]
  10. Silva E.P. Herminio V.L.Q. Motta D.N. Soares M.B.P. Rodrigues L.A.P. Viana J.D. Freitas F.A. Silva A.P.G. Souza F.C.A. Vilas Boas E.V.B. The role of phenolic compounds in metabolism and their antioxidant potential. Res. Societ Develop 2022 11 10 e297111031750 10.33448/rsd‑v11i10.31750
    [Google Scholar]
  11. Li F. Chi S. Zhang H. Investigation of in vitro antioxidant activity of dihydromyricetin and flavonoids rich extract from vine tea (Ampelopsis grossedentata). Trad Med. Res. 2021 6 1 7 10.53388/TMR20200814193
    [Google Scholar]
  12. Ivanovici M. Sicoe G. Hadaruga D.I. Kinetics and antiradical activity of natural and synthetic phenolic compounds by DPPH method: A comparative study. J. Agroalimentar Process. Technol 2018 24 97 103
    [Google Scholar]
  13. Saha R. Mukhopadhyay M. Time-dependent electrochemical characteristics of a phenolic and non-phenolic compound in the presence of laccase/ABTS system. PLoS One 2022 17 9 e0275338 10.1371/journal.pone.0275338 36170267
    [Google Scholar]
  14. Lewis T. Martic S. Electrochemical monitoring of the superoxide anion radical with quercetin and metallo-quercetin complexes. ECS Meet Abstr 2022 MA2022 1824 10.1149/MA2020‑02553747mtgabs
    [Google Scholar]
  15. Wu J. Zhao F.T. Fan K.J. Zhang J. Xu B.X. Wang Q.S. Tang T.T. Wang T.Y. Dihydromyricetin inhibits inflammation of fibroblast-like synoviocytes through regulation of nuclear factor-κB signaling in rats with collagen-induced arthritis. J. Pharmacol. Exp. Ther. 2019 368 2 218 228 10.1124/jpet.118.253369 30530730
    [Google Scholar]
  16. Sun Z. Lu W. Lin N. Lin H. Zhang J. Ni T. Meng L. Zhang C. Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem. Pharmacol. 2020 175 113888 10.1016/j.bcp.2020.113888 32112883
    [Google Scholar]
  17. Pang M. Xu R. Xi R. Yao H. Bao K. Peng R. Zhi H. Zhang K. He R. Su Y. Liu X. Ming D. Molecular understanding of the therapeutic potential of melanin inhibiting natural products. RSC Med. Chem. 2024 15 7 2226 2253 10.1039/D4MD00224E 39026645
    [Google Scholar]
  18. Chan C.F. Huang C.C. Lee M.Y. Lin Y.S. Fermented broth in tyrosinase- and melanogenesis inhibition. Molecules 2014 19 9 13122 13135 10.3390/molecules190913122 25255749
    [Google Scholar]
  19. Huang H.C. Liao C.C. Peng C.C. Lim J.M. Siao J.H. Wei C.M. Chen C.C. Wu C.S. Chang T.M. Dihydromyricetin from Ampelopsis grossedentata inhibits melanogenesis through down-regulation of MAPK, PKA and PKC signaling pathways. Chem. Biol. Interact. 2016 258 166 174 10.1016/j.cbi.2016.08.023 27586645
    [Google Scholar]
  20. Yu B. Wang N. Cai S. Yan H. Sun S. Wang S. Li Y. Liang Z. Research progress on peptides that inhibit melanin synthesis. Front. Pharmacol. 2025 16 1610623 10.3389/fphar.2025.1610623 40672371
    [Google Scholar]
  21. Zhang H.L. Wang M.L. Yi L.Z. Högger P. Arroo R. Bajpai V.K. Prieto M.A. Chen X.J. Simal-Gandara J. Cao H. Stability profiling and degradation products of dihydromyricetin in Dulbecco’s modified eagle’s medium. Food Chem. 2022 378 132033 10.1016/j.foodchem.2021.132033 35033717
    [Google Scholar]
  22. Li M. Luo X. Zhu R. Zhong K. Ran W. Wu Y. Gao H. Development and characterization of active bilayer film incorporated with dihydromyricetin encapsulated in hydroxypropyl-β-cyclodextrin for food packaging application. Food Hydrocoll. 2022 131 107834 10.1016/j.foodhyd.2022.107834
