Skip to content
2000
image of Effects of the Association of Percutaneous Collagen Induction and Gold Nanoparticles With Curcumin on the Epithelial Inflammatory Response in Wistar Rats

Abstract

Introduction

This research aimed to investigate the effects of biosynthesized gold nanoparticles (GNPs) combined with curcumin (Curcuma longa L.) on inflammatory and oxidative stress parameters induced by percutaneous collagen induction (PCI) in Wistar rats.

Methods

Sixty rats were separated into five different groups (n=12): I. Sham Group; II. PCI Group; III. PCI+GNPs Group; IV. PCI+Cur Group; V. PCI+GNPs-Cur Group. Then, PCI, Cur, and/or GNPs were applied topically to the dorsal regions. PCI and topical actives were used at three different times with 14-day intervals between them. Euthanasia was performed 14 days after the last treatment.

Results

When evaluating pro-inflammatory cytokines, all treatment groups showed a significant decrease compared to the PCI group. In the analysis of anti-inflammatory cytokines, the PCI+GNPs-Cur group showed an increase compared to the PCI group. After assessing oxidants (ROS and NO) and antioxidants (SOD and GSH), the PCI+Cur, PCI+GNPs, and PCI+GNPs-Cur groups exhibited decreased oxidant levels and increased antioxidant levels compared to the PCI group.

Discussion

When evaluating pro-inflammatory cytokines, all treatment groups showed a significant decrease compared to the PCI group. In the analysis of anti-inflammatory cytokines, the PCI+GNPs-Cur group exhibited an increase compared to the PCI group. After assessing oxidants (ROS and NO) and antioxidants (SOD and GSH), the PCI+Cur, PCI+GNPs, and PCI+GNPs-Cur groups demonstrated decreased oxidant levels and increased antioxidant levels relative to the PCI group.

Conclusion

The results of the present study demonstrate that the anti-inflammatory and antioxidant effects are enhanced by the association of GNPs with Cur, reducing the inflammatory process caused by PCI.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010408429251015065139
2025-12-16
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cpb/10.2174/0113892010408429251015065139/BMS-CPB-2025-183.html?itemId=/content/journals/cpb/10.2174/0113892010408429251015065139&mimeType=html&fmt=ahah

