Skip to content
2000
image of Enhancing Local Anesthetic Efficacy: Controlled Release of Ropivacaine using Poly(lactic-co-glycolic) Acid-Polyvinyl Alcohol Nanocarriers

Abstract

Introduction

Ropivacaine (RPV), a commonly used local anesthetic, is limited in its effectiveness for postoperative pain management due to its short duration of action. To address this issue, this study further explores the development of poly(lactic-co-glycolic) acid (PLGA)-PVA nanocarriers designed to extend RPV's release and efficacy.

Methods

PLGA-PVA-RPV nanocarriers were synthesized via an emulsion technique and comprehensively characterized using transmission scanning electron microscopy, Malvern ZS90, and Fourier transform infrared spectroscopy. The cytotoxicity of these nanocarriers against HaCaT cells was determined using the Cell Counting Kit-8 viability assay and calcein-acetoxymethyl/ propidium iodide staining. Flow cytometry and scratch assays were used to assess their effects on the HaCaT cell cycle, apoptosis, and migration.

Results

The PLGA-PVA-RPV nanocarriers exhibited a spherical morphology, small size (10.90 ± 2.19 nm), uniform distribution, and stable zeta potential (−7.93 ± 0.81 mV). The PLGA-PVA-RPV nanoparticles demonstrate excellent biocompatibility; even at a high concentration of 1000 μg/mL, the cell viability remains above 80%, which is significantly higher than that of the free RPV group (67.3%, P < 0.05). Further mechanistic studies showed that PLGA-PVA-RPV nanoparticles induced cell cycle arrest and inhibited cell migration, collectively demonstrating their low toxicity, excellent biocompatibility, and sustained-release potential.

Discussion

The PLGA-PVA-RPV nanocarriers demonstrate enhanced efficacy and biocompatibility for prolonged ropivacaine release, offering a promising strategy for postoperative pain management. Future work should focus on validation and parameter optimization to facilitate clinical translation.

Conclusion

PLGA-PVA-RPV nanocarriers possess optimal physicochemical properties (small size, homogeneity, stability) and superior biosafety, providing a promising strategy for extending RPV's analgesic efficacy. This technology has significant potential to improve postoperative pain management.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010394956251027114744
2026-01-12
2026-01-31
Loading full text...

Full text loading...