    [Google Scholar]
  23. Zhang H. Caprioli G. Hussain H. Le N.P.K. Farag M.A. Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. eFood 2021 2 4 164 184 10.53365/efood.k/143518
    [Google Scholar]
  24. Xu P-Y. Fu C-P. Kankala R.K. Wang S-B. Chen A-Z. Supercritical carbon dioxide-assisted nanonization of dihydromyricetin for anticancer and bacterial biofilm inhibition efficacies. J. Supercrit. Fluids 2020 161 104840 104840 10.1016/j.supflu.2020.104840
    [Google Scholar]
  25. Li H. Li Q. Liu Z. Yang K. Chen Z. Cheng Q. Wu L. The versatile effects of dihydromyricetin in health. Evid. Based Complement. Alternat. Med. 2017 2017 1 1053617 10.1155/2017/1053617 28947908
    [Google Scholar]
  26. Lyu Q. Chen L. Lin S. Cao H. Teng H. A designed self-microemulsion delivery system for dihydromyricetin and its dietary intervention effect on high-fat-diet fed mice. Food Chem. 2022 390 132954 10.1016/j.foodchem.2022.132954 35551031
    [Google Scholar]
  27. Dalcin A.J.F. Roggia I. Felin S. Vizzotto B.S. Mitjans M. Vinardell M.P. Schuch A.P. Ourique A.F. Gomes P. UVB photoprotective capacity of hydrogels containing dihydromyricetin nanocapsules to UV-induced DNA damage. Colloids Surf. B Biointerfaces 2021 197 111431 10.1016/j.colsurfb.2020.111431 33142255
    [Google Scholar]
  28. Xu H. Zhao T. Liu F. Zhang Y. Xie Y. Xiao X. Zhang Y. Dihydromyricetin solid dispersion: Preparation, characterization, and preservative effects on sturgeon fillets stored at 4 °C. Lebensm. Wiss. Technol. 2023 174 114387 10.1016/j.lwt.2022.114387
    [Google Scholar]
  29. Zhang A. Wang T. Huang F. Yang M. Jiang X. Chen X. Dihydromyricetin encapsulated gelatin-dialdehyde-β-cyclodextrin hydrogels for antibacterial application. J. Appl. Polym. Sci. 2023 140 1 9 10.1002/app.54503
    [Google Scholar]
  30. Jiang W. Sui Z.J. Zhu Z.Y. Effect of Cordyceps militaris polysaccharide on the solubility, stability and antioxidant properties of dihydromyricetin. Process Biochem. 2023 130 606 613 10.1016/j.procbio.2023.05.028
    [Google Scholar]
  31. Dong J. Wang S. Mao J. Wang Z. Zhao S. Ren Q. Kang J. Ye J. Xu X. Zhu Y. Zhang Q. Preparation of Dihydromyricetin-Loaded Self-Emulsifying Drug Delivery System and Its Anti-Alcoholism Effect. Pharmaceutics 2023 15 9 2296 10.3390/pharmaceutics15092296 37765265
    [Google Scholar]
  32. Enaru B. Fărcaş A. Stănilă A. Socaci S. Diaconeasa Z. Novel Methods for Liposome Formulation: Advancements and Innovations. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2023 80 2 1 13 10.15835/buasvmcn‑fst:2023.0004
    [Google Scholar]
  33. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  34. Sawant G.S. Sutar K.V. Kanekar A.S. Liposome: A Novel Drug Delivery System. International Journal of Research and Review 2021 8 4 252 268 10.52403/ijrr.20210433
    [Google Scholar]
  35. Chai C. Park J. Food liposomes: Structures, components, preparations, and applications. Food Chem. 2024 432 137228 10.1016/j.foodchem.2023.137228 37633138
    [Google Scholar]
  36. Ohishi K. Tsuchiya K. Ogura T. Ebisawa A. Sekine A. Masubuchi Y. Akamatsu M. Sakai K. Abe M. Sakai H. Characterization of lecithin liposomes prepared by polyol dilution method using 1,3-butylene glycol. Colloids Surf. A Physicochem. Eng. Asp. 2022 650 129592 10.1016/j.colsurfa.2022.129592