References

  1. Weller R.P.J.B. Hunter H.J.A. Mann M.W. Clinical dermatology. Chichester, West Sussex Wiley Blackwell 2015
    [Google Scholar]
  2. Gosain A. DiPietro L.A. Aging and wound healing. World J. Surg. 2004 28 3 321 326 10.1007/s00268‑003‑7397‑6 14961191
    [Google Scholar]
  3. Li B. Wang J.H.C. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viability 2011 20 4 108 120 10.1016/j.jtv.2009.11.004 19995679
    [Google Scholar]
  4. Rittié L. Fisher G.J. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 2015 5 1 a015370 10.1101/cshperspect.a015370 25561721
    [Google Scholar]
  5. Badran M.M. Kuntsche J. Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 2009 36 4-5 511 523 10.1016/j.ejps.2008.12.008 19146954
    [Google Scholar]
  6. Peng S. Cheng L. Wu Q. Li Y. Ran L. Wang W. Huang K. Zhu R. Xue S. Zhou C. Zhu W. Cheng B. Fu X. Wang R. A modified hyaluronic acid–based dissolving microneedle loaded with daphnetin improved the treatment of psoriasis. Front. Bioeng. Biotechnol. 2022 10 900274 10.3389/fbioe.2022.900274 35966027
    [Google Scholar]
  7. Aust M.C. Reimers K. Repenning C. Stahl F. Jahn S. Guggenheim M. Schwaiger N. Gohritz A. Vogt P.M. Percutaneous collagen induction: Minimally invasive skin rejuvenation without risk of hyperpigmentation-fact or fiction? Plast. Reconstr. Surg. 2008 122 5 1553 1563 10.1097/PRS.0b013e318188245e 18971740
    [Google Scholar]
  8. Alster T.S. Graham P.M. Microneedling: A review and practical guide. Dermatol. Surg. 2018 44 3 397 404 10.1097/DSS.0000000000001248 28796657
    [Google Scholar]
  9. Alessa D. Bloom J.D. Microneedling options for skin rejuvenation, including non–temperature-controlled fractional microneedle radiofrequency treatments. Facial Plast. Surg. Clin. North Am. 2020 28 1 1 7 10.1016/j.fsc.2019.09.001 31779933
    [Google Scholar]
  10. Schmitt L. Marquardt Y. Amann P. Heise R. Huth L. Wagner-Schiffler S. Huth S. Baron J.M. Comprehensive molecular characterization of microneedling therapy in a human three‐dimensional skin model. PLoS One 2018 13 9 0204318 10.1371/journal.pone.0204318 30235356
    [Google Scholar]
  11. Woodfin A. Voisin M.B. Nourshargh S. Recent developments and complexities in neutrophil transmigration. Curr. Opin. Hematol. 2010 17 1 9 17 10.1097/MOH.0b013e3283333930 19864945
    [Google Scholar]
  12. Matés J.M. Segura J.A. Alonso F.J. Márquez J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic. Biol. Med. 2010 49 9 1328 1341 10.1016/j.freeradbiomed.2010.07.028 20696237
    [Google Scholar]
  13. Wu Y.S. Chen S.N. Apoptotic cell: Linkage of inflammation and wound healing. Front. Pharmacol. 2014 5 1 10.3389/fphar.2014.00001 24478702
    [Google Scholar]
  14. Guo S. DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010 89 3 219 229 10.1177/0022034509359125 20139336
    [Google Scholar]
  15. Ashcroft K.J. Syed F. Bayat A. Site-specific keloid fibroblasts alter the behaviour of normal skin and normal scar fibroblasts through paracrine signalling. PLoS One 2013 8 12 75600 10.1371/journal.pone.0075600 24348987
    [Google Scholar]
  16. Goel A. Kunnumakkara A.B. Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008 75 4 787 809 10.1016/j.bcp.2007.08.016 17900536
    [Google Scholar]
  17. Araújo C.A.C. Leon L.L. Biological activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz 2001 96 5 723 728 10.1590/S0074‑02762001000500026 11500779
    [Google Scholar]
  18. Gupta S.C. Patchva S. Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013 15 1 195 218 10.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  19. Anand P. Kunnumakkara A.B. Newman R.A. Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007 4 6 807 818 10.1021/mp700113r 17999464