References

  1. Tian X. Zhu H. Du S. Zhang X.Q. Lin F. Ji F. Tsou Y.H. Li Z. Feng Y. Ticehurst K. Hannaford S. Xu X. Tao Y.X. Injectable PLGA-coated ropivacaine produces a long-lasting analgesic effect on incisional pain and neuropathic pain. J. Pain 2021 22 2 180 195 10.1016/j.jpain.2020.03.009 32739615
    [Google Scholar]
  2. George A.M. Liu M. Ropivacaine. In: StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  3. Mohtadi A.R. Ahmadi Chegeni A. Behaeen K. Savaie M. Ghomeishi A. Post-cesarean delivery analgesia using spinal anesthesia: Ropivacaine-fentanyl vs. ropivacaine-sufentanil. Anesth. Pain Med. 2023 13 4 138067 10.5812/aapm‑138067 38024008
    [Google Scholar]
  4. Liu G. Liu L. Ou L. Cao X. Pang Z. Wen X. He Q. Yin B. Effect of nalbuphine plus ropivacaine on vaginal labor in epidural analgesia. BMC Anesthesiol. 2023 23 1 248 10.1186/s12871‑023‑02209‑7 37481510
    [Google Scholar]
  5. Peng F. Liu J. Chen J. Wu W. Zhang Y. Zhao G. Kang Y. Gong D. He L. Wang J. Zhang W. Qiu F. Nanocrystals slow-releasing ropivacaine and doxorubicin to synergistically suppress tumor recurrence and relieve postoperative pain. ACS Nano 2023 17 20 20135 20152 10.1021/acsnano.3c05831 37805931
    [Google Scholar]
  6. Peng F. Liu J. Zhang Y. Zhao G. Gong D. He L. Zhang W. Qiu F. Interaction between ropivacaine and a self-assembling peptide: A nanoformulation for long-acting analgesia. Int. J. Nanomedicine 2022 17 3371 3384 10.2147/IJN.S369706 35937079
    [Google Scholar]
  7. Florkiewicz P. Musialowicz T. Hippeläinen M. Lahtinen P. Continuous ropivacaine infusion offers no benefit in treating postoperative pain after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2019 33 2 378 384 10.1053/j.jvca.2018.09.006 30293831
    [Google Scholar]
  8. Chen Y. Song S. Yan Z. Fenniri H. Webster T.J. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone. Int. J. Nanomedicine 2011 6 1035 1044 21720515
    [Google Scholar]
  9. Luan F. He X. Zeng N. Tetrandrine: A review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J. Pharm. Pharmacol. 2020 72 11 1491 1512 10.1111/jphp.13339 32696989
    [Google Scholar]
  10. Lu C. Shen R. Wang X. Silk fibroin microspheres with photothermal nanocarrier encapsulation for anticancer drug delivery. Biomed. Mater. 2024 19 6 10.1088/1748‑605X/ad8850
    [Google Scholar]
  11. Han X. Alu A. Liu H. Shi Y. Wei X. Cai L. Wei Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact. Mater. 2022 17 29 48 10.1016/j.bioactmat.2022.01.011 35386442
    [Google Scholar]
  12. Farhoudi M. Sadigh-Eteghad S. Mahmoudi J. Farjami A. Mahmoudian M. Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr. Pharm. Des. 2022 28 24 1985 2000 10.2174/1381612828666220608093639 35676838
    [Google Scholar]
  13. Suo M. Zhao X. Yu G. Zhang W. Lidocaine loaded nanostructured lipid carriers for prolonged local anesthesia: in vitro and in vivo studies. J. Dispers. Sci. Technol. 2022 43 5 682 689 10.1080/01932691.2020.1844739
    [Google Scholar]
  14. Li A. Yang F. Xin J. Bai X. An efficient and long-acting local anesthetic: Ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain. Int. J. Nanomedicine 2019 14 913 920 10.2147/IJN.S190164 30774342
    [Google Scholar]
  15. Cheng X. Pan R. Tang J. Yu K. Zhang H. Zhao X. Preliminary study on pharmacokinetics and antitumor pharmacodynamics of folic acid modified crebanine polyethyleneglycol-polylactic acid hydroxyacetic acid copolymer nanoparticles. Int. J. Nanomedicine 2024 19 10513 10536 10.2147/IJN.S477027 39435040
    [Google Scholar]
  16. Zhang S. Fang H. Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024 25 11 7015 7057 10.1021/acs.biomac.4c01193 39420482
    [Google Scholar]
  17. Zheng L. Yu Q. Peng L. Li Q. Magnetically targeted lidocaine sustained-release microspheres: Optimization, pharmacokinetics, and pharmacodynamic radius of effect. Reg. Anesth. Pain Med. 2024 rapm-2024-105634 10.1136/rapm‑2024‑105634 39223097
    [Google Scholar]
  18. Annio G. Franzetti G. Bonfanti M. Gallarello A. Palombi A. De Momi E. Homer-Vanniasinkam S. Wurdemann H.A. Tsang V. Diáz-Zuccarini V. Torii R. Balabani S. Burriesci G. Low-cost fabrication of polyvinyl alcohol-based personalized vascular phantoms for in vitro hemodynamic studies: Three applications. J. Eng. Sci. Med. Diagn. Ther. 2020 3 3 034501 10.1115/1.4045760
    [Google Scholar]
  19. Üstün A. Örtücü S. Evaluation of nisin-loaded PLGA nanoparticles prepared with rhamnolipid cosurfactant against S. aureus biofilms. Pharmaceutics 2022 14 12 2756 10.3390/pharmaceutics14122756 36559250
    [Google Scholar]