    [Google Scholar]
  37. Akram N. Afzaal M. Saeed F. Shah Y.A. Faisal Z. Asghar A. Ateeq H. Nayik G.A. Wani S.H. Hussain M. Asif Shah M. Khaneghah A.M. Liposomes: a promising delivery system for active ingredients in food and nutrition. Int. J. Food Prop. 2023 26 1 2476 2492 10.1080/10942912.2023.2247578
    [Google Scholar]
  38. Huang Z. Meng H. Xu L. Pei X. Xiong J. Wang Y. Zhan X. Li S. He Y. Liposomes in the cosmetics: present and outlook. J. Liposome Res. 2024 34 4 715 727 10.1080/08982104.2024.2341139 38712581
    [Google Scholar]
  39. Mohammadi A. Jafari S.M. Mahoonak A.S. Ghorbani M. Liposomal/nanoliposomal encapsulation of food-relevant enzymes and their application in the food industry. Food Bioprocess Technol. 2021 14 1 23 38 10.1007/s11947‑020‑02513‑x
    [Google Scholar]
  40. Cerqueira-Coutinho C. dos Santos E.P. Mansur C.R.E. Niosomes as Nano-Delivery Systems in the Pharmaceutical Field. Crit. Rev. Ther. Drug Carrier Syst. 2016 33 2 195 212 10.1615/CritRevTherDrugCarrierSyst.2016016167 27651102
    [Google Scholar]
  41. Senjab R.M. AlSawaftah N. Abuwatfa W.H. Husseini G.A. Advances in liposomal nanotechnology: from concept to clinics. RSC Pharmaceutics 2024 1 5 928 948 10.1039/D4PM00176A
    [Google Scholar]
  42. Eskandari V. Sadeghi M. Hadi A. Physical and chemical properties of nano-liposome, application in nano medicine. J. Comput. Appl. Mech. 2021 52 751 767
    [Google Scholar]
  43. Fakhravar Z. Ebrahimnejad P. Daraee H. Akbarzadeh A. Nanoliposomes: Synthesis methods and applications in cosmetics. J. Cosmet. Laser Ther. 2016 18 3 174 181 10.3109/14764172.2015.1039040 25968161
    [Google Scholar]
  44. Lombardo D. Kiselev M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  45. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A Comprehensive Review on Novel Liposomal Methodologies, Commercial Formulations, Clinical Trials and Patents. Bionanoscience 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  46. Subramani T. Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020 57 10 3545 3555 10.1007/s13197‑020‑04360‑2 32903987
    [Google Scholar]
  47. Sala M. Diab R. Elaissari A. Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018 535 1-2 1 17 10.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  48. Dave J. Jani H. Patel Y. Mohite P. Puri A. Chidrawar V.R. Datta D. Bandi S.P. Ranch K. Singh S. Polyol-modified deformable liposomes fortified contact lenses for improved ocular permeability. Nanomedicine (Lond.) 2025 20 7 649 662 10.1080/17435889.2025.2463867 39963803
    [Google Scholar]
  49. Choudhury A. Kirti A. Lenka S.S. Naser S.S. Sinha A. Kumari S. Kaushik N.K. Ghosh A. Verma S.K. Strategic advances in liposomes technology: translational paradigm in transdermal delivery for skin dermatosis. J. Nanobiotechnology 2025 23 1 576 10.1186/s12951‑025‑03660‑z 40835930
    [Google Scholar]
  50. Chelliah R. Rubab M. Vijayalakshmi S. Karuvelan M. Barathikannan K. Oh D.H. Liposomes for drug delivery: Classification, therapeutic applications, and limitations. Next Nanotechnology 2025 8 100209 100209 10.1016/j.nxnano.2025.100209
    [Google Scholar]