    [Google Scholar]
  20. Schraufstätter E. Bernt H. Antibacterial action of curcumin and related compounds. Nature 1949 164 4167 456 457 10.1038/164456a0 18140450
    [Google Scholar]
  21. Oppenheimer A. Turmeric (Curcumin) in biliary diseases. Lancet 1937 229 5924 619 621 10.1016/S0140‑6736(00)98193‑5
    [Google Scholar]
  22. Aggarwal B.B. Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci. 2009 30 2 85 94 10.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  23. Carolina Alves R. Perosa Fernandes R. Fonseca-Santos B. Damiani Victorelli F. Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit. Rev. Anal. Chem. 2019 49 2 138 149 10.1080/10408347.2018.1489216 30252504
    [Google Scholar]
  24. Khan S. Imran M. Butt T.T. Ali Shah S.W. Sohail M. Malik A. Das S. Thu H.E. Adam A. Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci. Technol. 2018 80 8 22 10.1016/j.tifs.2018.07.026
    [Google Scholar]
  25. Hao M. Chu Y. Lei J. Yao Z. Wang P. Chen Z. Wang K. Sang X. Han X. Wang L. Cao G. Pharmacological mechanisms and clinical applications of curcumin: Update. Aging Dis. 2023 14 3 716 749 10.14336/AD.2022.1101 37191432
    [Google Scholar]
  26. Mahmoudi A. Kesharwani P. Majeed M. Teng Y. Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf. B Biointerfaces 2022 215 112481 10.1016/j.colsurfb.2022.112481 35453063
    [Google Scholar]
  27. Muller A.P. Ferreira G.K. da Silva S. Nesi R.T. de Bem Silveira G. Mendes C. Pinho R.A. da Silva Paula M.M. Silveira P.C.L. Safety protocol for the gold nanoparticles administration in rats. Mater. Sci. Eng. C 2017 77 77 1145 1150 10.1016/j.msec.2017.04.027 28531990
    [Google Scholar]
  28. Akturk O. Kismet K. Yasti A.C. Kuru S. Duymus M.E. Kaya F. Caydere M. Hucumenoglu S. Keskin D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl. 2016 31 2 283 301 10.1177/0885328216644536 27095659
    [Google Scholar]
  29. Güngör S. Kahraman E. Nanocarriers mediated cutaneous drug delivery. Eur. J. Pharm. Sci. 2021 158 105638 10.1016/j.ejps.2020.105638 33176190
    [Google Scholar]
  30. Despotopoulou D. Lagopati N. Pispas S. Gazouli M. Demetzos C. Pippa N. The technology of transdermal delivery nanosystems: From design and development to preclinical studies. Int. J. Pharm. 2022 611 121290 10.1016/j.ijpharm.2021.121290 34788674
    [Google Scholar]
  31. Kalave S. Chatterjee B. Shah P. Misra A. Transdermal delivery of macromolecules using nano lipid carriers. Curr. Pharm. Des. 2021 27 42 4330 4340 10.2174/1381612827666210820095330 34414868
    [Google Scholar]
  32. Ruan S. Zhang Y. Feng N. Microneedle-mediated transdermal nanodelivery systems: A review. Biomater. Sci. 2021 9 24 8065 8089 10.1039/D1BM01249E 34752590
    [Google Scholar]
  33. Ahmed Saeed AL-Japairai, K.; Mahmood, S.; Hamed Almurisi, S.; Reddy Venugopal, J.; Rebhi Hilles, A.; Azmana, M.; Raman, S. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020 587 119673 10.1016/j.ijpharm.2020.119673 32739388
    [Google Scholar]
  34. Ahmed S. Annu Ikram S. Yudha S S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B 2016 161 141 153 10.1016/j.jphotobiol.2016.04.034 27236049
    [Google Scholar]
  35. Li S. Shen Y. Xie A. Yu X. Qiu L. Zhang L. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry -. Green Chem. 2007 9
    [Google Scholar]