  20. Siddharth S. Nayak A. Nayak D. Bindhani B.K. Kundu C.N. Chitosan-Dextran sulfate coated doxorubicin loaded PLGA-PVA-nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci. Rep. 2017 7 1 2143 10.1038/s41598‑017‑02134‑z 28526868
    [Google Scholar]
  21. Li M. Ma D. Li B. Zhang J. Effect of ropivacaine combined with sufentanil on hemodynamics and the expression of serum tnf-α and il-6 in parturients undergoing cesarean section. Clin. Exp. Obstet. Gynecol. 2023 50 5 106 10.31083/j.ceog5005106
    [Google Scholar]
  22. Xu P. Zhang S. Tan L. Wang L. Yang Z. Li J. Local anesthetic ropivacaine exhibits therapeutic effects in cancers. Front. Oncol. 2022 12 836882 10.3389/fonc.2022.836882 35186766
    [Google Scholar]
  23. Zheng T. Ye P. Wu W. Hu B. Chen L. Zheng X. Lin M. Minimum local anesthetic dose of ropivacaine in real-time ultrasound-guided intraspinal anesthesia for lower extremity surgery: A randomized controlled trial. Ann. Transl. Med. 2020 8 14 861 10.21037/atm‑20‑3805 32793705
    [Google Scholar]
  24. Hu Y. Fan L.J. Jiang Y.M. Liu H. Yong H. Peng C. Intrathecal injection of ropivacaine reduces cervical resistance in late-pregnant rats. Drug Des. Devel. Ther. 2022 16 1183 1189 10.2147/DDDT.S352411
    [Google Scholar]
  25. Miraghaie S.H. Zandi A. Davari Z. Mousavi-kiasary M.S. Saghafi Z. Gilani A. Kordehlachin Y. Shojaeian F. Mamdouh A. Heydari Z. Dorkoosh F.A. Kaffashi B. Abdolahad M. Targeted delivery of anticancer drug loaded charged plga polymeric nanoparticles using electrostatic field. Macromol. Biosci. 2023 23 9 2300181 10.1002/mabi.202300181 37399543
    [Google Scholar]
  26. Mohamed A.A. Kbah N.Z. Wennas O.N. Poly (lactic-coglycolic acid) nanoparticles for drug delivery of rupatadine fumarate: Development and evaluation. 2023 Available from: https://pharmacia.pensoft.net/article/110191/
  27. Tang M. Huang Y. Liang X. Tao Y. He N. Li Z. Guo J. Gui S. Sorafenib-loaded PLGA-TPGS nanosystems enhance hepatocellular carcinoma therapy through reversing p-glycoprotein-mediated multidrug resistance. AAPS PharmSciTech 2022 23 5 130 10.1208/s12249‑022‑02214‑y 35487999
    [Google Scholar]
  28. Naidek N. Khalil N.M. Almeida C.A.P. Poly-(lactic-co-glycolic acid)/poly-(vinyl alcohol) and cobalt ferrite magnetic nanoparticles as vanillin carriers. Soft Mater. 2023 21 2 206 217 10.1080/1539445X.2023.2199419
    [Google Scholar]
  29. Haghighat Bayan M.A. Dias Y.J. Rinoldi C. Nakielski P. Rybak D. Truong Y.B. Yarin A.L. Pierini F. Near‐infrared light activated core‐shell electrospun nanofibers decorated with photoactive plasmonic nanoparticles for on‐demand smart drug delivery applications. J. Polym. Sci. 2023 61 7 521 533 10.1002/pol.20220747
    [Google Scholar]
  30. Gao T. Tian C. Ma Z. Chu Z. Wang Z. Zhang P. Stem cell seeded and silver nanoparticles loaded bilayer plga/pva dressings for wound healing. Macromol. Biosci. 2020 20 10 2000141 10.1002/mabi.202000141 32734706
    [Google Scholar]
  31. Saleh A. Abdelkader D.H. El-Masry T.A. Eliwa D. Alotaibi B. Negm W.A. Elekhnawy E. Antiviral and antibacterial potential of electrosprayed PVA/PLGA nanoparticles loaded with chlorogenic acid for the management of coronavirus and Pseudomonas aeruginosa lung infection. Artif. Cells Nanomed. Biotechnol. 2023 51 1 255 267 10.1080/21691401.2023.2207606 37154794
    [Google Scholar]
  32. Maksimenko O. Malinovskaya J. Shipulo E. Osipova N. Razzhivina V. Arantseva D. Yarovaya O. Mostovaya U. Khalansky A. Fedoseeva V. Alekseeva A. Vanchugova L. Gorshkova M. Kovalenko E. Balabanyan V. Melnikov P. Baklaushev V. Chekhonin V. Kreuter J. Gelperina S. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. Int. J. Pharm. 2019 572 118733 10.1016/j.ijpharm.2019.118733 31689481
    [Google Scholar]
  33. Saghir S.A.M. Al-Gabri N.A. Khafaga A.F. El-shaer N.H. Alhumaidh K.A. Elsadek M.F. Ahmed B.M. Alkhawtani D.M. Abd El-Hack M.E. Thymoquinone-PLGA-PVA nanoparticles ameliorate bleomycin-induced pulmonary fibrosis in rats via regulation of inflammatory cytokines and INOS signaling. Animals 2019 9 11 951 10.3390/ani9110951 31717986
    [Google Scholar]
  34. Sahin A. Spiroux F. Guedon I. Arslan F.B. Sarcan E.T. Ozkan T. Colak N. Yuksel S. Ozdemir S. Ozdemir B. Akbas S. Ultav G. Aktas Y. Capan Y. Using PVA and TPGS as combined emulsifier in nanoprecipitation method improves characteristics and anticancer activity of ibuprofen loaded PLGA nanoparticles. Pharmazie 2017 72 9 525 528 29441979
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010394956251027114744
Loading
/content/journals/cpb/10.2174/0113892010394956251027114744
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HaCaT ; controlled release ; drug delivery ; Ropivacaine ; pain ; PLGA-PVA nanocarriers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test