  51. Du G. Sun X. Ethanol Injection Method for Liposome Preparation. Methods Mol. Biol. 2023 2622 65 70 10.1007/978‑1‑0716‑2954‑3_5 36781750
    [Google Scholar]
  52. Fan L. Dandan Z. Yuanting Y. Hongchao H. Yunbo T. Wenxiong W. Xugang S. Fujie Y. Preparation, characterization and antibacterial properties of multivesicular dihydromyricetin-coated liposomes. CIESC Journal 2021 72 2223 2232
    [Google Scholar]
  53. Luo F. Zeng D. Chen R. Zafar A. Weng L. Wang W. Tian Y. Hasan M. Shu X. PEGylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism. Food Funct. 2021 12 19 9007 9017 10.1039/D1FO01943K 34382988
    [Google Scholar]
  54. Zhou X. Yi L. Lang H. Zhang J. Zhang Q. Yu L. Zhu J. Mi M. Dihydromyricetin-Encapsulated Liposomes Inhibit Exhaustive Exercise-Induced Liver Inflammation by Orchestrating M1/M2 Macrophage Polarization. Front. Pharmacol. 2022 13 887263 10.3389/fphar.2022.887263 35721117
    [Google Scholar]
  55. Dantong W. Preparation and evaluation of dihydromyricetin loadedmicro/nano carriers.. Thesis Southeast University 2019 1 91
    [Google Scholar]
  56. Du L. Lu H. Xiao Y. Guo Z. Li Y. Protective effect and pharmacokinetics of dihydromyricetin nanoparticles on oxidative damage of myocardium. PLoS One 2024 19 4 e0301036 10.1371/journal.pone.0301036 38625956
    [Google Scholar]
  57. Xiaoyan H.U.A.N.G. Guangren, Z.H.A.O.; Yurui, Z.H.E.N.G. al, e. Parameters optimization in threshing and redrying process based on random forest and orthogonal experiment design. J. Phys. Conf. Ser. 2020 1624 1 7
    [Google Scholar]
  58. Guner S. Oztop M.H. Food grade liposome systems: Effect of solvent, homogenization types and storage conditions on oxidative and physical stability. Colloids Surf. A Physicochem. Eng. Asp. 2017 513 468 478 10.1016/j.colsurfa.2016.11.022
    [Google Scholar]
  59. Cizmar P. Yuana Y. Detection and Characterization of Extracellular Vesicles by Transmission and Cryo-Transmission Electron Microscopy. Methods Mol. Biol. 2017 1660 221 232 10.1007/978‑1‑4939‑7253‑1_18 28828660
    [Google Scholar]
  60. Catalan-Figueroa J. Boisset C.B. Jara M.O. Flores M.E. Moreno-Villoslada I. Fiedler J.L. Morales J.O. A mechanistic approach for the optimization of loperamide loaded nanocarriers characterization: Diafiltration and mathematical modeling advantages. Eur. J. Pharm. Sci. 2018 125 215 222 10.1016/j.ejps.2018.10.002 30312746
    [Google Scholar]
  61. Liu Z. Liu Y. Wu Z. Liu B. Zhao L. Yin T. Zhang Y. He H. Gou J. Tang X. Gao S. Research on the loading and release kinetics of the vincristine sulfate liposomes and its anti-breast cancer activity. Int. J. Pharm. X 2024 7 100258 10.1016/j.ijpx.2024.100258 38912324
    [Google Scholar]
  62. Liang Y. Gillies G. Matia-Merino L. Ye A. Patel H. Golding M. Structure and stability of sodium-caseinate-stabilized oil-in-water emulsions as influenced by heat treatment. Food Hydrocoll. 2017 66 307 317 10.1016/j.foodhyd.2016.11.041
    [Google Scholar]
  63. Tefas L.R. Toma I. Sesarman A. Banciu M. Jurj A. Berindan-Neagoe I. Rus L. Stiufiuc R. Tomuta I. Co-delivery of gemcitabine and salinomycin in PEGylated liposomes for enhanced anticancer efficacy against colorectal cancer. J. Liposome Res. 2023 33 3 234 250 10.1080/08982104.2022.2153139 36472146