  36. Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Garner P. Holgate S.T. Howells D.W. Karp N.A. Lazic S.E. Lidster K. MacCallum C.J. Macleod M. Pearl E.J. Petersen O.H. Rawle F. Reynolds P. Rooney K. Sena E.S. Silberberg S.D. Steckler T. Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020 40 9 1769 1777 10.1177/0271678X20943823 32663096
    [Google Scholar]
  37. Turkevich J. Friedman L. Solomon E. Wrightson F.M. Determination of position of tracer atom in a molecule; mass spectra of some deuterated hydrocarbons. J. Am. Chem. Soc. 1948 70 8 2638 2643 10.1021/ja01188a008 18876973
    [Google Scholar]
  38. Thirupathi A. Guzzatti M.F.M. Corrêa M.E.A.B. Venturini L.M. Casagrande L.R. Lima I.R. Da Costa C. De Pieri E. Tietbohl L.T.W. Feuser P.E. Machado-de-Ávila R.A. Gu Y. Silveira P.C.L. Green synthesis of gold nanoparticles with curcumin or açai in the tissue repair of palatal wounds. Antioxidants 2023 12 8 1574 10.3390/antiox12081574 37627569
    [Google Scholar]
  39. Russell W.M.S. Burch R.L. The principles of humane experimental technique. London 1959
    [Google Scholar]
  40. Percie du Sert N. Bamsey I. Bate S.T. Berdoy M. Clark R.A. Cuthill I. Fry D. Karp N.A. Macleod M. Moon L. Stanford S.C. Lings B. The experimental design assistant. PLoS Biol. 2017 15 9 2003779 10.1371/journal.pbio.2003779 28957312
    [Google Scholar]
  41. Gabbai-Armelin P.R. Wilian Kido H. Fernandes K.R. Fortulan C.A. Muniz Renno A.C. Effects of bio-inspired bioglass/collagen/magnesium composites on bone repair. J. Biomater. Appl. 2019 34 2 261 272 10.1177/0885328219845594 31027447
    [Google Scholar]
  42. Casagrande L.R. Porto G.D. Colares M.C. Venturini L.M. Silveira G.B. Mendes C. Corrêa M.E.A.B. Lima I.R. Feuser P.E. Machado-de-Ávila R.A. Silveira P.C.L. Green synthesis of gold nanoparticles modulates lipopolysaccharide‐induced lung inflammation in Wistar rats. Basic Clin. Pharmacol. Toxicol. 2023 132 6 472 484 10.1111/bcpt.13854 36882317
    [Google Scholar]
  43. Sharma S. Naura A.S. Efficacy of the curcumin to ameliorate ovalbumin induced atopic dermatitis and progression of atopic march in mice. FASEB J. 2020 34 S1 1 1 10.1096/fasebj.2020.34.s1.05092
    [Google Scholar]
  44. Corrêa M.E.A.B. dos Santos Haupenthal D.P. Mendes C. Zaccaron R.P. de Roch Casagrande L. Venturini L.M. Porto G.D. Bittencourt J.V.S. de Souza Silva J.I. de Sousa Mariano S. de Andrade T.A.M. Silveira P.C.L. Effects of percutaneous collagen induction therapy associated with hyaluronic acid on inflammatory response, oxidative stress, and collagen production. Inflammation 2020 43 6 2232 2244 10.1007/s10753‑020‑01291‑0 32647956
    [Google Scholar]
  45. Dong J. Sulik K.K. Chen S. The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol. Lett. 2010 193 1 94 100 10.1016/j.toxlet.2009.12.012 20026259
    [Google Scholar]
  46. Chae S. Lee M. Kim S.W. Bae Y.H. Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials 2004 25 5 843 850 10.1016/S0142‑9612(03)00605‑7 14609673
    [Google Scholar]
  47. Aksenov M.Y. Markesbery W.R. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci. Lett. 2001 302 2-3 141 145 10.1016/S0304‑3940(01)01636‑6 11290407
    [Google Scholar]
  48. Levine R.L. Garland D. Oliver C.N. Amici A. Climent I. Lenz A.G. Ahn B.W. Shaltiel S. Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990 186 464 478 10.1016/0076‑6879(90)86141‑H 1978225
    [Google Scholar]
  49. Bannister J.V. Calabrese L. Assays for superoxide dismutase. Methods Biochem. Anal. 1987 32 279 312 10.1002/9780470110539.ch5 3033431
    [Google Scholar]
  50. Hissin P.J. Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976 74 1 214 226 10.1016/0003‑2697(76)90326‑2 962076
    [Google Scholar]