    [Google Scholar]
  64. Alani J.I. Davis M.D.P. Yiannias J.A. Allergy to Cosmetics. Dermatitis 2013 24 6 283 290 10.1097/DER.0b013e3182a5d8bc 24201464
    [Google Scholar]
  65. Silva V. Falco V. Dias M.I. Barros L. Silva A. Capita R. Alonso-Calleja C. Amaral J.S. Igrejas G. Ferreira C F R. I.; Poeta, P. Evaluation of the Phenolic Profile of Castanea sativa Mill. By-Products and Their Antioxidant and Antimicrobial Activity against Multiresistant Bacteria. Antioxidants 2020 9 1 87 10.3390/antiox9010087 31968590
    [Google Scholar]
  66. Fan L. He C. Jiang L. Bi Y. Dong Y. Jia Y. Brief analysis of causes of sensitive skin and advances in evaluation of anti‐allergic activity of cosmetic products. Int. J. Cosmet. Sci. 2016 38 2 120 127 10.1111/ics.12283 26444676
    [Google Scholar]
  67. Ghosh S. Blankschtein D. The role of sodium dodecyl sulfate (SDS) micelles in inducing skin barrier perturbation in the presence of glycerol. J. Cosmet. Sci. 2007 58 2 109 133 17520152
    [Google Scholar]
  68. Cheng C.T. Kung Y. Chen H.Y. Chang K.H. Chen R.L.C. Cheng T.J. Capacitive Biosensing of Skin Irritants Using a Lanolin-Based Artificial Stratum Corneum Model. Biosensors (Basel) 2025 15 9 564 10.3390/bios15090564 41002304
    [Google Scholar]
  69. Yoo S. Kim J. Jeong E.T. Hwang S.J. Kang N.G. Lee J. Penetration rates into the stratum corneum layer: A novel quantitative indicator for assessing skin barrier function. Skin Res. Technol. 2024 30 3 e13655 10.1111/srt.13655 38481085
    [Google Scholar]
  70. K, PJ; V, PY Emerging technologies for nanoparticle manufacturing. Cham, Switzerland Springer 2021 109 128
    [Google Scholar]
  71. Ghamari M. Suvish C. Hwang See C. Yu H. Anitha T. Balamurugan V.T. Velusamy S. Hughes D. Sundaram S. Nanocellulose Extraction from Biomass Waste: Unlocking Sustainable Pathways for Biomedical Applications. Chem. Rec. 2025 25 5 e202400249 10.1002/tcr.202400249 40035542
    [Google Scholar]
  72. Yun J.S. Hwangbo S.A. Jeong Y.G. Preparation of Uniform Nano Liposomes Using Focused Ultrasonic Technology. Nanomaterials (Basel) 2023 13 19 2618 10.3390/nano13192618 37836259
    [Google Scholar]
  73. Kotyńska J. Naumowicz M. Monitoring changes in the zeta potential and the surface charge of human glioblastoma cells and phosphatidylcholine liposomes induced by curcumin as a function of pH. Chem. Biol. Interact. 2024 402 111215 10.1016/j.cbi.2024.111215 39197812
    [Google Scholar]
  74. Chiba K. Harada Y. Matsumoto H. Matsui H. Ito N. Sekine T. Nagamine K. Screen-printed wearable skin surface pH sensor for real-time monitoring of the buffering capacity of human skin. Anal. Bioanal. Chem. 2024 416 7 1635 1645 10.1007/s00216‑024‑05165‑4 38294529
    [Google Scholar]
  75. Couteau C. Coiffard L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016 3 3 27 27 10.3390/cosmetics3030027
    [Google Scholar]
  76. Zhu J. Zheng Y. Ge Y. Study on the application of Aloe vera in cosmetology and clinical treatment of skin diseases. Journal of Holistic Integrative Pharmacy 2024 5 4 299 304 10.1016/j.jhip.2024.11.006
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010422759251118151659
Loading
/content/journals/cpb/10.2174/0113892010422759251118151659
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test