  51. Lowry O. Rosebrough N. Farr A.L. Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951 193 1 265 275 10.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  52. Yamaguchi H.L. Yamaguchi Y. Peeva E. Role of innate immunity in allergic contact dermatitis: An update. Int. J. Mol. Sci. 2023 24 16 12975 10.3390/ijms241612975 37629154
    [Google Scholar]
  53. Patel S. Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Curr. Allergy Asthma Rep. 2018 18 11 63 10.1007/s11882‑018‑0817‑3 30267163
    [Google Scholar]
  54. Gabay C. Lamacchia C. Palmer G. IL-1 pathways in inflammation and human diseases. Nat. Rev. Rheumatol. 2010 6 4 232 241 10.1038/nrrheum.2010.4 20177398
    [Google Scholar]
  55. Chang M.C. Lin L.D. Zwei-Ching Chang J. Huang C.F. Chuang F.H. Lee J.J. Jeng P.Y. Wang T.M. Jeng J.H. Regulation of vascular cell adhesion molecule-1 in dental pulp cells by interleukin-1β: The role of prostanoids. J. Endod. 2012 38 6 774 779 10.1016/j.joen.2012.02.030 22595111
    [Google Scholar]
  56. Epstein F.H. Weiss S.J. Tissue destruction by neutrophils. N. Engl. J. Med. 1989 320 6 365 376 10.1056/NEJM198902093200606 2536474
    [Google Scholar]
  57. Mendes C. Thirupathi A. Zaccaron R.P. Corrêa M.E.A.B. Bittencourt J.V.S. Casagrande L.R. de Lima A.C.S. de Oliveira L.L. de Andrade T.A.M. Gu Y. Feuser P.E. Machado-de-Ávila R.A. Silveira P.C.L. Microcurrent and gold nanoparticles combined with hyaluronic acid accelerates wound healing. Antioxidants 2022 11 11 2257 10.3390/antiox11112257 36421443
    [Google Scholar]
  58. Sumbayev V.V. Yasinska I.M. Garcia C.P. Gilliland D. Lall G.S. Gibbs B.F. Bonsall D.R. Varani L. Rossi F. Calzolai L. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small 2013 9 3 472 477 10.1002/smll.201201528 23112137
    [Google Scholar]
  59. Jeon K.I. Byun M.S. Jue D.M. Gold compound auranofin inhibits IκB kinase (IKK) by modifying Cys-179 of IKKβ subunit. Exp. Mol. Med. 2003 35 2 61 66 10.1038/emm.2003.9 12754408
    [Google Scholar]
  60. Qiu B. Xu X. Yi P. Hao Y. Curcumin reinforces MSC‐derived exosomes in attenuating osteoarthritis via modulating the miR‐124/NF‐kB and miR‐143/ROCK1/TLR9 signalling pathways. J. Cell. Mol. Med. 2020 24 18 10855 10865 10.1111/jcmm.15714 32776418
    [Google Scholar]
  61. Kunnumakkara A.B. Bordoloi D. Padmavathi G. Monisha J. Roy N.K. Prasad S. Aggarwal B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol. 2017 174 11 1325 1348 10.1111/bph.13621 27638428
    [Google Scholar]
  62. Ghosh S. Banerjee S. Sil P.C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem. Toxicol. 2015 83 111 124 10.1016/j.fct.2015.05.022 26066364
    [Google Scholar]
  63. Jablonski K.A. Amici S.A. Webb L.M. Ruiz-Rosado J.D. Popovich P.G. Partida-Sanchez S. Guerau-de-Arellano M. Novel markers to delineate murine m1 and m2 macrophages. PLoS One 2015 10 12 0145342 10.1371/journal.pone.0145342 26699615
    [Google Scholar]
  64. Stein M. Keshav S. Harris N. Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 1992 176 1 287 292 10.1084/jem.176.1.287 1613462
    [Google Scholar]
  65. Yao M. Mao X. Zhang Z. Xi Y. Gan H. Cui F. Shao S. Tumor-derived CircRNA_102191 promotes gastric cancer and facilitates M2 macrophage polarization. Cell Cycle 2023 22 18 2003 2017 10.1080/15384101.2023.2271341 37872772
    [Google Scholar]
  66. Shi Y. Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003 113 6 685 700 10.1016/S0092‑8674(03)00432‑X 12809600
    [Google Scholar]
  67. Molnar V. Matišić V. Kodvanj I. Bjelica R. Jeleč Ž. Hudetz D. Rod E. Čukelj F. Vrdoljak T. Vidović D. Starešinić M. Sabalić S. Dobričić B. Petrović T. Antičević D. Borić I. Košir R. Zmrzljak U.P. Primorac D. Cytokines and Chemokines Involved in Osteoarthritis Pathogenesis. Int. J. Mol. Sci. 2021 22 17 9208 10.3390/ijms22179208 34502117
    [Google Scholar]
  68. Filho M.C.B. dos Santos Haupenthal D.P. Zaccaron R.P. de Bem Silveira G. de Roch Casagrande L. Lupselo F.S. Alves N. de Sousa Mariano S. do Bomfim F.R.C. de Andrade T.A.M. Machado-de-Ávila R.A. Silveira P.C.L. Intra‐articular treatment with hyaluronic acid associated with gold nanoparticles in a mechanical osteoarthritis model in Wistar rats. J. Orthop. Res. 2021 39 12 2546 2555 10.1002/jor.25008 33580538
    [Google Scholar]
  69. Farhana A. Alsrhani A. Rasheed N. Rasheed Z. Gold nanoparticles attenuate the interferon-γ induced SOCS1 expression and activation of NF-κB p65/50 activity via modulation of microRNA-155-5p in triple-negative breast cancer cells. Front. Immunol. 2023 14 1228458 10.3389/fimmu.2023.1228458 37720228
    [Google Scholar]
  70. Bertoncini-Silva C. Fassini P.G. Carlos D. de Paula N.A. Ramalho L.N.Z. Rodrigues Giuliani M. Pereira Í.S. Guimarães J.B. Suen V.M.M. The dose‐dependent effect of curcumin supplementation on inflammatory response and gut microbiota profile in high‐fat fed C57BL/6 Mice. Mol. Nutr. Food Res. 2023 67 23 2300378 10.1002/mnfr.202300378 37818762
    [Google Scholar]
  71. Amiri Z. Jalili S. Tarahomi M. Eslami M. Yazdanpanah E. Baharlou R. Esmaeili S.A. Yousefi B. Haghmorad D. Curcumin’s spice-infused therapeutic promise: Disease severity alleviation in a mouse model of multiple sclerosis via modulation of immune responses. Mol. Biol. Rep. 2023 50 11 8843 8853 10.1007/s11033‑023‑08781‑y 37660318
    [Google Scholar]
  72. Sies H. Belousov V.V. Chandel N.S. Davies M.J. Jones D.P. Mann G.E. Murphy M.P. Yamamoto M. Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022 23 7 499 515 10.1038/s41580‑022‑00456‑z 35190722
    [Google Scholar]
  73. Sies H. Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020 21 7 363 383 10.1038/s41580‑020‑0230‑3 32231263
    [Google Scholar]
  74. Golubkova A. Leiva T. Snyder K. Schlegel C. Bonvicino S.M. Agbaga M.P. Brush R.S. Hansen J.M. Vitiello P.F. Hunter C.J. Response of the glutathione (GSH) antioxidant defense system to oxidative injury in necrotizing enterocolitis. Antioxidants 2023 12 7 1385 10.3390/antiox12071385 37507924
    [Google Scholar]
  75. Begum R. Thota S. Abdulkadir A. Kaur G. Bagam P. Batra S. NADPH oxidase family proteins: Signaling dynamics to disease management. Cell. Mol. Immunol. 2022 19 6 660 686 10.1038/s41423‑022‑00858‑1 35585127
    [Google Scholar]
  76. Benatti Justino A. Prado Bittar V. Luiza Borges A. Sol Peña Carrillo M. Sommerfeld S. Aparecida Cunha Araújo I. Maria da Silva N. Beatriz Fonseca B. Christine Almeida A. Salmen Espindola F. Curcumin-functionalized gold nanoparticles attenuate AAPH-induced acute cardiotoxicity via reduction of lipid peroxidation and modulation of antioxidant parameters in a chicken embryo model. Int. J. Pharm. 2023 646 123486 10.1016/j.ijpharm.2023.123486 37802259
    [Google Scholar]
  77. Shcherbakov V. Denisov S.A. Mostafavi M. A mechanistic study of gold nanoparticles catalysis of O2 reduction by ascorbate and hydroethidine, investigating reactive oxygen species reactivity. RSC Advances 2023 13 13 8557 8563 10.1039/D3RA00443K 36936851
    [Google Scholar]
  78. Galvan-Alvarez V. Gallego-Selles A. Martinez-Canton M. García-Gonzalez E. Gelabert-Rebato M. Ponce-Gonzalez J.G. Larsen S. Morales-Alamo D. Losa-Reyna J. Perez-Suarez I. Dorado C. Perez-Valera M. Holmberg H.C. Boushel R. de Pablos Velasco P. Helge J.W. Martin-Rincon M. Calbet J.A.L. Antioxidant enzymes and Nrf2/Keap1 in human skeletal muscle: Influence of age, sex, adiposity and aerobic fitness. Free Radic. Biol. Med. 2023 209 Pt 2 282 291 10.1016/j.freeradbiomed.2023.10.393 37858747
    [Google Scholar]
  79. Serra M.F. Cotias A.C. Pimentel A.S. Arantes A.C.S. Pires A.L.A. Lanzetti M. Hickmann J.M. Barreto E. Carvalho V.F. Silva P.M.R. Cordeiro R.S.B. Martins M.A. Gold nanoparticles inhibit steroid-insensitive asthma in mice preserving histone deacetylase 2 and nrf2 pathways. Antioxidants 2022 11 9 1659 10.3390/antiox11091659 36139733
    [Google Scholar]
  80. Chiang M.C. Nicol C.J.B. Lin C.H. Chen S.J. Yen C. Huang R.N. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells exposed to amyloid-beta peptide. Neurochem. Int. 2021 145 104992 10.1016/j.neuint.2021.104992 33609598
    [Google Scholar]
  81. Haupenthal D.P.S. Possato J.C. Zaccaron R.P. Mendes C. Rodrigues M.S. Nesi R.T. Pinho R.A. Feuser P.E. Machado-de-Ávila R.A. Comim C.M. Silveira P.C.L. Effects of chronic treatment with gold nanoparticles on inflammatory responses and oxidative stress in Mdx mice. J. Drug Target. 2020 28 1 46 54 10.1080/1061186X.2019.1613408 31046473
    [Google Scholar]
  82. Zhou Y. Jia Z. Wang J. Huang S. Yang S. Xiao S. Xia D. Zhou Y. Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon 2023 9 10 20163 10.1016/j.heliyon.2023.e20163 37771529
    [Google Scholar]
  83. Nuriyeva N. Yurdgulu E.E. Albayrak A. Aliyev H. Aliyeva K. Erkayman B. Bayir Y. Evaluation of the protective effects of curcumin-rich turmeric (Curcuma longa) extract against isotretinoin-induced liver damage in rats. Toxicol. Mech. Methods 2024 34 2 122 129 10.1080/15376516.2023.2260454 37771095
    [Google Scholar]
  84. Zhang H.A. Pratap-Singh A. Kitts D.D. Effect of pulsed light on curcumin chemical stability and antioxidant capacity. PLoS One 2023 18 9 0291000 10.1371/journal.pone.0291000 37656767
    [Google Scholar]
  85. Sajadimajd S. Khazaei M. Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets 2018 18 6 538 557 10.2174/1568009617666171002144228 28969555
    [Google Scholar]
  86. Goldstein A. Soroka Y. Frušić-Zlotkin M. Lewis A. Kohen R. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway. Nanoscale 2016 8 22 11748 11759 10.1039/C6NR02113A 27224746
    [Google Scholar]
  87. Liu C. Rokavec M. Huang Z. Hermeking H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ. 2023 30 7 1771 1785 10.1038/s41418‑023‑01178‑1 37210578
    [Google Scholar]
  88. Agan V. Celik H. Eren M.A. Agan F.Z. Erel O. Neselioglu S. Koyuncu I. Gonel A. An investigation of oxidative stress and thiol/disulphide homeostasis in graves’ disease. Medicina 2019 55 6 275 10.3390/medicina55060275 31207925
    [Google Scholar]
  89. Tantry I.Q. Ali A. Mahmood R. Curcumin from Curcuma longa Linn. (Family: Zingiberaceae) attenuates hypochlorous acid-induced cytotoxicity and oxidative damage to human red blood cells. Toxicol. In vitro 2023 89 105583 10.1016/j.tiv.2023.105583 36924976
    [Google Scholar]
  90. dos Santos Haupenthal D.P. Mendes C. de Bem Silveira G. Zaccaron R.P. Corrêa M.E.A.B. Nesi R.T. Pinho R.A. da Silva Paula M.M. Silveira P.C.L. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. J. Biomed. Mater. Res. A 2020 108 1 103 115 10.1002/jbm.a.36796 31502356
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010408429251015065139
Loading
/content/journals/cpb/10.2174/0113892010408429251015065139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test